Writing a decryptor for Jaff ransomware

@ clairelevin.github.io/malware/2023/02/14/jaff.html

February 14, 2023

Overview

Recently, I've been trying to learn more about reverse engineering ransomware. Jaff is
ransomware from a campaign dating back to 2017, and | was told that it had a vulnerability
that would make it possible to write a decryptor. | analyzed a sample to see if | could
rediscover the vulnerability myself.

You can find the sample | used on MalShare, and its SHA256 hash is
0746594fc3e49975d3d94bac8e80cOcdaad6d90ede3b271e6f372f55b20bac2f.

Initial Observations

File name

Ci\Users\daire\Desktop\0 746 594324997 5d 3d94bacBed0c0cdaadtd90ede 3b 27 1ea6f37 2550 20bac2f

File type Entry point Base address MIME

PE32 0041abcd > Disasm 00400000 Memory map —
ash

FE Import Resources

Sfrings

Sections TimeDateStamp Size0flmage Resources
Entropy
0004 = 2017-05-08 17:02:56 00036000 Manifest Version
Scan Endianness Mode Architecture Type —
Detect It Easy(DiE) LE 32 1386 GUI
compiler Microsoft Visual C/C++ (6.0)[mswert]

linker Microsoft Linker{6.0)[GUI32]

Options

Signatures D Deep scan About
Scan
e Log 122 msec Exit

The sample is a 32-bit PE excutable written in C++. The executable did not seem to import
any functions related to cryptography, and it contained a very long chunk of encrypted data.
This meant that the most important functions of this program were likely being decrypted
dynamically.

1/11

https://clairelevin.github.io/malware/2023/02/14/jaff.html
https://malshare.com/sample.php?action=detail&hash=0746594fc3e49975d3d94bac8e80c0cdaa96d90ede3b271e6f372f55b20bac2f

By setting breakpoints on virtualAlloc and VirtualProtect, | kept track of each time a
RWX segment of memory was allocated. After several calls to virtualAlloc and
VirtualProtect, the program wrote a PE file to one of these segments, which | dumped
from memory. This turned out to be the actual encryptor, and it's what I'll be focusing on for
the remainder of my analysis.

Behaviors

When run, the sample calls itself Ffv opg me 1liysj sfssezhz:

' 0746594 c3e495975d3d94bacBeBlc0cdaad6dd0ede3b2 ... X

General Compatibility Securty Details Previous Versions

Blclcdaa$6dHede Ib271eb6 37 50b 20bac H exe

Type of file: Application (exe)

Descrption: Fw opg me liysj sfasezhz

Location: C:nUsershclaire\\Desktop
Size: 152 KB (155,648 bytes)
Size on disk: 152 KB (155,648 bytes)

Created: Thursday, February 5, 2023, 7:53.50 PM
Modified: Thursday, February 9, 2023, 7:40:26 PM

Accessed: Today, Februany 14, 2023, 9 minutes ago

Aitributes: [JReadonly []Hidden Advanced...

| QK | Cancel Apply

Additionally, a GET request is made to fkksjobnn43[.]org/a5/. As | don’t have access to
this C2 server, | have no way of knowing what was expected from this server or whether the
encryption process would have proceeded differently if I'd been able to connect.

GET /a5/ HTTP/1.1
Host: fkksjobnn43.org

Strings, Imports, and Resources

2/11

The binary | dumped from memory imports cryptography-related functions such as
CryptEncrypt, CryptExportKey, and CryptGenKey, as well as file enumeration functions
such as FindFirstFilew and FindNextFilew. This is how | knew | was looking at the actual
encryptor.

