The Approach of TA413 for Tibetan Targets

@ malgamy.github.io/malware-analysis/The-Approach-of-TA413-for-Tibetan-Targets/
February 7, 2023

12 minute read

Summary

This attack chain begins with the victim receiving a malicious RTF file through a phishing
attack. When the victim opens the RTF file, it contains a hidden encoded file which is then
decoded and executed using a shellcode. The executed file then performs process
hollowing, injecting itself into the rundll32.dll process and establishing a connection with the
attacker’s command and control (C2) server.

decoded file inject 3
stage into rundll32
prOCess

decode file H:
with St - I

A
drop file into temp
RTF :: ~
&\ process hollowing

download modules and receive commands .

3 stage connact with
c2

Once connected to the C2 server, the infected machine begins sending data about itself to
the attacker, who can then use this information to send further modules and commands to
the infected machine.

117

https://malgamy.github.io/malware-analysis/The-Approach-of-TA413-for-Tibetan-Targets/#third-stage

Technical analysis

During our analysis, we collected some important information about the document file in
question. By utilizing VirusTotal to scan the file’s hash, we were able to detect that the file is
a RTF document that has been flagged by 34 different security solutions. Further analysis
revealed that the RTF document exploits several known vulnerabilities, including CVE-2017-
11882, CVE-2017-8759, CVE-2018-0802, and CVE-2018-0798.

@‘ ﬂ |= 9661ef310620d553e4cd54286f8093650a3a57a29dfT114c6a6b0dE936 2fF326.rF [Compatibility Mode] - Microsoft Word = B 22
File Home Insert Page Layout References Mailings Review Wiew Deweloper & e
& =t == @ Find -
MorlamUniOu = 16~ A o7 Aav | & % Al = IS == e 4l q | | o %
% cory 8 h | 8aBbCeDe | 4aBbceDe AaBbCt AaBbCe Aa]jf)‘ : . nepiaee
Paste - i € - - = =~ > G Change
: o Farmat Painter B 7 U ~abe % X A-AG s=s==E8 1= &8~ THarmal | TMo Spacii Headingl —Heading 2 Title = Stylesg' Iy select+
Clipboard a Font u Paragraph . Styles u Editing
=
1=
S B s S R R ey A e
Application form
T A
e sy
TR
s i
[~
%
e L e 5
3
661efd10820d553e40d54266T0093650a325Ta29df7114c6a6b0dd9362F...; 2,338 characters (an approximate value), \‘E_" EHE == 10 ‘.E\] l:-i-jl
ﬁstartl 2 5 B € 0| ™) 2 2tsrm B

Using the tool rtfobj, we were able to extract multiple objects from the RTF document. Upon
examining these objects, we identified an exploit code. exploit code equation drop encode
payload on temp folder Temp\ghb4nrwmp.wnf. After deconding dropped file, it executed to

reliver second stage.

217

2 (Embedded)
b'Equation. 2\x00% x 124V \x 90\ x124Vxv T2

.............. e L
BB4CDE4Sh Mot a well-formed OLE object

Further investigation revealed that the RTF document is related to the Royal Road.

Royal Road: It is known for its use of weaponized Microsoft Office documents to deliver
payloads, including ransomware and other malicious software. The documents often exploit
vulnerabilities in software such as Adobe Reader or Microsoft Office to execute the payload
without the user’s knowledge.

RoyalRoad has been used in various campaigns targeting individuals and organizations
around the world. It has been observed being delivered through spam emails, exploit kits,
and other methods. Once the payload is delivered and executed, it may perform various
malicious actions such as encrypting files, stealing sensitive information, and installing other
malware.

During our analysis, we utilized the rr_decoder tool to decode the second stage payload of
the RoyalRoad malware, which was named “ghb4nrwmp.wmf”. The results of the decoding
are shown in the figure below.

