TrueBot Analysis Part Il - Static unpacker

l‘ malware.love/malware_analysis/reverse_engineering/2023/02/18/analyzing-truebot-static-unpacking.htmi

February 18, 2023

18 Feb 2023 » malware_analysis, reverse_engineering

In my last post, | described how to identify the decryption key, the encrypted blob and how
the decryption algorithm works in a packed TrueBot sample. Doing this manually with help
of your favorite Disassembler/Decompiler is quite easy, but | guess, that’s not why you are
here. What we want is a static unpacker, written in Python, without using any external tools
or too many dependencies (except Malduck &).

Depending on the sample you're analyzing, writing a static unpacker can be a challenging
task, especially if you're dealing with several layers of encryption, junk code, control-flow
obfuscation and so on.

Fortunately, TrueBot doesn’t make it particularly difficult for us here. Nevertheless, the code
will end up looking a bit ugly since we want to write an unpacker for all samples available to
us. But maybe that is just because of my programming style. By the way, | do not use a lot
of error handling in my code so please be merciful.

In a nutshell, the basic methodology for our code looks as follows:

1. Identify the encrypted blob, ideally with its length.
2. Locate and parse the decryption key and the value for the AND operation.
3. Decrypt and save the dump.

As | already described in Part | of my analysis, the most common variant in those packed
samples is a DLL Export which directly calls the decryption function with the offset of the
decrypted blob and the blob size as arguments.

.text:10001620 ; int ChkdskExs()

.text:10001620 public ChkdskExs

.text:10001620 ChkdskExs proc near ; DATA XREF: .
.text:10001620 68 30 FD @5 00|B|ob size —P push 5FD30h ;oint
.text:10001625 68 08 F2 01 10 push offset decrypted_blob ; Src
.text:1000162A [E8 11 FF FF FF call mw_decrypt_blob
.text:1000162F L4 vs add esp, 8

.text:10001632 C3 retn

.text:10001632 ChkdskExs endpOffset to decrypted blob

-text:10001632

This call can be identified easily and without false positives, at least in the samples |
analyzed. In order to accomplish this, we use Malduck, our “ducky companion in malware
analysis journeys”.

1/4

https://malware.love/malware_analysis/reverse_engineering/2023/02/18/analyzing-truebot-static-unpacking.html
https://malware.love/category/malware_analysis
https://malware.love/category/reverse_engineering
https://malware.love/malware_analysis/reverse_engineering/2023/02/12/analyzing-truebot-packer.html
https://malware.love/static/img/export_calls_dec_fn.png
https://github.com/CERT-Polska/malduck

To find the call, we utilize Malduck’s built-in Yara wrapper, looking for the two pushes and
the beginning of the call, see the green box in the screenshot above. Since we don’t know
the exact size of the blob, we’re using the wildcards 7?2 and estimate that the size is
between 0x40000 and Ox6FFFF.

malduck.procmempe.from_file(filename=abs_file_path, image=True)
YaraString('68 ?? ?? (04 | 05 | 06) 00 68 ?? ?? ?? ?? E8',
type=YaraString.HEX)

decrypt_blob_call = Yara(name="decrypt_blob_call", strings={"call": s1},

condition="all of them")

match = pe.yarav(ruleset=decrypt_blob_call)

offset = None

if match:

for _, v in match.elements["decrypt_blob_call"].elements.items():
offset = v[0@] # there should only be one match (hopefully)

pe
sl

Ouir file is loaded as memory-mapped PE file, so we will use yarav() to perform yara
matching_region-wise.

This will also help us to debug more easily because we can confirm matching offsets in our
Disassembler (check the hex value against the virtual address in the screenshot above).

= <malduck.yara.YaraRulesetOffsets object at 0x121cfae50>
default = None

elements = {'decrypt_blob_call': <malduck.yara.YaraRuleOffsets object at 0x121cfaf40>}
'decrypt_blob_call' = <malduck.yara.YaraRuleOffsets object at 0x121cfaf40>
> 1= default = 1

v elements = {'call': [268441120]}
i~ 'call' = {list: 1} [268441120]
len__ = 1

name = 'decrypt_blob_call'

rule = 'decrypt_blob_call

Since we are now (0x10001620 in this example) near the position where the decryption
function is called, we can determine the length and the virtual address of the encrypted blob
and also get the virtual address of the decryption function.

To get the blob size, we need to read 4 bytes, starting from the identified address before +1
(because of the push opcode), see the screenshot below.

