A Quick Look at ELF Bifrose (Part 1)

v

December 30, 2022

Bifrose or Bifrost is a backdoor initially targeting Windows systems with a long history. First
identified in the early 2000’s, it is believed a hacking group (likely BlackTech), purchased the
source code or gained access to it around 2010, and enhanced the malware for use in its
own campaigns.

BlackTech has long targeted both Windows and Unix-based systems with a variety of
malicious software, tailoring different malware to each campaign.

It Started With A Tweet

On 24 November, Twitter user @strinsert1Na tweeted that a recent ELF Bifrose sample had
been uploaded to VirusTotal.

= Tweet

. ta Migawarily

ELF was uploaded in VT.

One of the C2 server, 45.77.181[.]203:80 (AS-CHOOPA
K3), was used past espionage campaign by BlackTech
around 2020.

Other C2 server IP addresses (59.125.119[.]202 and 2
more), | observed first time.

Figure 1: Tweet courtesy of @strinsert1Na

1/6

https://cyberandramen.net/2022/12/30/a-quick-look-at-elf-bifrose/

While the reuse of command and control (C&C) infrastructure is nothing new for BlackTech,
the operators have consistently added new features to the backdoor, while seemingly not
changing the targets of their attacks.

“udevd-10.138.61.156”

As of the time of writing, the latest Bifrose sample is detected by about half of the vendors on
VirusTotal, scoring a 36 out of 64.

2]
D

Figure2: VirusTotal Results
Although we have a good idea the file in question is an ELF file, running the file command
will provide us with confirmation of the file type as well as if the file has been stripped.

S file 23daa64696028090d48757221810ffc31ccf7cc65687dc998231c2420817828b

23daa64696028090d48757221810Ffc31ccf7cc65687dc998231c2420817828b: ELF 32-bit LSB executable, Intel 88386, version 1
(syYsv), statically linked, for GNU/Linux 2.6.9, stripped

Figure 3: Output of file command

Sure enough, the output identifies the executable has been stripped; in other words, the
symbols containing human-readable function names have been removed to slow down
analysis.

If you're still unsure the file is stripped, try running readelf -s filename. In this case, no output
confirms the file’s symbols have been tampered with.

Running readelf with the “-p” argument on the .comment section will provide the compiler
version and development environment.

2/6

Figure 4: Output of readelf -p .comment filename
From the above output, we can infer that this sample is likely targeting Red Hat distributions.

Probably one of the best analysis tools, the strings command can assist in identifying the
functionality of the executable, as well as indicators (think Windows APIs for PEs, & syscalls
for Unix). The output in Figure 5 provides a small snapshot of running strings.

3/6

.. II II
igat hiasth jENarE &rrer
CONMNECT &rriger
T ikl
FECYLFATE T I_.'.'Il-_r.

! enceptlon not rethr

.'I'_ |_|_."r‘.'||_- el e r s o

fprocfsys Jkernel fosrelease Figure 5: Output of strings
FATAL ! k=rme=]l tioax ald

-.||.|__ [| 3L dETE
1 1
fidewr fTull

pan
B rLL i

-II_' | [|_|_|_ J |_ L |_| =
imlversal

|I'.J |Iar'J L e ".'I. |.-.
|.l|_-|_|_.||_|_|_I
LETLLNF L:LH

e Cel RS P EE REL RiLalLs FEe
In addition to the hard-coded IP addresses, standard strings indicating first contact with the
C&C server, notably unix|, 5.0.0.0|, and what appear to be C&C commands (recvData and
send data), are visible in the output.

Additionally, we can see signs of reconnaissance of the infected system, viewing the version
and OS release, as well as the kernel version, and the timezone the target is located in.

Bifrose Capabilities

If you don’t have Sysmon for Linux setup in a VM, or aren’t quite ready to upload the sample
to a public sandbox, one great option is to utilize strace to run the sample and redirect the

output to a separate file.

4/6

strace output will include operations such as any network connections or attempts, system
calls, file read and write operations, etc., all information that is extremely valuable to
understand the program’s behavior.