Additionally, there were several resources containing data used in the encryption process:

e #105: The string representation of the numbers
3532605403186136813956330618413416701813071856948273166600165081753910874

4401016633231304437224730790638615766740272106403143256 and
3532605403186136813956330618413416701813071856948273166600165082986456837

1094444203557601170206844003631101722202233367975968667.

o #106: The file extensions to encrypt:

.x1lsx .acd .pdf .pfx .crt .der .cad .dwg .MPEG .rar .veg .zip .txt .jpg .doc
.wbk .mdb .vcf .docx .ics .vsc .mdf .dsr .mdi .msg .x1ls .ppt .pps .obd .mpd .dot
.x1t .pot .obt .htm .html .mix .pub .vsd .png .ico .rtf .odt .3dm .3ds .dxf .max
.0bj .7z .cbr .deb .gz .rpm .sitx .tar .tar.gz .zipx .aif .iff .m3u .md4a .mid
.key .vib .stl .psd .ova .xmod .wda .prn .zpf .swm .xml .xlsm .par .tib .waw
.001 .002 003. .004 .005 .006 .007 .008 .009 .010 .contact .dbx .jnt .mapimail
.0oab .ods .ppsm .pptm .prf .pst .wab .lcd .3g2 .7ZIP .accdb .aoi .asf .asp. aspx
.asx .avi .bak .cer .cfg .class .config .css .csv .db .dds .fif .flv .idx .js
.kwm .laccdb .idf .1it .mbx .md .mlb .mov .mp3 .mp4 .mpg .pages .php .pwm .rm
.safe .sav .save .sgql .srt .swf .thm .vob .wav .wma .wmv .xlsb .aac .ai .arw .c
.cdr .cls .cpi .cpp .cs .db3 .docm .dotm .dotx .drw .dxb .eps .fla .flac .fxg
.java .m .m4v .pcd .pct .pl .potm .potx .ppam .ppsx .ps .pspimage .r3d .rw2
.sldm .sldx .svg .tga .wps .xla .xlam .xlm .xltm .xltx .xlw .act .adp .al .bkp
.blend .cdf .cdx .cgm .cr2 .dac .dbf .dcr .ddd .design .dtd .fdb .fff .fpx .h
.iif .indd .jpeg .mos .nd .nsd .nsf .nsg .nsh .odc .odp .0il .pas .pat .pef .ptx
.qbb .gbm .sas7bdat .say .st4 .st6 .stc .sxc .sxw .tlg .wad .xlk .aiff .bin .bmp
.cmt .dat .dit .edb .flvv .gif .groups .hdd .hpp .log .m2ts .m4p .mkv .ndf
.nvram .ogg .ost .pab .pdb .pif .qed .qcow .gcow2 .rvt .st7 .stm .vbox .vdi .vhd
.vhdx .vmdk .vmsd .vmx .vmxf .3fr .3pr .ab4 .accde .accdt .ach .acr .adb .srw
.st5 .st8 .std .sti .stw .stx .sxd .sxg .sxi .sxm .tex .wallet .wb2 .wpd .x11
.x3f .xis .ycbcra .gbw .qbx .gby .raf .rat .raw .rdb rwl .rwz .s3db .sd® .sda
.sdf .sglite .sqlite3d .sqglitedb .sr .srf .oth .otp .ots .ott .pl2 .p7b .p7c .pdd
.pem .plus_muhd .plc .pptx .psafe3 .py .gba .gbr.myd .ndd .nef .nk .nop .nrw

e #109: The ransom note in HTML form, with the string [1D5] in place of the victim’s
decryption ID.

e #110: The string . jaff, which is the extension appended to encrypted files.
e #111: The URL fkksjobnn43[.]org/a5/

e #112: The ransom note in text form, again with [1D5] in place of the ID.

3/11

e #113: A string of bytes which, when XORed with the second number in #106, gives the
strings ReadMe. txt, ReadMe . bmp, and ReadMe . html.

Additionally, the string cmd /Cc del /Q /F %s found in the program suggests that it is
intended to delete itself once encryption is complete.