$python3 rr_decode.py sample_ghb4nrwmp.wmf second_stage.exe

 [!] Type [b2a66dff] is Detected!
e [+] Decoding...
e ['] Complete!

second stage

Upon decoding the second stage payload of the RoyalRoad malware, second stage is
packed. so we identified that it utilized the VirtualAlloc function multiple times to allocate a
region of memory in which to copy shellcode. Upon transferring execution to the shellcode,
we observed the use of obfuscation techniques such as stack strings to obscure the names

3/17

of APIs. Further analysis revealed that the shellcode used the “LoadLibraryA” and
“GetProcAddress” functions to resolve and locate APIs necessary for injecting the third stage
of the malware into the “rundll.dll” process.

In order to understand the injection process used by the RoyalRoad, we analyzed the
behavior of the payload and identified the following steps:

o The malware utilizes the VirtualAlloc function to copy shellcode into a region of
memory.

e The shellcode uses stack strings to obscure the commandline.

o The CreateProcA function is used to create a process in a suspended state (0x4)
rundl132.d11l.

¢ A handle to the target process is obtained to allocate a region of memory on it using
VirtualAllocEx.

o The third stage of the malware is copied into the target process using
WriteProcessMemory .

e The third stage is executed using the ResumeThread function.

From the previous steps, we can identif that second stage used process hollowing to inject
third stage into rundll.dll and excute it using this commandline

C:\Windows\system32\rundl132.exe"shell32.d1ll, Control_RunDLL

thrid stage

The third stage of the malware is developed in C and functions as a backdoor to collect
information about the infected system and send it to the attacker. If the attacker determines
that the infected system is of interest, they may choose to drop the next stage of the
malware.

mutex

Upon analysis of the malware, it was observed that the malware creates a mutex with the
identifier “552FFA80-3393-423d-8671-7BA046BB5906.” This mutex is also used as the
malware’s campaign name, as shown in the following figure.

4/17

parsed_result = @;
decryption_result = 8;
format_string = mw_malloc(6u);
ptr_mutex_attr = wp_ptr_mutex_attr;
strepy(format_string, “Rs»>%s");
Ffer = 83
current_time_struct = mw_check_current_time();

T
|
+
1
o
]

current_time = _timeﬁ4(8j;
srand{current_time);
if (mw_load_kernal32_dll())
i
if (!strlen(name_of_mutex) || (mw_re_CreateMutexA(®, &, name_of_mutex), GetlastError() != 183))
{
sleep_function = 5leep;
if { dwMilliseconds)
Slesp(dwMillizeconds);
mi_decrypt_load_library({dword_l8e2@1FC, en_advapi3l);// advapi3?.dll

strepy(mutes_name, "1808°);
library_handle = @;
obfuscation

The malware is equipped with a capability to encrypt strings using a simple XOR algorithm.
This function was used by the malware to decrypt APlIs into runtime in order to evade
detection by static analysis tools. The malware also loaded 4 libraries into runtime using this
technique. It is worth noting that different keys were used to decrypt the APIs and the
libraries.

int cdecl mw_decrypt_strings(int al, const char “encr_str)

{

unsigned int str_length; // krég 4

_BYTE *decrypted_string; // eax
unsigned int i; J/ ecx @xra‘s to mw_decrypt_stri... O X
_BYTE *decrypted_string_1; // edi
const char *current_char; // esi Direction Type Address Te *
F‘“'F:':7""'_""’_’_':'“'-1_5 /1 edx SEu op mw_re_WSAStartup_0+17 ca
;sz;:“ﬂ:;"j“ /1 al Eup p mw_re_inet_ntoa_0+17 ca
: i
_m128i Load_kay; [/ [esp+@h] [ebp-18h] =upop mw_re_gethostbyname+17 ca
Eup p mw_re_socket+17 ca
H-..I kay = _mm_load sil128(8key_decrypt); .E Up p mw_re_W3sAGetLastError+17 ca
str_length = strlen(encr_str); SEup p mw_re_ioctisocket+17 ca
_.I-:: g'f':" string = me_malloc(str_length + 1); == Up p mw_htons_api+17 ca
decrypted string 1 = decrypted string: 5 Up p mw_re_connect+17 cav
if (str_length I= -1) < >
{ Line 20 of 42
current_char = {encr_str - decrypted_string
?0 [Tk]| comel Search Help
Pt dec result = Bdecr .-"_,-'.:.l string _[_]j
dec_result = i * decrypted_string_1[i + current_char] * Load_kay.ptr_key[i & @xF];
++i;
*ptr_dec_result = dec_result;