The command strace -o strace_results.txt ./elf file is all you need, along with Wireshark,
TCPDump, or any other tool that can capture network traffic. Explaining the syscalls
identified in the strace output would be an article or two, and | would like to keep this short. If
your interested in strace, see the below links section.

Figure 6 and 7 show snippets of interesting system calls Bifrose makes when run.

118769 execve("./23daa64696028090d48757221810Ffc31ccf7cc65687dc998231c2420817828b", ["./23daac4696028090d48757221810fFF"...], ox7ffdb6f26838 /* 25 vars *f) = @

2 18769 uname({sysname="Linux", nodename=" ".oeedl) =0

318769 brk(NULL) = Ox9571eB00

4 18769 brk(ex971ecda) = Ox971ecdd

5 18769 set_thread_area({entry_number=-1, base_addr=6x971e850, limit=0xefffff, seg_32bit=1, contents=8, read_exec_only=8, limit_in_pages=1, seg_not_present=0,
useable=1}) = @ {entry_number=12)

6 18769 set_tid_address(6x971e898) = 18769

7 18769 set_robust_list(0x971e8ad, 12) =8

8 18769 futex({@xffdb9d74, FUTEX_WAKE_PRIVATE, 1) = @

918769 rt_sigaction(SIGRTMIN, {sa_handler=0x804f558, sa_mask=[], sa_flags=SA_SIGINFO}, NULL, 8) = @

10 18769 rt_sigaction(SIGRT_1, {sa_handler-8x8@4f480, sa_mask=[], sa_flags=SA_RESTART|SA_SIGINFO}, NULL, B) = @

11 18769 rt_sigprocmask(SIG_UNBLOCK, [RTMIN RT_1], NULL, 8) = @

12 18769 ugetrlimit(RLIMIT_STACK, {rlim_cur=8192+*1624, rlim_max=RLIM_INFINITY¥}) = @

13 18769 uname({sysname="Linux", nodename=" "y ses}) =B

14 18769 brk(ex973fcde) @x973fcde

15 18769 brk(ex97400080) = Bx9740000

16 18769 clone(child_stack=NULL, flags=CLONE_CHILD_CLEARTID|CLONE_CHILD_SETTID|SIGCHLD, child_tidptr=8x971e898) = 18770

17 18769 exit_group(0) =7

18 18769 +++ exited with © +++

19 18770 setsid() = 18778

20 18770 rt_sigaction(SIGHUP, {sa_handler=SIG_IGN, sa_mask=[HUP], sa_flags=SA_RESTART}, {sa_handler=SIG_OFL, sa_mask=[], sa_flags=0}, 8) = @

21 18770 clone(child_stack=NULL, flags=CLOME_CHILD_CLEARTID|CLONE_CHILD_SETTID|SIGCHLD, child_tidptr=8x971e898) = 18771

22 18776 exit_group(@) =?

23 18771 chdir("/" <unfinished ...>

24 18770 +++ exited with © ++4+

25 18771 <... chdir resumed>)

26 18771 close(0)

27 18771 close(1)

28 18771 close(2)

29 18771 close(3)

38 18771 close(4)

31 18771 close(5)

32 18771 close(6)

33 18771 close(7)

3418771 close(8)

35 18771 close(9)

36 18771 close(18)

37 18771 close(11)

Figure 6: strace output (1)

o @@

1 EBADF (Bad file descriptor)
-1 EBADF (Bad file descriptor)
-1 EBADF (Bad file descriptor)
-1 EBADF (Bad file descriptor)
-1 EBADF (Bad file descriptor)
-1 EBADF (Bad file descriptor)
-1 EBADF (Bad file descriptor)
-1 EBADF (Bad file descriptor)
-1 EBADF (Bad file descriptor)

98 18771 open(”/dev/null", O_RDONLY) [
91 18771 open(”/dev/null", O_RDWR) 1
92 18771 open(”/dev/null”, O_RDWR) 2

93 18771 socket(AF_INET, SOCK_DGRAM, IPPROTO_IP) = 3

94 18771 gettimeofday({tv_sec=1669340202, tv_usec=751449}, NULL) = @

95 18771 fstat64(1, {st_mode=S_IFCHR|08666, st_rdev=makedev(@x1, ©x3), ...}) = @

96 18771 ioctl(1, TCGETS, @xffdb753c) = -1 ENOTTY (Inappropriate iectl for device)