The Encryption Process

The sample uses 256-bit AES to encrypt files. For debugging purposes, | set a breakpoint on
CryptImportKey to read the key blob from memory:

| address | Hex | AscIT |
013CBE940 |08 02 00 00|10 66 00 OO0|20 OO0 OO0 OD|DE 48 17 EZ|h.... T.. ...FH.;
013CB950 | E4 OC 2B DE|1B 28 34 53 |FF B8F 9D FE|EF 28 &8 EO a.iu.i45§..bg(ha
O13CE960 | A6 A2 AF 59|81 8F 14 11 (24 43 07 AA(ABE AB AB AB| ¢ ¥Y....380.%:aas

013CES70(AE ABE AB AB(00 00 00 00|00 00 OO0 00|00 00 OO0 OO0 S6EE.asaasananns

e | s e mm e | oa e —~ = B e T e e —

A new key is generated using CryptGenKey each time the program is run.

Beginning with the root directory, the program enumerates all files and subdirectories and
uses CryptEncrypt to AES encrypt each file. The program uses GetLogicalDrives to find
all drives connected to the system, and encrypts all drives that are not CD-ROM drives
(possibly because a CD-ROM drive would make a noticeable noise as it started up).

The . jaff extension is appended to the encrypted file, and the AES-encrypted bytes are
written. We can see that there are multiple writeFile calls to the encrypted file, revealing
that something else is appended to the . jaff file before the encrypted data:

The appended value turned out to be the ASCII representation of a large number.

4/11

Input 00 01 02 03 04 05 0g 07 03 0% 02 OB OC OD 0OE OF [::]E

ooooQ00QO0 02 01 OO OO0 33 33 35 34 33 37 31 34 31 30 31 32 LY
00000010 32 3% 31 38 32 33 35 30 3Z 33 30 30 32 37 35 35 .
Qo0oo020 30 38 33 32 32 30 34 35 37 30 32 33 38 37T 3% 32
00000030 33 38 33 30 37 36 31 30 37 34 37 31 32 38 35 30
00000040 38 3% 32 35 30 33 35 33 37 35 38 35 38 30 36 3B
Q0000050 36 3% 37 33 31 38 30 323 31 37 3¢ 30 30 32 32 35
000000eD 33 32 38 30 35 30 35 35 3% 35 32 33 30 31 38 35
Qo00007T0 36 32 36 31 34 34 30 33 35 36 32 37 38 32 32 31
Qo0000BD 35 37 34 35 20 31 37 35 32 38 32 35 34 32 37 3¢
Q0000050 34 34 36 34 31 35 31 32 33 34 30 38 35 37 31 33
QO00000RD 36 33 38 30 38 37 37 35 31 36 3% 32 35 38 36 33
000000BD 33 36 33 30 37 36 38 33 37 30 34 35 38 37 38 3%
Qo0000Co 35 30 36 37 37 33 34 31 31 30 30 36 36 38 36 36 [
Qo0000D0 33 33 37 31 30 34 37 34 35 3% 3% 36 36 37 35 37 i
QO0000ED 38 36 34 35 35 35 34 35 37 31 38 37 34 30 33 33
0O0000FD 3% 35 36 30 31 33 36 32 33 33 30 36 33 37 39 36
ooo00100 37 35 33 3£ 33 20 20 27 00 00 Ce 00 14 CA 40 BS
Qoo00110 %D 16 RR A6 DC FZ BE 1F &7 BER EE BF 30 C5 C4 2R
Qooool20 =S8 34 7B €T S0 44 42 SE C5 Ce FB -3 03 &3 4E 3B
Qoo00130 71 CA 3D 1% 04 ET 4D 23 06 2B 0D C4 33 ERA 73 4B
00000140 &5 ED 70 20 77 SC 4R A6 34 C3 BO &0 73 &% 73 D1
Qoo00150 A1 DE RO C1 B2 ZA FD 2C CF 24 C7 Ce& 56 E& BE ZE
Qoo00led FD C4 RE &E 2R 12 38 AS CE D& BE LR 22 3 1B DS
Qoo00170 3% OF 73 94 D5 45 8F 70 BF E4 €1 1R 25 74 82 BB
Q0000180 BF A3 €3 06 30 FT7 48 1C 50 DA A3 27 45 D4 86 10
Qoo00150 FL BO BR 35 3F EA 04 72 DT 55 ER 18 41 BRA F& =0 W