You can either call pe.readv(addr, length) or just use Malduck’s handy helper functions
like uint32v(addr) which for example reads an unsigned 32-bit value at the given address.

blob_size = pe.uint32v(vaddr + 1) #Read unsigned 32-bit value at address.

2/4

https://malduck.readthedocs.io/en/latest/procmem.html?highlight=yarav#malduck.procmem.procmem.ProcessMemory.yarav
https://malware.love/static/img/matching_offset_va.png
https://malduck.readthedocs.io/en/latest/string.html?highlight=uint32v#malduck.uint32

Determine the size of the blob

.text:10001620 68 30 FD 05 00 push 5FD30h

blob size = pe.readv(vaddr + =4)

blob size = pe.uin32v(vaddr + 1)

Getting the virtual address where the decrypted blob is stored, works similar.
blob_va = pe.uint32v(vaddr + 1 + 4 + 1)

Determine the virtual address of the blob

h

.text:10001620 (68 30 FD 05 00 push 5FD30h ; int
.text:10001625l68 08 F2 01 10\ push offset decrypted_blob
—~— \t_‘.kw e . o
blob va = pe.readv(vaddr + 1 + 4 + 3] < .data:1001F208 24 decrypted_blob db 24h ; §
)

blob va = pe.uint32v(vaddr +

Now we only need the key and the value for the “AND” operation to decrypt the blob. The
approach is similar to the one already described above. We know the virtual address of the
decryption functions and have an approximate idea how big the function is. Therefore, we
can now search for the required information in between this function, see the code to find
the key here and to find the value for the “AND” operation here.

After collecting the blob and the decryption material, we should be able to decrypt the blob
with help of the decryption function mentioned in Part | of this series.

3/4

https://malware.love/static/img/truebot_yara_push_example.png
https://malware.love/static/img/truebot_read_blob_va_and_len.png
https://github.com/lazydaemon/mw_analysis/blob/main/truebot/truebot_unpack.py#L9
https://github.com/lazydaemon/mw_analysis/blob/main/truebot/truebot_unpack.py#L64
https://malware.love/malware_analysis/reverse_engineering/2023/02/12/analyzing-truebot-packer.html

I've published the whole code on github and tested against all the samples available to me.
When running the script on all samples, it should look like this.

Like most static unpackers/config extractors/etc., this code might break easily if some bytes
at specific positions change and you will probably have to continuously adapt the Unpacker
to new samples. | am therefore very interested in new samples. If someone has some,
please get in touch with me.

Now that we have a bunch of unpacked samples, the next post in this series will focus on
TrueBot’s capabilities before we then write a Config Extractor using Python and Malduck.

Related Posts

TrueBot Analysis Part | - A short glimpse into packed TrueBot samples (Categories:
malware_analysis, reverse_engineering)

Python stealer distribution via excel maldoc (Categories: malware_analysis,
reverse_engineering)

Having_fun with an Ursnif VBS dropper (Categories: malware_analysis,
reverse_engineering)

Trickbot tricks again [UPDATE] (Categories: malware analysis, reverse_engineering)
Trickbot tricks again (Categories: malware_analysis, reverse_engineering)

« TrueBot Analysis Part | - A short glimpse into packed TrueBot samples

4/4

https://github.com/lazydaemon/mw_analysis/tree/main/truebot
https://malware.love/static/img/truebot_unpacking.gif
https://malware.love/malware_analysis/reverse_engineering/2023/02/12/analyzing-truebot-packer.html
https://malware.love/category/malware_analysis.html
https://malware.love/category/reverse_engineering.html
https://malware.love/malware_analysis/reverse_engineering/2021/05/19/unknown-python-stealer.html
https://malware.love/category/malware_analysis.html
https://malware.love/category/reverse_engineering.html
https://malware.love/malware_analysis/reverse_engineering/2020/11/27/analyzing-a-vbs-dropper.html
https://malware.love/category/malware_analysis.html
https://malware.love/category/reverse_engineering.html
https://malware.love/malware_analysis/reverse_engineering/2020/11/22/trickbot-fake-ips-part2.html
https://malware.love/category/malware_analysis.html
https://malware.love/category/reverse_engineering.html
https://malware.love/malware_analysis/reverse_engineering/2020/11/17/trickbots-latest-trick.html
https://malware.love/category/malware_analysis.html
https://malware.love/category/reverse_engineering.html
https://malware.love/malware_analysis/reverse_engineering/2023/02/12/analyzing-truebot-packer.html

