
1/18

Analyzing a VIDAR Infostealer Sample
J blog.jaalma.io/vidar-infostealer-analysis/

← Home

Introduction

While reviewing samples submitted to Any.Run, I came across a binary that appeared to
inject into a target process before performing some suspicious HTTP requests. After further
analysis, this binary was found to be consistent with the VIDAR infostealer.
This article aims
to explain exactly how the infostealer works, the loader chain, what it attempts to steal, and
how it exfiltrates data stolen from the host in a short time without leaving a trace.

Since this sample already had a dynamic, sandbox run within Any.Run, I decided to
download a copy and attempt to reverse engineer it with the aim of understanding more
about how it worked, what it was designed to do, and to attempt to identify the malware
family.

The sample being analyzed in this post has the following file hashes:

MD5: 9BB9FD7110158BEA15B3EB3881C52606
SHA1: F545BF2A5E310ED8E9A8F553DA11B5C03D859A79
SHA256: F2FEEFF2C03FE54E6F8415390CFA68671576D4CA598C127B5C73B60864E7372B

The entire infection chain and malware operation can be summarized at a high level by this
diagram:

https://blog.jaalma.io/vidar-infostealer-analysis/
https://blog.jaalma.io/
https://app.any.run/tasks/8449e90f-586d-44e6-a277-f2be9aa0a2ca/

2/18

About VIDAR

Although this is not unique to the VIDAR malware family, this infostealer performs a smash-
and-grab approach to harvesting data by harvesting as much data from the host and
exfiltrating as quickly as possible. Public reporting shows that delivery mechanisms for the
VIDAR infostealer include fake software installers, Windows 11 installers and even malicious
Microsoft help files delivered via phishing.

Since the service provided to the customers of VIDAR exists only to facilitate payload
configuration, generation and C2, it is left to the customer to get the malware on to systems;
whether themselves or via a third-party malware distribution service. An example of such a
malware distribution service is a group Microsoft tracks as DEV-0569, who leverage
techniques such as malvertising, phishing etc. to distribute BATLOADER; a separate
malware designed to deliver additional payloads, including VIDAR, ROYAL ransomware and
COBALT STRIKE.

Loader Analysis

https://www.secureblink.com/cyber-security-news/tutorial-videos-on-you-tube-help-spread-vidar-and-raccoon-malware
https://www.zscaler.com/blogs/security-research/vidar-distributed-through-backdoored-windows-11-downloads-and-abusing
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/vidar-malware-launcher-concealed-in-help-file/
https://www.microsoft.com/en-us/security/blog/2022/11/17/dev-0569-finds-new-ways-to-deliver-royal-ransomware-various-payloads/

3/18

Based on the sandbox run, the binary appears to spawn a child process instance of
AppLaunch.exe, which is a legitimate binary and part of the .NET framework. The suspicious
activity performed by the malware then appears to originate from this legitimate process,
which is a good indicator that some form of process injection is occurring.

Initial Assessment

The binary being analyzed has the following characteristics:

MD5: 9BB9FD7110158BEA15B3EB3881C52606
SHA1: F545BF2A5E310ED8E9A8F553DA11B5C03D859A79
SHA256: F2FEEFF2C03FE54E6F8415390CFA68671576D4CA598C127B5C73B60864E7372B
Compiled Timestamp: Fri Dec 23 14:09:41 2022 UTC
Linker: Linker GNU linker ld (GNU Binutils)

The executable itself has very few imports, which indicates that there is some form of
obfuscation going on to conceal the malware’s true purpose and functionality.

First Stage Loader

This first loader works by XOR decrypting at runtime both the second stage malware, and an
additional loader shellcode, which loads the final stage payload. It then stores a pointer to
the decrypted loader shellcode in the register edx, that was previously made executable
using VirtualProtect. Next, it pushes the parameters to be passed to the loader function
(consisting of a pointer to the decrypted second stage payload and a filepath to the injection
target) on to the stack before executing it with a call edx instruction.

4/18

Second Stage Loader

The second stage loader performs the process injection to load the final stage payload into
memory. In this case, it used a process hollowing but not really approach to injecting the
VIDAR binary into an AppLaunch.exe process.