testfile _txt.jaff

Additionally, the ransom note is dropped in each encrypted directory. The note is dropped in
text, HTML, and image forms, with file names of ReadVe. txt, ReadMe.html, and ReadMe . bmp
respectively.

Files are encrypted!

To decrypt flies you need to obtain the private key.
The only copy of the private key, which will allow you to decrypt your files, is located
on a secret server in the Internet

o You must install Tor Browser: https://www.torproject.org/download/download-
easy.html.en

e After instalation, run the Tor Browser and enter address:
http://rktazuzi7hbln7sy.onion/

Follow the instruction on the web-site.

5/11

A new victim ID is generated each time the program is run.

Encryption of the AES Key

| suspected that the long number appended before the encrypted data in the . jaff files was
likely an encryption of the AES key. A new AES key was generated for each victim, so the
program would need some way to store it.

Representing The Key Bytes

| found that the AES key was being passed as an argument to sub_402d70. When passed
into this function, the AES key blob was being stored as a decimal representation in little-
endian format, with each decimal digit being stored as a 16-bit integer. Each byte of the key
blob was converted to three decimal digits; for instance, 08 would be stored as 068 and 8A
would be stored as 138. Additionally, the digit “1” was appended to the sequence:

Address | Hex ASCITI

013DAZ08 |06 00 O3 0D |00 OO OF OD|01L OO OO0 Q0|00 0D 02 00| e e ceeananannns
013DAZ218 |00 00 O3 OD|O4 0D O1L OD|09 00 OZ OD|(0OL OD 09 00| v i eeanananannns
013DAZ228 |08 00 OO0 OQD|O5 OO OF QD01 OO0 OZ2 00|06 00 OL 00| s eeasansnnnnnnns
013DAZ238 |06 00 O& OD|OL OO O4 00|02 00 02 00|04 0D OO0 DD @ e e eanananannns
0130424801 00 OO OO|O4 OO OO0 OQO|0L OO O3 00|02 00 04 00| @ ieannannnnnnns
013DAZ58 |05 00 02 OD|OF OO O5 OD|0O1L 00 O3 00|04 0D OL 00| @i nnannnannns
013DAZ268 |05 00 O5 0OD|02 OO O3 00|08 00 OO OD|(02 0D O5 DD @i eienananannns
013DAZ278| 00 OO0 OO0 OO0|04 OO OO0 Q0|07 OO0 02 00|00 0D 02 00| i ieasanssanannns
013DAZB8 |02 00 02 OD|00 OO O4 QD00 OO0 02 OD(OL O OO0 00| @ ieeeanananannns
013DAZ2598 |08 00 02 00|02 0D OF OD|02 00 02 00|03 0D 02 00| i e eeanananannns
013DAZA8| 00 00 02 QD|OF 0D OO OO0 02 00 02 00|02 0D 00 00| v eeasansnanannns
013DAZBS | 00 00 OO0 OD|00 0D OO OO0 |00 OO OO0 OD(00 O OO0 00| @ e canananannns
013DA2CE |02 00 O3 00|00 OO OO0 QOO0 OO0 OO0 OO0 |00 O 00 00| @ ieennassnnnnns
013DAZDE | 00 00 02 00|00 OO 01 00|06 OO OL Q0|00 O OO0 00| @ ieeeanananannns
013DAZES | 00 OO0 OO0 OD|00 0D OO0 OO0 |00 00 02 00|00 O 00 00| @ ecanananannns
013DAZF8 |08 00 OO0 OO0 |00 OO 01 00|00 OO OO0 OO0 (00 O 00 00| cieesansssnannns

