Nokoyawa Ransomware: Rust or Bust

zscaler.com/blogs/security-research/nokoyawa-ransomware-rust-or-bust

Key Points

- *Nokoyawa* is a 64-bit Windows-based ransomware family that emerged in February 2022
- The threat group behind Nokoyawa performs double extortion ransomware attacks: exfiltrating sensitive information from organizations, followed by file encryption and a ransom payment demand
- Nokoyawa was initially written in the C programming language using Elliptic Curve Cryptography (ECC) with SECT233R1 and Salsa20 for file encryption
- In September 2022, Nokoyawa was rewritten in the Rust programming language using ECC with the Curve25519 and Salsa20 for file encryption
- The Rust-based Nokoyama ransomware 2.0 provides threat actors with runtime flexibility via a configuration parameter that is passed via the command-line

Nokoyawa ransomware was discovered in February 2022, sharing code with another ransomware family known as <u>Karma</u>. Nokoyawa ransomware's <u>lineage</u> can further be traced back to Nemty ransomware. The original version of Nokoyawa ransomware was written in the C programming language and file encryption utilized asymmetric Elliptic Curve Cryptography (ECC) with Curve SECT233R1 (*a.k.a.* NIST B-233) using the <u>Tiny-ECDH</u> open source library combined with a per file Salsa20 symmetric key. Nokoyawa ransomware 2.0 still uses Salsa20 for symmetric encryption, but the elliptic curve was replaced with Curve25519.

Nokoyawa 2.0 was developed using the Rust programming language and appears to have been created in late September 2022. Nokoyawa is not the first ransomware family to be rewritten in Rust. Previously, the developers of the ransomware families <u>Hive</u> and <u>Agenda/Qilin</u> ported their code from the Go (*a.k.a.* Golang) programming language to Rust. In addition, the author of <u>RansomExx</u> converted the ransomware code from C++ to Rust. Another ransomware family compiled in Rust is <u>BlackCat/ALPHV</u>. The increase in the popularity of the Rust programming language may be due to its emphasis on performance and concurrency, which can make a ransomware's file encryption more efficient. Similar to the previous version of Nokoyawa, the Rust variant is compiled only for 64-bit versions of Windows.

This blog provides a technical analysis of Nokoyawa 2.0 including its new configuration, encryption algorithms, and data leak site.

Technical Analysis

Nokoyawa 2.0 cannot be executed without providing the required command-line arguments. When run without arguments, Nokoyawa will print the following help message shown in Figure 1.

How to run:					
nokoyawa.exe	config	<base64< th=""><th>encoded</th><th>config></th><th>(to start full encryption)</th></base64<>	encoded	config>	(to start full encryption)
nokoyawa.exe	config	<base64< th=""><th>encoded</th><th>config></th><th><pre>file <filepath> (encrypt selected file)</filepath></pre></th></base64<>	encoded	config>	<pre>file <filepath> (encrypt selected file)</filepath></pre>
nokoyawa.exe	config	<base64< th=""><th>encoded</th><th>config></th><th><pre>dir <dirpath> (encrypt selected directory)</dirpath></pre></th></base64<>	encoded	config>	<pre>dir <dirpath> (encrypt selected directory)</dirpath></pre>

Figure 1. Nokoyawa 2.0 ransomware command-line help

The command-line arguments *--file* (to encrypt a single file) and *--dir* (to encrypt a directory) are identical to the previous version of Nokoyawa. However, Nokoyawa 2.0 requires a configuration file to execute the ransomware via the *--config* command-line argument. The configuration parameter is a Base64 encoded JSON object that has the following keys and values shown in Table 1.

Кеу	Value Format	Description
NOTE_NAME	<filename> (will be appended with .txt)</filename>	Ransom note filename
NOTE_CONTENT	Base64 encoded text	Ransom note content
EXTENSION	<8 characters> (without a period)	Encrypted file extension (also used as the Salsa20 nonce)

ECC_PUBLIC	Base64 encoded binary data	Curve25519 public key
SKIP_EXTS	JSON array	File extensions that will not be encrypted
SKIP_DIRS	JSON array	Directories that will not be encrypted

Table 1. Nokoyawa 2.0 configuration parameters

The decision by the Nokoyawa malware author to pass a full configuration file via the command-line is a unique design choice. This is indicative that the malware author has developed the ransomware to be flexible for mulitiple threat actors who are likely paid as affiliates to compromise organizations and deploy the ransomware in return for a percentage of the profit.