The process injection method uses the following sequence of API calls:

NtCreateUserProcess

VirtualAlloc

VirtualAllocEx

WriteProcessMemory

ResumeThread

Firstly, NtCreateUserProcess is called with the following arguments to spawn the process
injection target in a suspended state.

5/18

NtCreateUserProcess is an undocumented function, however more information about this
function can be found here, and has been well documented by security researchers. For the
purposes of this loader, two important arguments are passed:

CreateThreadFlags, which is set to 0x01, and corresponds to starting the process in a
suspended state.
ProcessParameters, which is a RTL_USER_PROCESS_PARAMETERS structure, and within it
the image path C:\Windows\Microsoft.NET\Framework\v4.0.30319\AppLaunch.exe
is provided.

Next, the loader calls both VirtualAlloc and VirtualAllocEx to allocate a region in the
memory space of the target process for the final payload to be injected.

VirtualAlloc Arguments

VirtualAllocEx Arguments

As per the documentation for these functions, both calls pass in the same arguments. The
only difference being that VirtualAlloc is not provided a lpAddress pointer, which results in
the function returning a pointer to the allocated memory region, whereas the hProcess
argument provided to VirtualAllocEx is 0x009C. Aside from those differences, the
arguments provided to both functions are the same:

dwSize: 0x67000, which corresponds to 421888 bytes.
flAllocationType: 0x03000, which corresponds to both committing and reserving the
address range in one step.
flProtect: 0x40, which corresponds to read, write and execute (RWX) permissions.

https://captmeelo.com/redteam/maldev/2022/05/10/ntcreateuserprocess.html

6/18

These API calls serve to allocate a region in memory for the target AppLaunch.exe process
that is readable, writable and executable, which allows the loader to finally write the bytes for
the finaly payload into this memory region within the target process using
WriteProcessMemory. Finally, the injected process is then resumed from its suspended state
using ResumeThread, which allows it to execute the injected payload.

Dumping the Injected Payload

Dumping the injected payload was straight forward using x32dbg. All that was needed was a
breakpoint to be set to pause execution when the malware reaches the WriteProcessMemory
call.

bp WriteProcessMemory

BOOL WriteProcessMemory(

 [in] HANDLE hProcess,

 [in] LPVOID lpBaseAddress,

 [in] LPCVOID lpBuffer,

 [in] SIZE_T nSize,

 [out] SIZE_T *lpNumberOfBytesWritten

);

WriteProcessMemoryArguments

The arguments passed to WriteProcessMemory correspond to the following:

hProcess: 0x009C, which is the same process handle passed into the previous
VirtualAllocEx function call.
lpBaseAddress: 0x00400000, which corresponds to the image base address in which
the process memory is written.
lpBuffer: 0x02EA0000
nSize: 0x67000, which corresponds to the same 421888 bytes.

The argument of interest is lpBuffer, which is the pointer to the memory region containing
the bytes to be written to the memory space of the new process.

7/18

As shown, this memory region starts with a MZ header and DOS string, which means this
memory region must contain the binary that is being injected into AppLaunch.exe. The final
stage executable payload can then be retrieved by dumping the memory region to disk.

Realigning the Dumped PE

When viewing the dumped executable in PEBear, or CFF Explorer, both programs were
unable to determine the presence of any imports used by the binary. This is actually because
the PE recovered from memory was in a mapped format. This caused a misalignment of
section offsets within the raw executable on disk and therefore resulted in a misaligned
import address table (IAT). This video explains the concept far better than I can.

Fortunately, we can edit the section table to unmap the sections within the executable and
realign the IAT. By setting the raw address offsets to be equivalent to the virtual address
offsets, and modifying the section sizes accordingly.

https://www.youtube.com/watch?v=WthvahlAYFY

8/18

Now the executable has been correctly aligned, the module and function imports are now
readable.

Since we now have an unmapped exectable, it is possible to reverse engineer and analyze
the resulting payload. In this case, the reconstructed executable is written in C++.

