
1/11

Sarang Sonawane - Donato Onofri December 19, 2022

GuLoader Dissection Reveals New Anti-Analysis
crowdstrike.com/blog/guloader-dissection-reveals-new-anti-analysis-techniques-and-code-injection-redundancy/

GuLoader is an advanced malware downloader that uses a polymorphic shellcode
loader to dodge traditional security solutions
CrowdStrike researchers expose complete GuLoader behavior by mapping all
embedded DJB2 hash values for every API used by the malware
New shellcode anti-analysis technique attempts to thwart researchers and hostile
environments by scanning entire process memory for any virtual machine (VM)-related
strings
New redundant code injection mechanism means to ensure code execution by using
inline assembly to bypass user mode hooks from security solutions

CrowdStrike analyzes malware to augment the behavior and machine learning-based
detection and protection capabilities built into the CrowdStrike Falcon platform to deliver
automated, world-class protection to customers.

GuLoader has been known to employ a significant number of anti-analysis techniques,
making detection and protection challenging for other security solutions.

®

https://www.crowdstrike.com/blog/guloader-dissection-reveals-new-anti-analysis-techniques-and-code-injection-redundancy/

2/11

In dissecting GuLoader’s shellcode, CrowdStrike revealed a new anti-analysis technique
meant to detect if the malware is running in a hostile environment by scanning the entire
process memory for any Virtual Machine (VM)-related strings. To bypass GuLoader’s anti-
debugging evasion mechanisms, we found and described two new working methods for
patching debugger instructions meant to detect the presence of debugging tools used by
researchers for analysis.

This analysis includes what we believe is the first-ever mapping of all remaining DJB2 hash
values for every API used by the GuLoader malware, revealing the first-ever complete view
into the malware’s behavior and how it interacts with the victim’s machine.

See for yourself how the industry-leading CrowdStrike Falcon platform protects
against modern threats like GuLoader. Start your 15-day free trial today.

The Evolution of GuLoader

GuLoader was first spotted in 2019 as a file downloader that was used to distribute remote
access trojans (RATs) such as AgentTesla, FormBook, Nanocore, NETWIRE and the
Parallax RAT.

These early versions of GuLoader were distributed via spam email campaigns containing
archived attachments containing the malware in executable form. In 2020, CrowdStrike
published a detailed analysis of GuLoader in which a significant number of DJB2 hash
values were mapped, revealing some of the APIs abused by the malware.

Recent variants started using an updated delivery mechanism where the payload is delivered
via a Visual Basic Script (VBS) file. GuLoader also started employing advanced anti-analysis
techniques to evade detection, such as anti-debug, anti-sandbox, anti-VM and anti-detection
to make analysis difficult.

By analyzing the new GuLoader samples, we’re able to reveal and understand every anti-
analysis and evasion technique being employed and paint a complete picture of the
malware’s behavior.

GuLoader’s Multistage Deployment

The recent GuLoader sample exhibits a multistage deployment:

The first stage involves using a VBS dropper file to drop a second-stage packed
payload into a registry key. It then uses a PowerShell script to execute and unpack the
second stage payload from the registry key within memory.
The second stage payload performs all anti-analysis routines (described
below), creates a Windows process (e.g., an ieinstal.exe) and injects the same
shellcode into the new process.

https://go.crowdstrike.com/try-falcon-prevent.html
https://www.crowdstrike.com/blog/guloader-malware-analysis/

3/11

The third stage reimplements all the anti-analysis techniques, downloads the final
payload from a remote server and executes it on the victim’s machine.

Existing public research on GuLoader’s multistage deployment has extensively covered a
wide range of anti-evasion techniques and behaviors. We used this as a starting point to
further our analysis.

VBScript

The VBScript contains two main arrays. One of them is the shellcode present in hex format
that will be injected into memory and the second is a Base64-encrypted PowerShell script.

For persistence, this shellcode is then added to the Registry Key
(HKEY_CURRENT_USER\SOFTWARE\TYMPANIESI) by the VBScript.

Another variable “MEDITABU” with Base64 content is being merged and after decoding it
forms a PowerShell script.

PowerShell Script

The PowerShell script adds a Microsoft .NET class to a PowerShell session using Add-Type
-typedefinition. It then reads the shellcode from the registry entry created by the VBScript
and loads the shellcode into the virtually allocated memory space using the API
ZwAllocateVirtualMemory and RtlMoveMemory. After that, the shellcode is launched inside
powershell.exe using the API Callwindowprocw function.

