
1/12

February 5, 2023

Analysing A Sample Of Arechclient2
dr4k0nia.github.io/posts/Analysing-a-sample-of-ArechClient2/

Posted Feb 5, 2023 Updated Feb 5, 2023
By dr4k0nia
11 min read

In this post, I will be going over my process of analyzing a sample of ArechClient2.
Including initial analysis, deobfuscation and unpacking of the loader. Followed by the
analysis of the .NET payload revealing its config and C2 information.

It began with this tweet by @Gi7w0rm. They mentioned me and a few others asking for help
analyzing this sample. I decided to look into the sample. After publishing some threat intel
and a few updates on my re progress on Twitter, I decided to write this report for a more
detailed documentation of my analysis. The original sample can be found here.

Initial Analysis

The sample consists of two files, an executable and an a3x file. After some quick research,
I found that a3x is a “compiled” form of AutoIt script. The executables icon is the logo of
AutoIt and the copyright information says it’s AutoIt. This leads me to believe that this
executable is the runtime required to execute the a3x file.

I ran the file in a Windows Sandbox, for some quick intel and immediately got a Windows
Defender hit for MSIL:Trojan... which indicates that this AutoIt part is just a loader for a
second stage .NET binary. In case you are not familiar with the terms, “MSIL” stands for
Microsoft Intermediate Language, which is the bytecode that .NET binaries are compiled to.

The a3x script is human-readable. So after putting it into Visual Studio Code I saw this.

https://dr4k0nia.github.io/posts/Analysing-a-sample-of-ArechClient2/
https://twitter.com/dr4k0nia
https://twitter.com/Gi7w0rm/status/1614440406405496836
https://twitter.com/Gi7w0rm
https://tria.ge/230115-by7fcscb6w

2/12

It looks pretty messy at first but taking a closer look I found something that stuck out: The
calls to the function called DoctrineDrama look suspiciously like string decryption. So my
next step was to find that function, I used the search function to look for it’s name until I
found the actual implementation. All functions start with the keyword Func and end with the
keyword EndFunc, making it easy for us to identify them. I copied the code of the
DoctrineDrama function to a separate file. The code is obfuscated and seems to contain
quite some junk code. My first step was to indent the code, for easier readability.

Looking at the code, specifically the switch cases inside the loops, I realized that only the
branches that use ExitLoop are of importance. Taking a look at the switch conditions
confirmed that suspicion. At the beginning of the function, the second variable is the loop
condition, it’s initialized with a value of 921021. Looking at the switch, it matches the case
that exits the loop, meaning the other cases are dead code and can be ignored. I removed
the dead branches, cleaned up the unnecessary loops and got rid of the unused variables:

3/12

After cleaning up we are left with this code. Reading this we can deduce some more fitting
variable names, the first argument seems to be the encrypted input, and the second
argument is the key. The first variable is the resulting string. So to understand the rest of the
code I looked at the documentation of AutoIt, the StringSplit function, takes the following
arguments: A string, a delimiter char and an optional argument for the delimiter search
mode. So the second local variable in DoctrineDrama is an array of strings split from the
input. Next, the code iterates through all the elements of that array and appends a new
character to the output string with every iteration. We see a call to a function called Chr,
which according to documentation converts a numeric between 0-255 value to an ASCII
character. But something is off, what is going on inside that call to Chr? subtraction on a
string, how does that work? I wondered about that but after a quick web search, I found out
that in AutoIt digit only strings seem to be auto-converted to a number if you perform any
arithmetic operation on them. Once the loop is finished, the output string is returned.

Looking at this fully cleaned-up version, I reimplemented the decryption routine in C# to
build a simple deobfuscator.

4/12

static string Decrypt(string input, int key)

{

 var buffer = input.Split('h');

 var builder = new StringBuilder();

 for (int i = 0; i < buffer.Length; i++)

 {

 builder.Append((char)(Convert.ToInt32(buffer[i]) -
key));

 }

 return builder.ToString();

}

The deobfuscator uses a simple regex pattern to match every call to DoctrineDrama and
replace it with the decrypted string. It also outputs a list of all decrypted strings. The full
deobfuscator code can be found here.