VIDAR Infostealer Analysis

Once the dumped payload has been realigned and otherwise fixed to become a valid
portable executable, the second stage executable has the following characteristics:

MD5: 47a6959ac869f65dd31e65b1c80fa8b2
SHA1: f9d9ecf59523c202bca9ac4364b2a2042f116f32
SHA256: 1521e9e7b06676a62e30e046851727fe4506bdf400bcf705a426f0f98fba5701
Compiled Timestamp: Mon Dec 19 12:33:40 2022 UTC
Compiler: Microsoft Visual C/C++
Linker: Microsoft Linker 10.0 - (Visual Studio 2010)

Encrypted Strings & Module Imports

The VIDAR malware stores some of its strings, and module imports in a base64-encoded,
RC4 encrypted format. By combining the different functions in the binary, along with the
decrypted and decoded strings, we arrive at a full list of browser extensions targeted by the
malware.
These are mainly cryptocurrency wallets, but also include two factor authentication
(2FA) extensions, and other password managers.

Before doing anything else, VIDAR first calls a built-in routine to base64-decode and RC4
decrypt each string before writing it into a memory region.
A pointer to each string and
module import can then be referenced by the malware to use them.

9/18

The malware leverages the BCryptDecrypt API call to decode base64, and a custom-coded
RC4 decryption function.

Cryptocurrency wallets and 2FA browser extensions and applications targeted by
VIDAR

10/18

TronLink

MetaMask

BinanceChainWallet

Yoroi

NiftyWallet

MathWallet

Coinbase

Guarda

EQUALWallet

JaxxLiberty

BitAppWallet

iWallet

Wombat

MewCx

GuildWallet

RoninWallet

NeoLine

CloverWallet

LiqualityWallet

Terra_Station

Keplr

Sollet

AuroWallet

PolymeshWallet

ICONex

Harmony

Coin98

EVER Wallet

KardiaChain

Trezor Password Manager

Rabby

Phantom

BraveWallet

Oxygen (Atomic)

PaliWallet

BoltX

XdefiWallet

NamiWallet

MaiarDeFiWallet

WavesKeeper

Solflare

CyanoWallet

KHC

TezBox

Temple

Goby

Authenticator

Authy

EOS Authenticator

GAuth Authenticator

Tronium

Trust Wallet

11/18

Exodus Web3 Wallet

Braavos

Enkrypt

OKX Web3 Wallet

Sender

Hashpack

Eternl

GeroWallet

Pontem Wallet

Petra Wallet

Martian Wallet

Finnie

Leap Terra

Microsoft AutoFill

Bitwarden

KeePass Tusk

KeePassXC-Browser

Bitwarden

Ethereum\Ethereum\

Electrum\Electrum\wallets\

ElectrumLTC\Electrum-LTC\wallets\

Exodus\exodus\conf.json,window-state.json

\Exodus\exoduswallet\passphrase.json,seed.seco,info.seco

ElectronCash\ElectronCash\wallets\default_wallet

MultiDoge\MultiDoge\multidogewallet

Jaxx_Desktop_Old\jaxx\Local Storage\file__0localstorage

Binance\Binance\app-store.json

Coinomi\Coinomi\wallets\

*wallets

*config

wallet_path

SOFTWARE\monero-project\monero-core,\Monero\

Also encrypted in the binary are the SQL queries used to harvest data stored in web
browsers:

SQL queries used by VIDAR to harvest browser data

SELECT origin_url, username_value, password_value FROM logins

SELECT name, value FROM autofill

SELECT name_on_card, expiration_month, expiration_year, card_number_encrypted FROM
credit_cards

SELECT target_path, tab_url from downloads

SELECT url FROM urls

SELECT HOST_KEY, is_httponly, path, is_secure, (expires_utc/1000000)-11644480800,
name, encrypted_value from cookies

In addition, one of the encrypted strings, C:\ProgramData\ is the staging directory used by
the malware when it downloads additional libraries and stages data for exfiltration. This
staging directory appears to be consistent across all VIDAR samples.

12/18

Retrieving C2 Servers

The malware stores its C2 servers in an unencrypted format within the binary:

hxxps://t[.]me/traduttoretg

hxxps://steamcommunity[.]com/profiles/76561199445991535

hxxp://5.75.253[.]16:80

Interestingly, the VIDAR malware leverages legitimate services to host C2 configuration data.
For example, the Telegram and Steam profile links contain IP addresses, whereas the
5.75.253[.]16 appears to be consistent with threat actor infrastructure. This way, the
malware operators can contiunously cycle C2 servers and have the malware beacon back to
each new IP address so long as the social media profiles hosting the C2 IP address remain
active.

13/18

This particular VIDAR sample uses the string grundic to identify where on the webpage the
C2 address is, and grabs the string up until the ending | character.

