# **IcedID Botnet Distributors Abuse Google PPC to Distribute Malware**

trendmicro.com/en\_ie/research/22/l/icedid-botnet-distributors-abuse-google-ppc-to-distribute-malware.html

23 December 2022



#### Content added to Folio

### Malware

We analyze the latest changes in IcedID botnet from a campaign that abuses Google pay per click (PPC) ads to distribute IcedID via malvertising attacks.

By: lan Kenefick December 23, 2022 Read time: (words)

After closely tracking the activities of the <u>lcedID botnet</u>, we have discovered some significant changes in its distribution methods. Since December 2022, we observed the abuse of Google pay per click (PPC) ads to distribute IcedID via malvertising attacks. This IcedID variant is detected by Trend Micro as TrojanSpy.Win64.ICEDID.SMYXCLGZ.

Advertising platforms like <u>Google Ads</u> enable businesses to display advertisements to target audiences for the purpose of boosting traffic and increasing sales. Malware distributors abuse the same functionality in a technique known as malvertising, wherein chosen keywords are hijacked to display malicious ads that lure unsuspecting search engine users to downloading malware.

In our investigation, malicious actors used malvertising to distribute the IcedID malware via cloned webpages of legitimate organizations and well-known applications. Recently, the Federal Bureau of Investigation (FBI) <u>published a warning</u> pertaining to how cybercriminals abuse search engine advertisement services to imitate legitimate brands and direct users to malicious sites for financial gain.

Our blog entry provides the technical details of IcedID botnet's new distribution method and the new loader it uses.

## Technical analysis

Organic search results are those generated by the <u>Google PageRank algorithm</u>, whereas <u>Google Ads appear</u> in more prominent locations above, beside, below, or with the organic search results. When these ads are hijacked by malicious actors via malvertising, they can lead users to malicious websites.

## Targeted brands and applications

In our investigation, we discovered that IcedID distributors hijacked the keywords used by these brands and applications to display malicious ads:

- 1. Adobe A computer software company
- 2. AnyDesk A remote control application
- 3. Brave Browser A web browser
- 4. Chase Bank A banking application
- 5. Discord An instant messenger service
- 6. Fortinet A security company
- 7. GoTo A remote control application
- 8. Libre Office An open-source alternative to Microsoft Office
- 9. OBS Project A streaming application
- 10. Ring A home CCTV (closed-circuit) manufacturer
- 11. Sandboxie A virtualization/sandbox application
- 12. Slack An instant messaging application
- 13. Teamviewer A remote control application
- 14. Thunderbird An email client
- 15. US Internal Revenue Service (IRS) A US federal government body

The malicious websites where victims are directed are made to look like their legitimate counterparts. Figure 1 shows a legitimate-looking malicious Slack webpage used by IcedID distributors to lure victims into downloading malware.

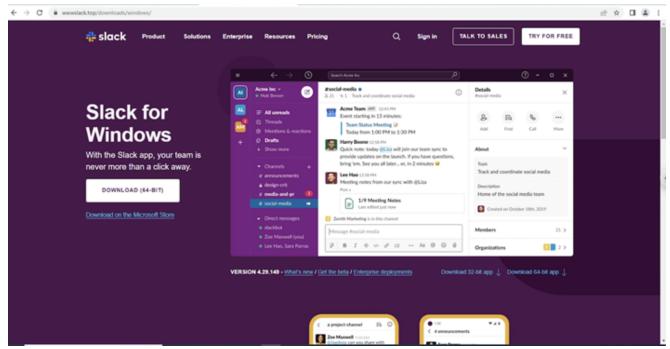



Figure 1. A legitimate-looking malicious Slack webpage used by IcedID distributors Infection chain

The overall infection flow involves delivering the initial loader, fetching the bot core, and ultimately, dropping the payload. The payload is typically a backdoor.

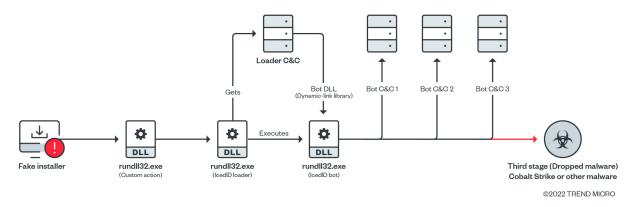



Figure 2. IcedID botnet malware infection chain **Infection via malvertising** 

- 1. A user searches for an application by entering a search term on Google. In this particular example, the user wants to download the AnyDesk application and enters the search term "AnyDesk" on the Google search bar.
- 2. A malicious ad for the AnyDesk application that leads to a malicious website is displayed above the organic search results.