Encryption Algorithms

Nokoyawa 2.0 uses Curve25519 (via the open source <u>x25519_dalek</u> Rust library) for asymmetric encryption and Salsa20 for symmetric encryption. Nokoyawa first generates an ephemeral Curve25519 key pair. The ephemeral private key is used to generate a shared secret using a Diffie-Hellman key exchange with the Curve25519 public key that was passed via the *config* command-line parameter. The result is used as a Salsa20 key and the file extension is used as the nonce, which must be 8 bytes (as described in Table 1). Figure 2 shows an example file encrypted by Nokoyawa 2.0.

0007fef0	d3	a5	5f	72	c1	51	53	ed	3f	6f	6a	78	27	d2	a4	85	r.QS.?ojx'
0007ff00	1b	63	ca	99	85	81	9c	9e	22	bd	ae	ee	8d	cd	b 5	bd	.c"
0007ff10	£9	1a	9Ъ	62	db	39	26	fd	05	53	77	bb	b4	aa	77	44	b.9&SwwD
0007ff20	3e	35	1a	44	97	00	03	Ъ9	01	e6	£4	9Ъ	0ъ	b5	bb	9d	>5.D
0007ff30	40	df	3Ъ	eb	ec	8f	5a	d 8	ce	65	27	6a	21	3d	a8	dd	@.;Ze'j!=
0007ff40	57	50	b4	d 8	b 8	b6	17	bf	aa	a1	80	9f	67	a9	09	6f	WPgo
0007ff50	77	cd	71	52	fe	89	22	c 8	4f	e 0	40	a0	73	7d	£9	be	w.qR".O.@.s}
0007ff60	85	84	86	37	eb	Зb	9f	b2	53	7d	ce	7c	1e	2a	47	53	7.;S}. .*GS
0007ff70	ce	83	4e	32	59	1a	£4	95	a2	35	15	0e	d5	3Ъ	9a	2Ъ	N2Y5;.+
0007ff80	e4	98	ab	58	92	bf	34	e2	3e	81	8e	e2	23	33	79	bf	X4.>#3y.
0007ff90	c3	aa	3d	£5	e7	12	ca	d9	47	e 8	02	84	6f	49	31	67	=GoIlg
0007ffa0	ъ0	82	1b	49	28	34	9d	02	77	53	24	bc	4e	2d	cf	7e	I(4wS\$.N−.~
0007ffb0	c6	Ъ7	0d	74	ec	85	4f	00	44	61	35	5a	1f	00	d 0	99	tO.Da5Z
0007ffc0	e3	d7	68	96	9Ъ	9a	5f	01	ь7	85	4d	56	8d	79	24	6d	hMV.y\$m
0007ffd0	5b	b6	2a	7d	15	e6	45	15	72	2c	Ъ7	29	b6	81	84	c5	[.*}E.r,.)
0007ffe0	56	c 8	ee	c2	ь0	5c	81	95	98	72	47	52	4a	54	df	a3	V\rGRJT
0007fff0	<mark>0Ъ</mark>	cc	c2	30	£8	4a	5d	7£	cd	£7	81	96	1a	55	b5	£3	0.J]U
00080000	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ
*																	
001570e0	52	24	a7	5b	78	0f	d 6	£4	e8	b7	97	25	\mathbf{cd}	£8	02	1d	R\$.[x%
001570f0	43	1e	ae	1b	6f	fc	57	9Ъ	70	c3	1c	7d	18	95	84	0d	Co.W.p}
00157100	6e	6£	6b	6f	79	61	77	61									nokoyawa

Figure 2. Nokayawa 2.0 encrypted file content and footer

As shown in Figure 2, the 32-byte ephemeral public key (blue) and the 8-byte nonce (red) are appended as a 40-byte footer at the end of the encrypted file. Similar to most ransomware families, Nokoyawa encrypts the file in chunks based on the file's size. If the file's size is less than or equal to 0x80000 (524,288) bytes, the full file will be encrypted. Otherwise the code implements an algorithm that determines the number of blocks and the block offsets to encrypt in the file. Each block will be encrypted in chunks of 0x80000 bytes (yellow) followed by blocks of unencrypted bytes (green) as highlighted in Figure 2. Since Nokoyawa only partially encrypts files larger than 0x80000 bytes, encryption is very fast.

ThreatLabz has developed a proof-of-concept tool to decrypt files encrypted by Nokoyawa 2.0 if the Curve25519 private key is accessible. This decryption tool is available in our GitHub tools repository <u>here</u>.