Dumping the payload

After deobfuscating all the strings, I searched the string dump for some Windows API
function names that I would expect from a loader. I found a few hits on NtResumeThread,
CreateProcessW and NtUnmapViewOfSection. These three in combination give a huge hint
towards process hollowing. After searching the string dump for .exe I found the suspected
injection target \Microsoft.NET\Framework\v4.0.30319\jsc.exe, a utility of .NET
Framework 4.x which comes with every standard Windows 10 install.

My next step was to debug the executable using x64Dbg. I set a breakpoint on
CreateProcessW, to ensure we break before the injection process is started. After running
past the entry point I was greeted with this nice little message.

https://gist.github.com/dr4k0nia/447fb1c5c7e8791ee877fd1090a6f5e5

5/12

The message box claims I violated a EULA which I never read nor agreed to. I guess we
can’t debug the malware any further how unfortunate. Luckily for us, x64Dbg has a built-in
AutoIt EULA bypass, it’s called Hide Debugger (PEB). You can find it under
Debug>Advanded>Hide Debugger (PEB). Make sure to run x64Dbg in elevated mode.

After dealing with the rather simple anti-debug, we let it run. When debugged, the
executable spawns a file dialog asking for an a3x file, when run without a debugger it
automatically finds the script file. After pointing it to the script file we let it run until the
breakpoint for CreateProcessW is hit. At this point, jsc.exe will be started in suspended
mode. Checking Process Explorer confirms that the decrypted path from the AutoIt script
was indeed the injection target. We add another breakpoint on NtResumeThread which will
break execution after the injection is finished but before the thread is resumed to execute
the malware.

Since we already know the malware is .NET-based I will use ExtremeDumper to get the
managed payload from the jsc.exe process. Run ExtremeDumper as admin and dump
jsc.exe, if it does not show up make sure you are using the x86 version of
ExtremeDumper. At the time of writing the loader does not run anymore but fails with an
error message about Windows updates. Sifting through the string dump I suspect there is
some sort of date check that prevents further execution. This was likely implemented to
prevent future analysis. Luckily I had dumped the actual payload before.

The .NET Payload

6/12

After dumping the loader, I had to deal with the managed payload. The image is heavily
obfuscated. I started my hunt in the <Module> class also referred to as the global type. I
start by checking this class since its constructor is called before the managed entry point.
Many obfuscators call their runtime protections or functions like string decryption here.

My guess was correct, I found a string decryption method c in <Module> (token
0x06000003). The method reads the encrypted string data from an embedded resource and
then performs a single XOR operation decryption on it. The key used for decryption is
supplied via parameters, which leads me to believe that each string has a unique decryption
key.

After checking references to c it turned out that the decryption relies on flow-dependent
variables. The calls to the decryption routine have encrypted arguments that are using
several opaque predicates and global variables that are initialized and changed depending
on call flow.

This means we would have to emulate or solve all calculations required to obtain the local
variables and global fields that are used by the expressions that decrypt the arguments of
the call to our decryption method c. The additional dependency on call flow further
increases the effort required since we would need to solve all calculations in every method
in the correct order. Considering all this I ditched the idea of writing a static string decryption
tool.

7/12

Sifting through the binary I found quite a few similarities to Redline, both making use of
DataContracts and async tasks for the separate stealer modules.

One class in particular seemed interesting. After looking for networking related functions I
found a class cj token 0x0200010C that connects to a server via .NET’s TcpClient. Looking
at the code we can spot the use of another class called xj which seems to contain the IP
and port number for the TCP connection. See line 155 tcpClient.Connect(xj.c,
Convert.ToInt32(xj.a.d)

8/12

Apart from that xj also seems to contain a URL that the malware accesses and downloads
a string from, see line 168. Let’s take a closer look at xj token 0x02000107. It contains quite
a few properties but the most interesting is the constructor.