- 3. IcedID actors abuse the legitimate Keitaro Traffic Direction System (TDS), to filter researcher and sandbox traffic. The victim is then redirected to a malicious website.
- 4. Once the user selects the "Download" button, it downloads a malicious Microsoft Software Installer (MSI) or Windows Installer file inside a ZIP file in the user's system.

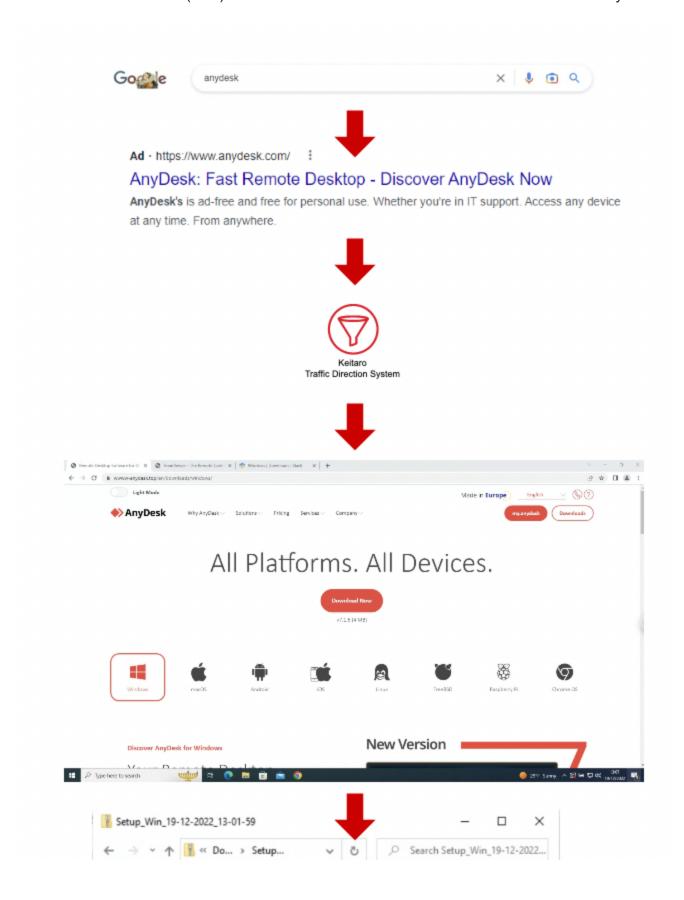





Figure 3. IcedID botnet malvertising infection chain

The new IcedID botnet loader

In this campaign, the loader is dropped via an MSI file, which is atypical for IcedID.

The installer drops several files and invokes the "init" export function via rundll32.exe, which then executes the malicious loader routine.

This "loader" DLL has the following characteristics:

- The authors have taken a legitimate DLL and replaced a single legitimate function with the malicious loader function using the "init" export function name at the last ordinal.
- The first character of each legitimate export function in the IcedID loader is replaced with the letter "h."
- The reference to the malicious function is a patched legitimate function.

The resulting malicious file is almost identical to the legitimate version. This can prove to be challenging for <u>machine learning (ML)</u> detection solutions.

On the surface, the malicious IcedID and legitimate sqlite3.dll files look almost identical. Figure 4 shows a side-by-side comparison of these files using the <u>PortEx Analyzer tool</u>, which was developed by security researcher Karsten Hahn. The tool allows us to quickly visualize the structure of the portable executable (PE) files, and, in this case, assess the similarity of files.