Ransom Note

As previously mentioned in Table 1, the Nokyawa ransomware note filename and content is passed via the *configuration* command-line parameter. An example Nokoyawa ransom note is shown in Figure 3.

readme - Notepad × File Edit Format View Help Nokoyawa. If you see this, your files were successfully encrypted. We advice you not to search free decryption method. It's impossible. We are using symmetrical and asymmetric encryption. ATTENTION: - Don't rename encrypted files. - Don't change encrypted files. - Don't use third party software. To reach an agreement we offer you to visit our Onion Website. How to open Onion links: - Download TOR Browser from official website. - Open and enter this link: http://6yofnrq7evqrtz3tzi3dkbrdovtywd351x3iqbc5dyh367nrdh4jgfyd.onion/pay/ - On the page you will see a chat with the Support. - Send your first message. The faster you contact with us the faster you will get a solution. Ln 20, Col 67 100% Windows (CRLF) UTF-8

Figure 3. Nokoyawa ransom note

Ransom portal

Nokoyawa ransom notes contain a link to a TOR hidden service as shown in Figure 4.

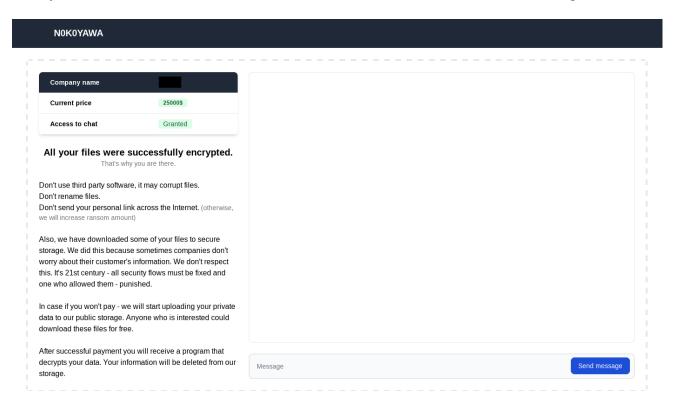


Figure 4. Nokoyawa ransom chat portal

The same TOR hidden service also hosts a data leak site. Currently, only one victim is listed on the site as shown in Figure 5. This may suggest that Nokoyawa is not currently compromising a large number of organizations, or the threat actors may only perform double extortion for a subset of victims.

		NOKOYAWA			
	We have collec	ted companies that don't w	orry about their customers!		
is headquartered in					
Sydney, New South Wales					
Read					

Figure 5. Nokoyawa leak site

Conclusion

The Nokoyawa threat actor continues to update the ransomware and launch new attacks. The development of Nokoyawa 2.0 using the Rust programming language is likely designed to improve file encryption speed and to better evade antivirus and EDR products. The group has long claimed to perform double extortion attacks without offering much proof, until now.

Cloud Sandbox Detection

Cloud Sandbox						
ANDBOX DETAIL REPORT leport ID (MD5): 40C9DC2897B6B348DA88B23DEB0D3952		High Risk Moderate Risk Low Risk Analysis Performed: 12/14/2022 2:56:26 PM			File Type: exe	
CLASSIFICATION		MITRE ATT&CK	20	VIRUS AND MALWARE		
Class Type Malicious Category Malware & Botnet	Threat Score	This report contains 4 ATT&CK techniques mapped to 3 tactics	No known Malware found			
SECURITY BYPASS	20	NETWORKING		STEALTH		
Sample Execution Stops While Process Was Sleeping (Likely An Ev	asion)	No suspicious activity detected		No suspicious activity detected		
SPREADING		INFORMATION LEAKAGE		EXPLOITING		
No suspicious activity detected		No suspicious activity detected		Known MDS		
PERSISTENCE	20	SYSTEM SUMMARY	22	DOWNLOAD SUMMARY		
PE File Contains Sections With Non-Standard Names		Program Does Not Show Auch Activity Binary Contains Paths To Debug Symbols Cassification Label Contains Modern PE File Flags Such As Dynamic Base Or NX Creates Guard Pages Creates Mutexes PE File Contains A Debug Data Directory		Original file Dropped files Packet capture	458 KB No dropped file 100 KB	

In addition to sandbox detections, Zscaler's multilayered cloud security platform detects indicators related to Nokoyawa at various levels with the following threat names:

Win64.Ransom.NOKOYAWA

Indicators of Compromise

SHA256	Description
7095beafff5837070a89407c1bf3c6acf8221ed786e0697f6c578d4c3de0efd6	Nokoyawa ransomware Rust sample
47c00ac29bbaee921496ef957adaf5f8b031121ef0607937b003b6ab2a895a12	Nokoyawa ransomware Rust sample
259f9ec10642442667a40bf78f03af2fc6d653443cce7062636eb750331657c4	Nokoyawa ransomware Rust sample

Security Research

Ransomware