This looks like a potential config class. It initializes the properties used for the initial TCP
connection and the string download we saw in cj, which is a good indicator that we are
indeed looking at the malwares config. I placed a breakpoint at the end of the constructor.
Since the string decryption method was still an issue the easiest way to get the strings was
to run the binary and have it decrypt the strings for me. I debugged the executable using

9/12

dnSpy until I hit the breakpoint at the end of the constructor. After the breakpoint hit we can
view all the properties and fields values in the Locals window by expanding the this
parameter.

Here we see the C2 IP 77.73.133.83 and port 15647. We can also see a Pastebin link, that
caught my interest: The paste contains another IP 34.107.35.186, potentially a fallback C2.

Before debugging, I modified the string decryption method by adding a few lines to write
every decrypted string to disk. This modification makes it so that instead of immediately
returning the string it’s first passed to AppendAllText and written to a file of our choice.

10/12

The dump revealed the same values that we found in the Locals window and a few more
strings of interest. For example, we got a list of the paths that the stealer checks for
potential credentials. The main targets of this stealer seem to be browsers, mail clients and
game clients like Steam. This is similar to most mainstream stealers. You can view the full-
string dump here.

Speaking of strings, I noticed another similarity to Redline, the use of char array to string
conversion at runtime. Although Redline in many cases does insert some additional junk
into these arrays that is removed from the constructed string, using the Replace or Remove
method.

Due to the heavy obfuscation and the rather similar behavior to existing stealers, I decided
to not investigate this payload further. We revealed the most important IOCs and got a
pretty good understanding of the stealer’s targets.

Summary

We found that the initial loader was implemented in AutoIt and uses ProcessHollowing to
load a .NET-based payload, we reconstructed the string decryption method enabling us to
partially deobfuscate the loader. We dumped the managed payload using a debugger and
ExtremeDumper. We analyzed and debugged the managed payload to reveal the payload
config, containing the C2 information.

After analyzing the string dump, I found some indicators that could help with attribution to a
certain malware family. Although this sample does look very similar to Redline stealer, it is
actually not part of that family. I found this blob of data that looked suspiciously like C2
communication:

https://pastebin.com/pjBNEQDw

11/12

{"Type":"ConnectionType","ConnectionType":"Client","Session
ID":"

","BotName":"

","BuildID":"

","BotOS":

"Caption","URLData":"

","UIP":"

"}

Referencing the above data and the port number to other writeups, like this one from
IronNet Threat Research, revealed similarities to a different malware family. The screenshot
below shows a network capture of an active ArechClient2 sample performed by the
researchers from IronNet. Comparing this data we can conclude that our sample is also part
of the ArechClient2 family.

image source

With this we have reached the end of our analysis. Below, I have arranged all important
IOCs, for the threat intel focused readers. I write these reports in my freetime and publish
them for free, if you want to support my work feel free to sponsor me on GitHub.

IOCs

https://www.ironnet.com/blog/key-findings-from-defending-the-noc-at-black-hat-europe-2022
https://www.ironnet.com/blog/key-findings-from-defending-the-noc-at-black-hat-europe-2022
https://github.com/dr4k0nia

12/12

Description Indicator

C2 77.73.133.83:15647

Potential
Fallback C2

34.107.35.186:15647

URL for
fallback C2

https://pastebin.com/raw/NdY0fAXm

.NET
payload
Test.exe

SHA256:
a835602db71a42876d0a88cc452cb60001de4875a5e91316da9a74363f481910

AutoIt
loader
45.exe

SHA256:
237d1bca6e056df5bb16a1216a434634109478f882d3b1d58344c801d184f95d

AutoIt script
S.a3x

SHA256:
8e289b8dfc7e4994d808ef79a88adb513365177604fe587f6efa812f284e21a3