The keys used for decryption are as follows:

Key for decrypting APls : cffb9895f0dcddca9e8befc4aee9b1bf (in hex)
Key for decrypting libraries: bf8a87e415cebb95aaf991b08ec486a4 (in hex)

5/17

After decrypting the APIs, the malware was able to utilize the GetProcAddress function to
resolve the APIs and load the libraries using LoadLibraryA. This allowed the malware to
execute its desired functions at runtime and we can include laoded libraries.

e ws2_ 32.dll
o ntdil.dll!
e advapi32.dll

we can see our script to decrypted encrypted strings.

def unhex(hex_string):
import binascii
if type(hex_string) == str:
return binascii.unhexlify(hex_string.encode('utf-8"))
else:
return binascii.unhexlify(hex_string)

def tohex(data):
import binascii
if type(data) == str:
return binascii.hexlify(data.encode('utf-8"))
else:
return binascii.hexlify(data)
out = []
data = unhex("c8f8b7b822f993f6ce9cob")
key = unhex("bf8a87e415cebb95aaf991b08ec486a4")

for i in range(®, len(data)):
out.append(i N data[i] N key[i & 15])

print(bytes(out))

collecting sensitive information

function appears to be designed to gather and encode various system information. It does
this by first decrypting several strings using the mw_decrypt_strings function. These strings
are likely API names or other relevant information that is used later in the function.

The function then calls one of the decrypted functions (either GetNativeSystemInfo or
GetSysteminfo) to retrieve system information and stores it in an array called system_info.
This information may include details such as the system’s processor, memory, and operating
system.

The function then encodes this information, as well as the hostname and username, using
the mw_base64 _encode function. The encoded strings are then concatenated into a single
string.

6/17

collected information:

e Username
¢ Process name and Process ID
e |P Address
e Hostname

strepy(Format, "%d");
memset(r' ename, @, 2?5]

L tr = ptr_mutex_attr;
mutex_name = name_of_mutex;

JI‘_‘L oduleFil trlnrc-(a ilename, @x165u); toystemInfo = mw_decrypt_strings(dword_188281AC, enc GetNativeSystemInfo);
entP ssId —|mw re Getcurr‘entProcessldh, 5 1ifo = 85

sprlnt'F s(ource, @x18u, Format, CurrentPr Id); = Bi64;

streat_s(F El —, Bx11l4u, "*"); = 3154

strcat s name, Bxlldu, Source); l'F (G temInfo)

jomain_n ize = MultiByteTowideChar(®, @, Filename, -1, @, @); G ystemInfo = mw_decrypt_strings(dword_188201AC, enc GetSystemInfo);//

domain_name = mw mallnc(z * domain_name_size + 2); 1

memset(domain_name, @, 2 * domain_name_size + 2); of&SystemInfo);

MultiByteToWideChar{@, @, Filename, -1, domain_name, domain_name_size);| =n = mw_basetd_encode(@x24u, BSystemInfo, &vdS);

41 = mw_convert_wide(domain_name);
in_name});

= 1824;

e = mw_malloc{@x4eeu);

free (r m

*decrypted_s

strepy(vaz, "Es\r¥s\r¥s\r¥s\rls\ris) r%s\. ¥\ rEd");
/34 = strlen(decrypt_strings_key_ptr

5 = strlen(v43);
a = strlen(v44);

Evade Detection

ngs_key = ptr_decrypt_strings_key;

CH
1'F (ptr _decrypt_strings_key)

e decrypt luad |_library(8ptr_decrypt_strings_key, enc_ntdll);// ntdll.d1l
key = ptr_decrypt_strings_key;