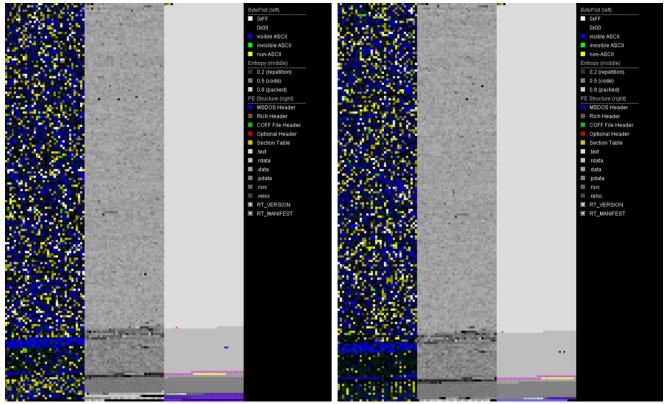



Figure 4. A visual representation of the malicious IcedID (left) and legitimate PE (right) files (using Karsten Hahn's PortEx Analyzer tool)

For this reason, we hypothesize that this is an attack on two types of malware detection technologies:

- Machine learning detection engines
- Whitelisting systems

# Tampered DLL files functioning as IcedID loaders

We have observed that some of the files that have been modified to act as IcedID loaders are well-known and widely used libraries.

Table 1. Files that have been modified to act as IcedID loaders

| DLL name         | Description                                                                                       |
|------------------|---------------------------------------------------------------------------------------------------|
| tcl86.dll        | A library component of ActiveState's TCL (Tool Command Language) Programming Language Interpreter |
| sqlite3.dll      | A library component of SQLite database                                                            |
| ConEmuTh.x64.dll | A plugin for Far Manager                                                                          |
| libcurl.dll      | A CURL library                                                                                    |

In sqlite3.dll, we observed that the function at ordinal 270 "sqlite3\_win32\_write\_debug" has been replaced with the malicious "init" function in the IcedID loader.

This is the case across the modified DLL files listed above: The export function at the last ordinal is replaced with the malicious "init" function.