The first 40 bytes of the shellcode are executable assembly instructions and the remaining
bytes are encrypted. The first 40 bytes are responsible for decrypting the remaining part of
the code, then the execution flow jumps into the decrypted part. During the next stage, the
shellcode replaces the first 40 hex bytes with a no operation (NOP) instruction. This is done
to avoid re-debugging of the code.

Initially, the shellcode traverses the process environment block (PEB) structure and fetches
Ntdll to tap into exported NTAPI functions. The rest of the DLLs are loaded by using
LoadLibrary. As previously covered by CrowdStrike, GuLoader uses the DJB2 algorithm to
load APIs. The assembly code for DJB2 traverses through export functions of the required
DLLs one by one, calculates the DJB2 hashes for each export API and then compares those
with the hardcoded hash value. We covered the DJB2 algorithm in a previous blog post.

Anti-Analysis Techniques

The shellcode employs several anti-analysis and anti-debugging tricks at every step of
execution, throwing an error message if the shellcode detects any known analysis of
debugging mechanisms.

https://www.crowdstrike.com/blog/guloader-malware-analysis/
https://www.crowdstrike.com/blog/guloader-malware-analysis/
https://www.crowdstrike.com/blog/guloader-malware-analysis/

4/11

Anti-Debugging

GuLoader uses a vectored exception handler (VEH) to throw off researchers and make
disassembly and debugging difficult by disrupting the normal flow of code execution to point
the control flow to incorrect paths, raising exceptions that jump to other instructions. To add
the exception, the shellcode uses the RtlAddVectoredExcepitionHandler API function.

Figure 1. Vector Exception Handler function (click to enlarge)

GuLoader performs a series of anti-debugging and anti-disassembling checks to detect the
presence of breakpoints, usually associated with researchers analyzing its code execution
flow.

For example, it extracts information from EXCEPTION_RECORD when it hits INT3 (0xCC)
instruction and then it checks ExceptionCode from it. To determine if the VEH routine has
been triggered by an INT3 instruction, it will check if the value matches 0x80000003 (e.g.,
EXCEPTION_BREAKPOINT). It then retrieves the DR registers from CONTEXT_RECORD
to check if there are any HARDWARE breakpoints and it also checks the EIP (Extended
Instruction Pointer) to see if it is equal to 0xCC. Looking for software breakpoints, GuLoader

https://www.crowdstrike.com/wp-content/uploads/2022/12/GuLoader1.png

5/11

also checks for the presence of other 0xCC instructions in code and terminates execution if
found (shown in Figure 1). If everything is as expected, the malware performs an XOR
operation on the next byte after EIP and then replaces the EIP on CONTEXT with the new
value, ensuring the execution flow will reach the correct address.

To bypass this check, to automatically jump to the next real address and avoid the VEH
routine, we can use the following statement, inside the “command window” present at the
bottom of x32 debugger, when the debugger reaches INT3 instruction (here the XOR value
inside VEH was 0x40; it may be different in other samples):

eip=((ReadByte(eip+1)^0x40)+eip)

To avoid step-by-step replacement in the debugger, the following script can also be used to
patch all of the INT3 instructions by replacing them with a JUMP to the real execution flow
(copy the script below in the x32dbg “Script” tab):

call loop

loop:

mov $a, 0

findasm “int3”

cmp $result, $a

je exit

mov $temp, ref.addr($a)

mov $i, 0x40

xor [$temp+1], $i

sub [$temp+1], 2

1:[$temp] = 0xEB

jmp loop

exit:

ret

Breakpoint checks on APIs are performed before calling every API and if found, the
shellcode terminates.

Using the NtsetInformationThread API is also an anti-debugging technique. The DJB2
algorithm loads the NtsetInformationThread API and passes the second parameter as 11
(corresponding to ThreadHideFromDebugger), which will crash the process when it runs
from inside a debugger.

Anti-debugging via NtQueryInformationProcess enables GuLoader to check the
presence of a remote debugger in its process. Our sample leverages the
NtQueryInformationProcess API, by specifying ProcessDebugPort (0x7) as the second
parameter. The loader checks for non-zero return values, which means the process is being
debugged.