}

setVersion = mw_decrypt_strings{decrypt_s ey, enc_RtlGetVersion);
m!mset(& tem_info[l], @, 8x118u);

s te fo[@] = 284;
J‘F(GetVersion(system_info) >= @)

v43 = mw_base64_encode(®x1lCu, system_info, &v45);

Va4 = @3
estination = @;

After gathering and encoding data, the malware appears to use the LZF compression

algorithm to compress the data further. It then applies an XOR operation with the value 0x2b

to encrypt each element of the compressed data before encoding it again using the base64
encoding method. This process may be used to reduce the size of the data for easier

transmission.

ta = mw_collect Infomation();

‘mw £onp_enc_ encode_received datal(ed_data, strlen(received data));
=T
= encoded_dats = mw nallu((sult_ #2 % (result_size + 2848));
. i data = e;
' if Z___-v)Bn(lG)
memset (= { . i
sprintf s (= - s |_siz :;n?l_LZF_fun(ult_size, eived data, (_datz & 4
destination_a 55
data_length = Cstrlen(encrypred deta); ‘}zlse
if (t || (mw_process_socket_fun(&server_socket), (socket = t) 1=@)) { for size; ++1)
L B s U
if ((len ed_data || mw mdlf:ed data_: send _socket(encrypted_data, data_length, &serve k . . i - 1_;‘1 Ll
RE (m check data available(& et), decode baseEA(& » &destination_address, 8server_socket) 1 - - ’
{ for (< compressed_size; 113)
send_d = bl n sta[] *= @x2Bu;
;f (bl) se6 2 = mw_base64_encode(compressed_size, encoded_data, Bu18);
source_buffer = mw_process_input_data(&decryption_result, &parsed_result, block); ded data:
free(d H e ta:

Establish a connection

Malware establish a connection with the server over a socket, so malware call htons to
ensure that the data is correctly interpreted by the receiving system then call

e« mw_create_listen: to create a socket that can listen for incoming connections.

717

e mw_send_socket_connection: to be used to send a socket connection request to a
server.

e mw_establishing_connection_server: to be used to establish a connection with a
server.

hiscall mw_w_establishing nnection_server({S0CKET *this)

SOCKET result; /7 eas
mw_htons_api(word 1881FF54);
if (!mw_create listen(this)

|| 'mw send socket connection(i , dword 18e2e81C)

[l ¢ 1t = mw_establishing connection_server({)) == 8)

{ -
veult - isj
another_flag = 8;
if 11t)
1

It = mw_re_closesocket(11t);

implemention of a simple HTTP

The malware appears to have implemented a simple HTTP client that can send HTTP
requests to a server and receive responses. The process begins by extracting the hostname
and port number for the connection. A socket is then created and a connection is established
with the server.

The malware then constructs an HTTP request using the following format: “CONNECT
%s:%d HTTP/1.1\r\nProxy-Connection: Keep-Alive\r\nContent-Length: O\r\nHost:
%s\r\nUser-Agent: %s\r\n”. The request is then sent to the server and a response is
received. It is not clear how the response is processed or what the purpose of the request is.

8/17

connection_attempts = @;

host_string = _strdup({dword_18820838);
port = B8;
host_string_copy = host_s
if (wmw_len_str{host_string, &delimiter_location, 2, source_string) == 2)

i
host_string = delimiter_location;
ost_string_copy = delimiter locationj
port = mw_con_str_long(temp_string);

}

if (!mw_create_listen(host_string, current_socket, port))
goto LABEL_44;
strepy(
ormat_buffer,
“COMNECT %s:%d HTTP/1.1\r\nProxy-Connection: Keep-Alive\r\nContent-Length: @\r\nHost: Xs\ri\nUser-Agent:
strepy(line_ending, "™\r\n");
server_hostname = mw_convert_wide(lpwWideCharstr);
server_host_info = mi_re_gethostbyname(server_hostname);
if { server_host_info }
server_ip_address = **server_host_info-rh_addr_list;
else
ZEerve i1p address = B;
server_ip_string = mw_re_inet_ntoa_@(server_ip_address);
ip string_length = server_ip_string;
fFEE(H-"- h "-.rl_};
request_block = dword_l1@@1FFF4 + 1;
buffer_size = strlen{server_ip string)
+ strlen(server_ip_string)
+ 21
+ strlen({Format_buffer)
+ strlen(dword_l881FFF4);