| Name                            | Address           | Ordinal      | ^ Name                          | Address           | Ordinal      |
|---------------------------------|-------------------|--------------|---------------------------------|-------------------|--------------|
| ☐ hqlite3_value_numeric_type    | UUUUUUU 18UU3E6AU | 231          | J sqlites_value_numeric_type    | UUUUUUU 18UU3EbAU | 231          |
| f hqlite3_value_pointer         | 000000018003A560  | 238          | f sqlite3_value_pointer         | 000000018003A560  | 238          |
| f hqlite3_value_subtype         | 000000018003A550  | 239          | f sqlite3_value_subtype         | 000000018003A550  | 239          |
| f hqlite3_value_text            | 000000018003A5B0  | 240          | f sqlite3_value_text            | 000000018003A5B0  | 240          |
| f hqlite3_value_text16          | 000000018003A5F0  | 241          | f sqlite3_value_text16          | 000000018003A5F0  | 241          |
| f hqlite3_value_text16be        | 000000018003A630  | 242          | f sqlite3_value_text16be        | 000000018003A630  | 242          |
| f hqlite3_value_text16le        | 000000018003A670  | 243          | f sqlite3_value_text16le        | 000000018003A670  | 243          |
| f hqlite3_value_type            | 000000018003A6B0  | 244          | f sqlite3_value_type            | 000000018003A6B0  | 244          |
| A hqlite3_version               | 0000000180134788  | 245          | A sqlite3_version               | 000000180134788   | 245          |
| f hqlite3_vfs_find              | 0000000180004B80  | 246          | f sqlite3_vfs_find              | 0000000180004B80  | 246          |
| f hqlite3_vfs_register          | 0000000180004C90  | 247          | f sqlite3_vfs_register          | 000000180004C90   | 247          |
| f hqlite3_vfs_unregister        | 0000000180004D70  | 248          | f sqlite3_vfs_unregister        | 0000000180004D70  | 248          |
| f hqlite3_vmprintf              | 0000000180008DD0  | 249          | f sqlite3_vmprintf              | 0000000180008DD0  | 249          |
| f hqlite3_vsnprintf             | 0000000180008EE0  | 250          | f sqlite3_vsnprintf             | 0000000180008EE0  | 250          |
| f hqlite3_vtab_collation        | 00000001800B2370  | 251          | f sqlite3_vtab_collation        | 00000001800B2370  | 251          |
| f hqlite3_vtab_config           | 00000001800A4D30  | 252          | f sqlite3_vtab_config           | 00000001800A4D30  | 252          |
| f hqlite3_vtab_nochange         | 000000018003C0D0  | 253          | f sqlite3_vtab_nochange         | 000000018003C0D0  | 253          |
| f hqlite3_vtab_on_conflict      | 00000001800A4D10  | 254          | f sqlite3_vtab_on_conflict      | 00000001800A4D10  | 254          |
| f hqlite3_wal_autocheckpoint    | 00000001800C6E70  | 255          | f sqlite3_wal_autocheckpoint    | 00000001800C6E70  | 255          |
| f hqlite3_wal_checkpoint        | 00000001800C70A0  | 256          | f sqlite3_wal_checkpoint        | 00000001800C70A0  | 256          |
| f hqlite3_wal_checkpoint_v2     | 00000001800C6F70  | 257          | f sqlite3_wal_checkpoint_v2     | 00000001800C6F70  | 257          |
| f hqlite3_wal_hook              | 00000001800C6F00  | 258          | f sqlite3_wal_hook              | 00000001800C6F00  | 258          |
| f hqlite3_win32_is_nt           | 000000018000C720  | 259          | f sqlite3_win32_is_nt           | 000000018000C720  | 259          |
| f hqlite3_win32_mbcs_to_utf8    | 000000018000CD00  | 260          | f sqlite3_win32_mbcs_to_utf8    | 000000018000CD00  | 260          |
| f hqlite3_win32_mbcs_to_utf8_v2 | 000000018000CD30  | 261          | f sqlite3_win32_mbcs_to_utf8_v2 | 000000018000CD30  | 261          |
| f hqlite3_win32_set_directory   | 000000018000CFD0  | 262          | f sqlite3_win32_set_directory   | 000000018000CFD0  | 262          |
| f hqlite3_win32_set_directory16 | 000000018000CEF0  | 263          | f sqlite3_win32_set_directory16 | 000000018000CEF0  | 263          |
| f hqlite3_win32_set_directory8  | 000000018000CDE0  | 264          | f sqlite3_win32_set_directory8  | 000000018000CDE0  | 264          |
| f hqlite3_win32_sleep           | 000000018000C6D0  | 265          | f sqlite3_win32_sleep           | 000000018000C6D0  | 265          |
| f hqlite3_win32_unicode_to_utf8 | 000000018000CCD0  | 266          | f sqlite3_win32_unicode_to_utf8 | 000000018000CCD0  | 266          |
| f hqlite3_win32_utf8_to_mbcs    | 000000018000CD70  | 267          | f sqlite3_win32_utf8_to_mbcs    | 000000018000CD70  | 267          |
| f hqlite3_win32_utf8_to_mbcs_v2 | 000000018000CDA0  | 268          | f sqlite3_win32_utf8_to_mbcs_v2 | 000000018000CDA0  | 268          |
| f hqlite3_win32_utf8_to_unicode | 000000018000CCA0  | 269          | f sqlite3_win32_utf8_to_unicode | 000000018000CCA0  | 269          |
| f init                          | 000000018012AB40  | 270          | f sqlite3_win32_write_debug     | 000000018000C640  | 270          |
| 1 DIIEntryPoint                 | 000000018012C134  | [main entry] | √ 1 DIIEntryPoint               | 000000018012C134  | [main entry] |

Figure 5. A comparison of IcedID-modified (left) and normal (right) files, wherein the former's export function at the last ordinal is replaced with the malicious "init" function Further investigation shows that the structure of the file is identical.

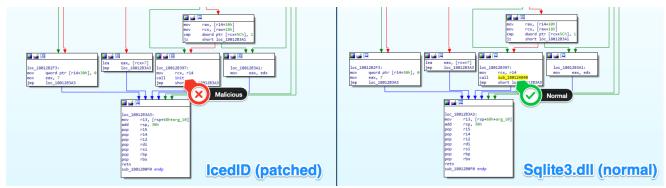



Figure 6. A comparison of IcedID-modified and normal files wherein both files show an identical structure

#### Execution

- 1. "MsiExec.exe" executes (parent process) (MITRE ID T1218.007 System Binary Proxy Execution: msiexec)
- 2. "rundll32.exe" is spawned (MITRE ID T1218.011 System Binary Proxy Execution: rundll32.exe)