Initial C2 Callback

14/18

Once the malware has retrieved a C2 IP address from one of the social media profiles
hardcoded within the binary, it then submits a HTTP GET request containing the profile ID of
the affiliate. Since the VIDAR malware is sold as an infostealer-as-a-service where the
cybercriminal gains access to a control panel to configure and generate the malware, this ID
is used to retrieve the configuration data set by the VIDAR customer. In this sample, the
profile ID is 1375.

VIDAR configuration retrieved

1,1,1,1,1,36bfd46626a0b531909b016919dd1fbd,1,1,1,1,0,Default;%DOCUMENTS%\;*.txt;50;tr
ue;movies:music:mp3;desktop;%DESKTOP%\;*.txt:*.doc:*.docx:*.xlsx:*.xlsm:*.xls:*.pptx;
950;true;movies:music:mp3:exe;

Downloading Additional Libraries

To be able to perform its full credential harvesting tasks, the VIDAR malware must download
additional DLL libraries to extend its capability. For example, to interact with web browsers or
use SQLite3.

In previous samples, the download of these additional libraries was achieved by sending a
HTTP GET request to the C2 server for a ZIP file named with random alphanumeric
characters. In an apparent change of technique, or configuration, this sample retrieves the
additional libraries by downloading a resource from the C2 server named update.zip.

Nevertheless, once the ZIP file containing the DLLs is downloaded, it is extracted and the
DLL binaries are saved to the C:\ProgramData staging directory. The resource update.zip
contained the following DLLs:

MD5 (freebl3.dll) = ef2834ac4ee7d6724f255beaf527e635

MD5 (libcurl.dll) = 37f98d28e694399e068bd9071dc16133

MD5 (mozglue.dll) = 8f73c08a9660691143661bf7332c3c27

MD5 (msvcp140.dll) = 109f0f02fd37c84bfc7508d4227d7ed5

MD5 (nss3.dll) = bfac4e3c5908856ba17d41edcd455a51

MD5 (softokn3.dll) = a2ee53de9167bf0d6c019303b7ca84e5

MD5 (sqlite3.dll) = e477a96c8f2b18d6b5c27bde49c990bf

MD5 (vcruntime140.dll) = 7587bf9cb4147022cd5681b015183046

https://any.run/malware-trends/vidar

15/18

Data Exfiltration

The harvested data is then sent back to the C2 server using a HTTP POST request.

16/18

HTTP POST body

------1531306219445135

Content-Disposition: form-data; name="profile"

1375

------1531306219445135

Content-Disposition: form-data; name="profile_id"

1700

------1531306219445135

Content-Disposition: form-data; name="hwid"

d8d914bc22c31291311131-90059c37-1320-41a4-b58d-816d-806e6f6e6963

------1531306219445135

Content-Disposition: form-data; name="token"

36bfd46626a0b531909b016919dd1fbd

------1531306219445135

Content-Disposition: form-data; name="file"

UEsDBBQAAgAIAMSYl1XqxfupygAAAJMB...[truncated base64-encoded ZIP file]

------1531306219445135--

17/18

Interestingly, the token 36bfd46626a0b531909b016919dd1fbd matches the string contained
within the initial config downloaded from the C2 server.

The data harvested from the host is stored within the ZIP file in the POST request body.

Directory structure of the ZIP file

/History/Mozilla Firefox_qldyz51w.default.txt

/Cookies/Google Chrome_Default.txt

/History/Google Chrome_Default.txt

/passwords.txt

/information.txt

/Files/Default.zip

/Files/desktop.zip

/screenshot.jpg

It is important to note that this is not an exhaustive list of what the ZIP file exfiltrated from
every system will look like. It will depend on both the stealer configuration set by the threat
actor during the payload generation stage, and the software present on the compromised
system. For example, the sample analyzed in this writeup included routines for stealing
Discord tokens, data from Telegram and even FTP and SCP clients.

Cleanup Operations

Once the data has been succesfully harvested and exfiltrated, the malware then deletes itself
and any created files from the host with the following command:

"C:\Windows\System32\cmd.exe" /c timeout /t 6 & del /f /q

"C:\Windows\Microsoft.NET\Framework\v4.0.30319\AppLaunch.exe" & exit

18/18