Encryption data with AES

After establishing a connection with the server, the malware appears to be utilizing the AES
algorithm to encrypt data before sending it to the server. It uses a ransom key as the initial
key for the encryption process and then receives a key from the server to encrypt the data
again

9/17

int
u_s
int

oi

EOO

_m
int

usercall mw_w_sendDataOverSocket@<eax>»(vold *Source@<ecx>, signed

w5; /f esi
rE % ,.} J",-" oy
hort w7; Jff ax
vBy fFf esi
va; // edi
d *v1@; ff
L vll ff =4
3[248]; // [esp+18h] [ebp-18Ch] EYREF
1281 vl4 ff e s p+ 188 ebp-1C
15; ff [esp+118h ebp-Ch

void *Block; /f [e 114h] [

-

Porf

5 = 16 * (= = f 16 + 1);
T-= M malluc[5+ 3);

= ?91

1=

5[

t(r

([L]

mw_ htons _api{vs);
Block + 5;
<+ 3) = u7;

I'I'IEI'H'ED}I’ Sf by 2O e3112, >0Urce, >0l esize};

!

m6mset{ lock + & ceSize + 5, vls cesSize, v15 - SourceSize):

Lult)

_aes_enc_ Puundli Gy XEmword 1aazlaaaj.

4 = _mm_loadu_sil2B(xmmword_18821A88);

o _

aes_enc_round2(v, R H

1 = mw_send_data_over_connection(Elock, *a3, v9 + 5);

F;EEE 1) ;

c2 response

malware appears to use a specific method for receiving encrypted data from the server and
decrypting it. This data is likely to be modules or commands that are used for specific tasks.

The d

ecryption process is reversing method that was used to encrypt the data, which

includes:

LZF compression

XORing with 0x2b

Base64 encoding

AES encryption with a randomly generated key

AES encryption with a key derived from the XOR of the Client, Server Random Bytes
Key

commands

malware checkes the header of response with “PK” and receive also one commands or more
and we can see the commands in the next figure.

Command 2000: which used to decode using base64, decrypt, with 0x2b key and
decompress uing LZF.

10/17

/14 = B;
sutputLength = @3

decode_data = mw_decode Based{inputlength, inputBuffer, ZoutputlLengthl);

ptr_outputLength = outputLength;

ptr_decode_data = decode_data;
if { outputLength > 1)
1
do
ptr_decode_data[vi++] “= 8w2Bu;}
while { v7 ¢ ptr_outputLength };

¥12 = *ptr_decode_data + 4896;
decompressed_data = mw_malloc(vl2);
memset {decompressed_data, @, v12);

esult_=ire = *ptr_decode_data;
if (*ptr_decods_data » @xleu)
{
esult_size = mw_decompress_data_using_lzf{outputlength - 4, pt
}
else
{
for (1 = B; i « inputlLength; ++i)
*(decompressed_data + 1) = ptr_decode_data[i + 4];
}
if [result_size > 8)
i
14 = mw_malloc{result_size + 1);
memepy_s{v14, result_size, decompressed_data, result_size);
i":{F'-}
*{v1l4 + result_size) = @;
if { ptr_result_size)
*ptr_result_size = result_size;

We can see a table of commands

No. command info

decode_data + 4,

1 2000 which used to decode using base64, decrypt, with 0x2b key and
decompress uing LZF