- 3. "rundll32.exe" runs the custom action "Z3z1Z" via "zzzzInvokeManagedCustomActionOutOfProc" (MITRE ID T1218.011 System Binary Proxy Execution: rundll32.exe)
- 4. The custom action spawns a second "rundll32.exe" to run the IcedID loader "MSI3480c3c1.msi" with the "init" export function (MITRE IDs T1027.009 Embedded Payloads and T1218.011 System Binary Proxy Execution: rundll32.exe)




Figure 7. IcedID loader execution chain

| Tables               | Action | Туре | Source     | Target |
|----------------------|--------|------|------------|--------|
| AdminExecuteSequence | Z3z1Z  | 65   | Z3z1Z_File | Z3z1Z  |
| AdminUlSequence      |        |      |            |        |
| AdvtExecuteSequence  |        |      |            |        |
| Binary               |        |      |            |        |
| Component            |        |      |            |        |
| CreateFolder         |        |      |            |        |
| CustomAction         |        |      |            |        |

Figure 8. MSI custom action

| ****                              | 111911 |            | UX Hex | File stats |                         |                         |        |
|-----------------------------------|--------|------------|--------|------------|-------------------------|-------------------------|--------|
| Setup_Win_19-12-2022_13-01-59.msi | 50%    | Document   |        |            |                         |                         |        |
| ✓ i Archives                      |        |            |        | Offset     | 0 1 2 3 4 5 6 7         | 8 9 A B C D E F         | Ascii  |
| Root Entry                        | 40%    | Archive    |        | 00000000   | 4D 5A 90 00 03 00 00 00 | 04 00 00 00 FF FF 00 00 | MZ     |
| WindowsUpdate.cab                 | 0%     | Archive    |        | 00000010   | B8 00 00 00 00 00 00 00 | 40 00 00 00 00 00 00 00 |        |
| v 📄 Executables                   |        |            |        | 00000020   | 00 00 00 00 00 00 00    | 00 00 00 00 00 00 00    |        |
| ∨ Binary.Z3z1Z_File X 3           | 100%   | Executable |        | 00000030   | 00 00 00 00 00 00 00 00 | 00 00 00 00 18 01 00 00 |        |
| ∨                                 |        |            | 1      | 00000040   | OE 1F BA OE OO B4 O9 CD | 21 B8 01 4C CD 21 54 68 |        |
| Configuration file 2 [lang:1033]  | 0%     | Document   |        | 00000050   |                         | 61 6D 20 63 61 6E 6E 6F |        |
| ■ Binary.calc                     | 40%    | Executable |        | 00000060   | 74 20 62 65 20 72 75 6E | 20 69 6E 20 44 4F 53 20 |        |
|                                   |        |            |        | 00000070   | 6D 6F 64 65 2E 0D 0D 0A | 24 00 00 00 00 00 00 00 | mode\$ |

Figure 9. MSI structure that contains the custom action Conclusion

IcedID is a noteworthy malware family that is capable of delivering other payloads, including Cobalt Strike and other malware. IcedID enables attackers to perform highly impactful follow through attacks that lead to total system compromise, such as data theft and crippling ransomware. The use of malvertising and an evasive loader is a reminder of why it's important for businesses to deploy layered security solutions that include custom sandboxing, predictive machine learning, behavior monitoring and file and web reputation detection capabilities. Users can also consider the use of ad blockers to help thwart malveritising attacks.

Indicators Of Compromise (IOCs)

The indicators of compromise can be accessed via this text file.

Mitre ATT&CK

| ID        | Name                                       | Description                                                                                                   |
|-----------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| T1218.007 | System Binary Proxy Execution msiexec      | loedID is delivered via an MSIEXEC package which execute a malicious custom action to deploy the loeID Loader |
| T1218.011 | System Binary Proxy Execution rundll32.exe | The malicious custom action invokes rundll32.exe to execute the lceID Loader                                  |
| T1027.009 | Embedded Payloads                          | Attackers embed a malicious function in an otherwise benign DLL in order to thwart detection technologies     |

©2022 TREND MICRO

s Xp IBd PeKz I9PC 2p 0SWMp USM 2NSxWz PyXTMLIb XmYa 0R 20xk