6/11

Anti-debugging via DbgBreakPoint and DbgUiRemoteBreakin allows GuLoader to patch
two APIs in memory by leveraging the NtProtectVirtualMemory API to mark it writable for
their addresses:

DbgBreakPoint — by replacing with a NOP instruction
DbgUiRemoteBreakin — by replacing with a random instruction

DJB2 API Name

4a082415 DbgBreakPoint

880bb688 DbgUiRemoteBreakin

Anti-Virtual Machine

What’s different from previously analyzed GuLoader variants is that this shellcode performs
memory scanning for VMware-related string checks on every memory page from the
entire process memory. GuLoader uses NtQueryVirtualMemory API to scan the entire
memory of the process to check if there are any Virtual Machine (VM)-related strings
present.

Figure 2. Pseudocode showing how the Virtual Memory is scanned and how the Djb2 algorithm is
used (click to enlarge)

https://www.crowdstrike.com/wp-content/uploads/2022/12/GuLoader2.png

7/11

This is implemented by calling API NtQueryVirtualMemory with the handle 0xffffffff (current
process) to iteratively retrieve the base address of every page. The fourth parameter of this
API is the MemoryInformation structure which contains information about a range of pages in
the virtual address space of a process. A similar technique has been implemented in the past
on VMDE project by hfiref0x, in which the author searches in memory for “Sandboxie”
artifacts strings; in this case GuLoader searches for virtualization software traces.

If it finds any of the DJB2 values for a series of strings (i.e., VMSwitchUserControlClass,
VM3DService Hidden Window, VMDisplayChangeControlClass, vmtoolsdControlWndClass,
etc.), the shellcode throws an error message that it is running under a virtual environment
and then terminates execution.

Using CPUID and rdtsc is a very common anti-debugging trick that involves using the read
time-stamp counter (rdtsc) instruction to determine how many CPU ticks took place since the
processor was reset. This is used as a timing check comparing the time required to execute
two rdtsc instructions and then calling the CPUID instruction with EAX =1 to retrieve the
process information, returning the output in the ECX registry. If the thirty-first bit of ECX is
set, it is used as that the shellcode is running inside a potentially hostile environment (virtual
machine).

The use of the EnumWindows function is also a popular anti-VM technique generally used
to enumerate all top-level windows on the screen by passing the handle to each window.
This API is used in the shellcode, counting the number of open windows inside the callback
function. If the number is lower than 12, it will call the API TerminateProcess.

Enumerating device drivers also falls under the anti-VM category. GuLoader uses
EnumDeviceDriver from (psapi.dll) and checks the presence of specific drivers and triggers
an error if found. Shellcode fetches and calls two APIs from its DJB2 values — DADA7345
and CDAFD506, respectively EnumDeviceDriver and GetDeviceDriverBasename — to
enumerate driver names. Every enumerated driver name’s DJB2 hash value is calculated.
These hash values are then compared with hard-coded DJB2 hash values, which are
actually VM-related device drivers.

DJB2 Value Strings

9ba8433a vmmouse.sys

d5360503 vm3dmp_loader.sys

D8FB0271 vm3dmp.sys

52eb67f8 vmusbmouse.sys

After bypassing all of the above tricks consecutively, it then loads addresses of several APIs
as show in the table below:

https://github.com/hfiref0x/VMDE/blob/master/src/vmde/detect.c#L679

8/11

DJB2 Value API Name

c4835d68 NtsetContextthread

C45db42d NtWriteVirtualMemory

D05D0AFC ZwCreateSection

C101ddb2 NtMapViewOfSection

3b640034 NtsetInformationProcess

8ad0acb1 NtOpenFile

De797b11 NtClose

2334ac18 NtResumeThread

1a45d798 NtCreateThreadEx

9688DA44 CreateProcessInternalW

Scanning and enumerating installed software is a technique GuLoader uses to check for
virtualization software installed as part of its anti-sandbox/anti-VM mechanism by loading
APIs that match the DJB2 hash values 55fbd1cd (MsiGetProductInfoA) and AD5448
(MsiEnumProductsA). The shellcode enumerates the products using API
MsiGetProductInfoA and checks if they match with a list of known software.

Service enumeration using the OpenScManager API establishes a connection to the
service control manager on the machine and opens the specified service control manager
database. It then enumerates service control manager database services using
EnumServicesStatusA.

Process Hollowing

Process hollowing is a technique of executing arbitrary code in the address space of a
separate live process by creating a process in a suspended state then unmapping/hollowing
its memory, which can then be replaced with malicious code. In this case, the malware does
not unmap an already mapped section on the remote process, but tries to add a new section
and write the injected shellcode into it.