2 2001 clear the command of data

3 2002 set communication delay time

4 2003 exit command loop

5 2004 break connection

6 2005 load module from attaker into memory

7 2006 run module

8 default listen for proxy connection

Analysis Infrastructure

11/17

« |t appears that the hostname “45.77.19.75.vultrusercontent.com” is associated with the
domain “VULTRUSERCONTENT.COM” and is hosted by the cloud provider Vultr. The
host is located in Japan, specifically in the city of Oi. The organization responsible for
the host is Vultr Holdings, LLC, and the ISP is The Constant Company, LLC. The ASN
associated with the host is AS20473. It is important to note that the presence of a host
or domain on a cloud provider does not necessarily indicate malicious activity.

o The network and AS are likely used by the malware for communication with its
command and control (C2).

Classification and attribution

Attribution refers to the process of identifying the source of a cyber attack or threat. It is often
difficult to accurately attribute cyber attacks to a specific country, as attackers often use
various tactics to hide their identity and location. There are a number of factors that can be
used to help attribute a cyber attack to a specific country, including:

Victimology: This refers to the characteristics of the victims of the attack, such as the type of
organization or industry they belong to. If a group of attacks all target organizations in a
specific country, it can be a strong indication that the attacks are coming from that country.

Infrastructure: If a group of attacks all use the same infrastructure, such as a specific set of
servers or domain names, this can be used to help attribute the attacks to a specific country
or group.

Tactics, Techniques, and Procedures (TTPs): The specific tactics and techniques used in an
attack can often be used to identify the group or country behind the attack.

Malware used: The type of malware used in an attack can often be used to attribute the
attack to a specific group or country.

A spreadsheet targeting a Tibetan organization was used and a domain, tibet[.]bet, was
attributed to the TA413 group for the attack. ansd we can see that in the next figure.

12/17

fao nao sec @nao sec - May 17, 2022
= =
#RoyalRoad RTF (targeting Tibetan?)
virustotal.com/gui/url/1ba02c...

Q 2 tl 3 O 1 ihi s

- Digital Monet
@aRtAGGI
Replying to @nao sec

#TA413 known sender impersonating "Department of
Religion & Culture”

tibet.net
Department of Religion & Culture
Department of Religion & Culture

In this particular case, TA413 are known to have impersonated the “Department of Religion &
Culture.” This type of social engineering tactic is often used to trick individuals into revealing
sensitive information or downloading malware.

13/17

EZQ;-',}' Chinese State-Sponsored Group TA413 Adopts New Capabilities in Porsuit of Tibetan Targets

- »
E“ﬂ-.'-_:'_i Chineze State-Sponsored Group TA413 Adopts New Capabilities in Porsnit of Tibetan Targets

ideas how to track activity of this tool:

o Set up a YARA rule to identify the RTF version of the Royal Road tool or any
associated indicators of compromise (IOCs). This can be done by analyzing the
characteristics of the RTF file, such as specific strings of code or patterns of behavior,
and creating a rule that matches these characteristics.

» Use YARA to scan your network for any instances of the RTF version of the Royal
Road tool or associated IOCs. This can be done by running YARA on a schedule, such
as daily or weekly, or in real-time as part of a threat hunting process.

e When YARA detects a match, conduct further investigation to determine the scope and
impact of the RTF version of the Royal Road tool on your network. This may involve
analyzing network traffic, examining system logs, and performing forensic analysis on
affected systems.

o Take appropriate remediation steps to remove the RTF version of the Royal Road tool
from your network and secure any affected systems. This may involve isolating infected
systems, patching vulnerabilities, and implementing additional security measures to
prevent future attacks.

14/17

o Use threat intelligence sources to stay informed about the latest tactics and techniques
used by APT groups, including those that use the RTF version of the Royal Road tool.
This can help you stay ahead of potential threats and better defend your network.