97 18771 mmap2(NULL, 4896, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, @) = @xf7fazeee
98 18771 socket{AF_INET, SOCK_STREAM, IPPROTO_TCP) = 4

99 18771 setsockopt(4, SOL_SOCKET, SO_SNDTIMEO_OLD, "\n\B8\8\8\8\0\6\8", 8)
106 18771 setsockopt(4, SOL_SOCKET, SO_RCVTIMEO_OLD, "\n\@\©\@\0\0\0\0", 8)
181 18771 open(”/etcfresolv.conf”, O_RDONLY) = 5

182 18771 fstat64(5, {st_mode=5S_IFREG|8644, st_size=736, ...}) = @

183 18771 mmap2(NULL, 4896, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 8) = exf7faloee
184 18771 read(5, "# This file is managed by man:sy”..., 40896) = 736

185 18771 read(5, "", 4896)]

186 18771 close(5) e

187 18771 munmap{@xf7fal0ee, 4096) a

188 18771 connect(4, {sa_family=AF_INET, sin_port=htons(8888), sin_addr=inet_addr("59.125.119.202")}, 16) = ©

189 18771 close(3) =8

118 18771 setsockopt(4, SOL_TCP, TCP_NODELAY, "\1", 1) = -1 EINVAL (Invalid argument)

111 18771 setsockopt(4, SOL_SOCKET, SO_LINGER, {1_onoff=1, 1_linger=0}, 8) = @

112 18771 fcntlG4(4, F_SETFL, O_RDONLY|O_NONBLOCK) = ©

113 18771 socket(AF_INET, SOCK_DGRAM, IPPROTO_IP) = 3

114 18771 ioctl(3, SIOCGIFCONF, {ifc_len=32 * sizeof(struct ifreq) =» 3 * sizeof(struct ifreq), ifc_buf=[{ifr_name="lo", ifr_addr={sa_family=AF_INET,

]
]

sin_port=htons(6), sin_addr=inet_addr("127.08.8.1")}}, {ifr_name=" ", ifr_addr={sa_family=AF_INET, sin_port=htons(®), sin_addr=inet_addr("172.16.42.221")}},
{ifr_name="ens34", ifr_addr={sa_family=AF_INET, sin_port=htons(®}), sin_addr=inet_addr("16.1.3.138")}}]}) = @

115 18771 uname({sysname="Linux", nodename=" 'y =8

116 18771 getuild3z() =8

117 18771 socket{AF_UNIX, SOCK_STREAM, 8) =5

118 18771 fentl64(5, F_SETFL, O_RDWR|O_NONBLOCK) = @

119 18771 connect(5, {sa_family=AF_UNIX, sun_path="/var/run/nscd/socket™}, 118) = -1 ENOENT (Mo such file or directory)
128 18771 close(5) =8

121 18771 socket{AF_UNIX, SOCK_STREAM, @) =5

122 18771 fentl64(5, F_SETFL, O_RDWR|O_NONBLOCK) = @

123 18771 connect(5, {sa_family=AF_UNIX, sun_path="/var/run/nscd/socket"}, 118) = -1 ENOENT (No such file or directory)

strace output (2)
To keep things simple, we’ll use Mandiant’s CAPA tool to get an idea of what Bifrose is up to.

5/6

Figure 8: CAPA output

In the next post, I'll use Cutter to look at some of the capabilities identified in the above
image and see if we can map out the execution of Bifrose, to help defenders get an idea of
what indicators will assist in identifying a possible intrusion.

Links

https://man7.org/linux/man-pages/man2/syscalls.2.html

| ELF Malware Analysis 101: Part 3 — Advanced Analysis

https://www.pentesteracademy.com/video?id=881

6/6

https://man7.org/linux/man-pages/man2/syscalls.2.html
https://www.intezer.com/blog/malware-analysis/elf-malware-analysis-101-part-3-advanced-analysis/
https://www.pentesteracademy.com/video?id=881