The below steps are followed for injection:

1. The shellcode first creates a suspended process by calling CreateProcessInternal.

2. It then calls NtOpenFile on \\??\\C:\\Windows\\syswow64\\iertutil.dll.

3. It does NtCreateSection on that file, where it will inject its malicious shellcode.

https://attack.mitre.org/techniques/T1055/012/

9/11

4. It then maps that section via NtMapViewofSection on the suspended process. If this
injection technique fails, it uses the following redundancy method:

a. NtAllocateVirtualMemory by invoking the inline assembly instructions (without calling
ntdll.dll, to bypass AV/EDR User Mode hooks) of that function, using the following assembly
stub:

mov eax,18

mov edx,ntdll.77178850

call edx

ret 18

It uses NtWriteProcessMemory to copy the same shellcode onto that virtually allocated
address.

5. It then uses API NtGetContextThread on remote thread of suspended process, by
specifying the following flags to retrieve the registry values of that thread:

i. CONTEXT_CONTROL to retrieve the registers ESP, EIP, FLAGS, BP

ii. CONTEXT_INTEGER to retrieve the registers AX, BX, CX, DX, SI, DI

iii. CONTEXT_SEGMENTS to retrieve the registers DS, ES, FS, GS

6. The retrieved CONTEXT is used to manipulate registers by calling the NTAPI
NtSetContextThread to set the EAX register to the address of shellcode (EIP points to
RtlUserThreadStart, which will jump to new EAX).

7. Finally, the malware calls the native API NtResumeThread to resume the process and
execute the shellcode in the new process.

Final Shellcode

After injection, the shellcode re-executes all the anti-analysis steps mentioned above, and
then decrypts the URL to retrieve the last payload from
https[:]//biropem[.]papuabaratprov[.]go[.]id/bin_fXZOFMVq248[.]bin. It loads the API to
manage the internet connection and connects to a URL to download the first level of
payload, which then gets decrypted by the shellcode and results in dropping the Remcos
malware.

DJB2 API Name

C6e89145 InternetOpenA

9f39811c InternetSetOptionA

10/11

292652cc InternetOpenUrlA

F978A052 InternetReadFile

71167D2C InternetCloseHandle

How the CrowdStrike Falcon Platform Protects Against GuLoader

Click to enlarge

GuLoader remains a dangerous threat that’s been constantly evolving with new methods to
evade detection. The Falcon platform uses behavior-based detection capabilities to
automatically detect and prevent GuLoader early in the attack chain by identifying the initial
VBScript loader, preventing its execution.

This recent analysis performed by CrowdStrike on GuLoader now offers a complete picture
of all the DJB2 hash values used for APIs. This type of threat research enables CrowdStrike
to leverage expert human intelligence and augment its machine learning and behavior-based
detection capabilities to stop breaches.

Indicators of Compromise (IOCs)

File SHA256

GuLoader f75cefc70404640cf823fe419af6f9841c3cfee17a9fdbe332da251d0964e17f

Appendix

The following table contains the complete list of additional DJB2 hash values for APIs as
used by GuLoader.

https://www.crowdstrike.com/wp-content/uploads/2022/12/GuLoader3.png

11/11

DJB2 Value API Name

DADA7345 EnumDeviceDriver

CDAFD506 GetDeviceDriverBasename

c4835d68 NtsetContextthread

C45db42d NtWriteVirtualMemory

D05D0AFC ZwCreateSection

C101ddb2 NtMapViewOfSection

3b640034 NtsetInformationProcess

8ad0acb1 NtOpenFile

De797b11 NtClose

2334ac18 NtResumeThread

1a45d798 NtCreateThreadEx

9688DA44 CreateProcessInternalW

55fbd1cd MsiGetProductInfoA

AD5448 MsiEnumProductsA

4a082415 DbgBreakPoint

880bb688 DbgUiRemoteBreakin

C6e89145 InternetOpenA

9f39811c InternetSetOptionA

292652cc InternetOpenUrlA

F978A052 InternetReadFile

71167D2C InternetCloseHandle

Additional Resources

Learn how the powerful CrowdStrike Falcon platform provides comprehensive
protection across your organization, workers and data, wherever they are located.
Get a full-featured free trial of CrowdStrike Falcon Prevent and see for yourself how
true next-gen AV performs against today’s most sophisticated threats.

®

™

https://www.crowdstrike.com/endpoint-security-products/falcon-platform/
https://www.crowdstrike.com/resources/free-trials/try-falcon-prevent/