For example, during one run of the program, the original AES key blob was the following:

08 02 0O OO0 10 66 0O OO 20 60 0O 0O 52 8A A4 DO 46 E3 4F FE E8 C6 AO® F5 91 60C 25 81
03 OE 5C 3C 57 F6 AO 43 08 32 C9 83 2C 01 FC 95

It was stored as the sequence of bytes

04 00 04 OO0 OO0 GO 01 OO0 03 60 01 00 01 OO0 6O GO 02 OO OO 6O 65 00 OO OO 68 GO 00 0O
00 00 07 0O 06 OO0 00 OO OO OO 06 0O 01 GO 06 00 04 OO 02 00 07 GO 08 OO0 00 0O OO 00
06 00 OO0 00 02 0O 09 0O 00 60 04 00 01 00 OO0 GO 03 OO 00 60 GO 00 09 00 02 0O 01 00
07 00 03 OO0 60 GO 02 0O 01 60 GO 0O 05 00 04 GO0 01 0O 05 60 04 00 02 OO0 6O GO 06 0O
01 0O 08 00 09 GO 01 0O 02 6O 63 00 02 00 64 GO 05 0O 02 6O 09 00 07 OO 6O GO 07 0O
02 00 02 00 0O OO0 07 OO OO OO 08 OO OGO GO 02 00 04 OO0 06 00 01 0O 08 00 03 00 01 60
02 00 08 00 OO0 0O 0O OO OO0 60 GO OO0 OO 00 60 GO 00 OO0 00 60 GO 00 0O 00 02 0O 03 00
00 0O 0O OO0 60 0O 0O OO 00 60 GO 0O 0O 00 02 GO0 00 0O 01 60 06 00 01 00 60 GO 00 06
00 00 OO OO0 6O GO 0O OO 00 6O 02 0O OO 00 GO GO 08 0O 66 6O 60 00 01

which corresponds to the number

1008002000000016102000000032000000000082138164208070227079254232198160245145012037129
003014092060087246160067008050201131044

6/11

To convert this representation back into bytes, | used the following function:

def convert_from_decimal(s):
result = b''
s_fixed = s[1:]
for i in range(®, len(s_fixed) ,3):
curr_num = s_fixed[1:i+3]
result += int(curr_num).to_bytes(1, 'little')
return result

Encrypting The Key

At this point, it was time to look at what sub_402d70 was actually doing. The arguments to
the function were the AES key, an array of bytes that were either 1 or 0, and the decimal

representation of the number
353260540318613681395633061841341670181307185694827316660016508298645683710944

44203557601170206844003631101722202233367975968667. Note that this is one of the two
numbers that appeared in resource #105.

By experimenting with this subrouting in a debugger, | found that the program was calling
functions that performed multiplication and division on arbitrarily large numbers. Sepecifically,
the AES key was being squared over and over, and something different was done with the
result based on the values in the array of 1s and Os.

*_ZERO_MEMORY, dwE

HEAP_NOME, LpMem

7/11

This proved to be the repeated-squaring method for modular exponentiation. The AES key
was being raised to an exponent, which was passed as an argument in binary form in order
to aid in the repeated-squaring algorithm. The modulus was the long number stored in the
resource.

The use of modular exponentiation immediately suggested that RSA was being used.
Normally, this would mean we wouldn’t be able to decrypt the AES key, as we need the
private key for that.

However, resource #1605 contains two numbers, and we’ve only used one so far. One of them
is the public modulus n, and the other number is very close to it. It seemed possible that the
second number was phi(n), which is needed to compute the private exponent d from the
public exponent e. | wrote the following script to test it:

def rsa_decrypt(msg, e, n, phi_n):
d = pow(e, -1, phi_n)
return pow(msg, d, n)

Sure enough, passing in the second number as phi(n) returned the decrypted AES key!
Since the RSA key was hard-coded, this meant that we had enough information to write a
decryptor for any files encrypted with this sample, even if the AES key changed each time.