TTPs
Privilege Defense
Escalation Evasion
Process Injection Debugger Evasion Application Data from Local
(13} Window Discovery System
~ Process Injection
(12) Debugger Evasion
System
System Binary nformation
Prowy Execution Discovery
(13)
-~ System Location
Rundllz? Discovery (1)
System
Owner/User
Discovery
Yara Rule

rule lowzero_malware: lowzero

{
meta:
description = "Detect_lowzero_malware"
author = "@malgamy12"
date = "2022/12/26"
license = "DRL 1.1"
hash = "de44e5f6cfac9cd3e61194efd5c2b20ba44c437a520fe7018ed71623e6678131"
strings:
$pdb = "Proxy-Authorization: NTLM " ascii
$op = {8B C1 8D 14 39 83 EO ?? 8A 44 05 ?? 32 04 16 32 C1 41 88 02 3B CB}
condition:
uint16(0®) == Ox5A4D and all of them
}

15/17

I0Cs

Frist stage

9681ef910820d553e4cd54286f8893850a3a57a29df7114c6a6b0d89362ff326

second stage

028e07fa88736f405d24f0d465bc789c3bcbbc9278effb3b1b73653847e86¢f8

third stage

de44eb5f6cfac9cd3e61194efd5c2b20bad4c437a520fe7018ed 71623668131

IP

45.77.19.75

domain

e chorig-org.web.app
o desktoppreview.com
 odc.officeapps.live.com

ip addresses

e 131.107.255.255
e 45.77.19.75

- 199.36.158.100

urls

 https://chorig-org.web.app/Application-form-Sixmonth-workshop-2022V1.doc
« http://chorig-org.web.app/Application-form-Sixmonth-workshop-2022V1.doc
 http://desktoppreview.com/salvoed.dotx
 https://desktoppreview.com/salvoed.dotx

Files

» 0b30433bb80abd4b1978fa84d953c13f4d7b726cd533e3c50cef36b4e79f2d2e
cfc72b48732286a2beab5d0fc60aabc8d529faf4d0fb2620b99a092096a187dcO
1351dca77922b22ab5dae0689550cb55807900348a42b5dc71b01a5a78602b0f
9681ef910820d553e4cd54286f8893850a3a57a29df7114c6a6b0d89362ff326
ba2c89192643f05e64f49b5cb3513a6aSbbfa719225af3b72¢83587b8b774e8d

16/17

e d987e80a23f334c5eb50c9883a6b5b1b2090230f950fabeb7cec0a2d74f5271b

e 3a69c1453b8062620837ab32be68ed871df383e24e68161839508a98bf7033b8
o c0fc6a2ba864650af25b9da8e70396cdb40e8a196f7f0ce6024ff67a080346dc

e c44beb5ed5c4bec2be72ce9737bde5a2d48fe5fb0ea235ddc61bad47b26642949
e c8934c7b3187e48b1eed4fc2c8e1c3ab19850efc1e45383442cfe4b9b4a06d01

e 9b79fbbc895ca98b951aecd664cdd7ce69f63901996¢7341a560d7c207a143ea
e 65bddf8148ed60f5625b3495baba0824d2fcd13a710494817c7a84e0062ce227
e 1120275dc25bc9a7b3e078138c7240fbf26c91890d829e51d9fa837fe90237ed

e 4f941e1203bf7c1cb3ec93d42792f7f971f8ec923d11017902481ccf42efaf75

e 67458476cc289f7d0f0bda8938f959b8a1a515e23f37¢c9d16452b2e1d8adf5a4

e 7d9e22ae60cb85c4dbdceac46d33fc080b89df23607ab4904b3795d9a9765b82
e ¢c83c28add56ec8cad23a14155d5d3d082a1166¢c64ea5b7432e0acaa728231165
e b7bebe92a5802aa922e5719c948e35716f908e67701cfffaesebfcadc7abe650a

e 0eb7bab457367f8f5f917f37ebbf1e7ccf0e971557dbe5d7547e49d129ac0e98

References:

¢ https://www.recordedfuture.com/chinese-state-sponsored-group-ta413-adopts-new-
capabilities-in-pursuit-of-tibetan-targets

e https://nao-sec.org/2020/01/an-overhead-view-of-the-royal-road.html

 https://github.com/nao-sec/rr_decoder

17/17