The Public Exponent

To generate the private exponent for the decryptor, | not only needed phi(n), but also the
public exponent. However, the program generated a new public exponent each time it was
run.

Upon closer inspection, | found that the public exponent was usually close to the victim ID
given in the ransom note. Sometimes they matched exactly, but sometimes the exponent
was slightly more than the ID, and occasionally they didn’t seem to match at all.

Eventually, | found that the victim ID seemed to be randomly generated. If a negative number
was generated, the bits were negated in order to produce a positive result.

After correcting for this, | found that either the victim ID or its negation was always close to
the exponent, but there didn’t seem to be much of a pattern to the exact difference.

8/11

It turned out that the victim ID sometimes needed to be modified before it could work as a
public exponent. In RSA, the public exponent needs to be invertible modulo phi(n), meaning
that the exponent and phi(n) need to be relatively prime. However, the process that
generated the victim IDs did not guarantee a result that was relatvely prime to phi(n).

(This is just speculation, but my guess is that this is why phi(n) was hard-coded in the
executable - they needed to guarantee that they had a valid public exponent, so they had to
check whether the ID and phi(n) were relatively prime. However, this also gives us enough
information to decrypt the files ourselves!)

By incrementing the victim ID until | got a number that was relatively prime to phi(n), |
managed to retrieve the public exponent.

def get_relatively_prime(e, phi_n):
while(math.gcd(e, phi_n) != 1):
e += 2
return e

Putting It All Together

We now have enough information to write a decryptor that decrypts the victim’s files using
only the encrypted . jaff file and the ID number in the ransom note.

9/11

import binascii

import math

from Crypto.Cipher import AES
from struct import pack, unpack

phi_n =
3532605403186136813956330618413416701813071856948273166600165081753910874440101663323
1304437224730790638615766740272106403143256

n:
3532605403186136813956330618413416701813071856948273166600165082986456837109444420355
7601170206844003631101722202233367975968667

def convert_from_decimal(s):
result = b"'
s_fixed = s[1:]
for 1 in range(0, len(s_fixed) ,3):
curr_num = s_fixed[1:i+3]
result += int(curr_num).to_bytes(1, 'little')
return result

def rsa_decrypt(msg, e, n, phi_n):
d = pow(e, -1, phi_n)
return pow(msg, d, n)

def get_relatively prime(e, phi_n):
while(math.gcd(e, phi_n) !'= 1):
e += 2
return e
def aes_decrypt(ciphertext, blob):
iv = b'\x00'*16
key_bytes = blob[12:]
key = AES.new(key_bytes, AES.MODE_CBC, iv)
padded_text = ciphertext + b'\x00'*(16 - len(ciphertext)%16)
return key.decrypt(padded_text)
def decrypt(filename, id):

#parse the encrypted AES key and data from the file

enc_file open(filename, 'rb').read()
num_size unpack('<I', enc_file[0:4])[0]
key_str = enc_file[4:num_size+4]
ciphertext = enc_file[num_size+8:]

keys = [int(1i) for i in key_str.split()]
aes_key = []

#test both the victim ID and its negation for a valid public exponent

10/11

expl = get_relatively_prime(id | 1, phi_n)
for k in keys: aes_key.append(rsa_decrypt(k, expl, n, phi_n))
if(str(aes_key[0]))[0:6] !'= '100800':

aes_key = []

not_id = ~id & OxFffffffff

exp2 = get_relatively prime(not_id | 1, phi_n)

for k in keys: aes_key.append(rsa_decrypt(k, exp2, n, phi_n))

#decode the key blob from its decimal representation

aes_key_bytes = b''
for k in aes_key: aes_key_bytes += convert_from_decimal(str(k))

return aes_decrypt(ciphertext, aes_key_bytes)

11/11

