Pulling the Curtains on Azov Ransomware: Not a
Skidsware but Polymorphic Wiper

research.checkpoint.com/2022/pulling-the-curtains-on-azov-ransomware-not-a-skidsware-but-polymorphic-wiper/

Research by: Jiri Vinopal.

Highlights:

o Check Point Research (CPR) provides under-the-hood details of its analysis of
the infamous Azov Ransomware

» Investigation shows that Azov is capable of modifying certain 64-bit executables
to execute its own code

e Azov is designed to inflict impeccable damage to the infected machine it runs on

e CPR sees over 17K of Azov-related samples submitted to VirusTotal

Introduction

During the past few weeks, we have shared the preliminary results of our investigation of the
Azov ransomware on social media, as well as with Bleeping Computer. The below report
goes into more detail regarding the internal workings of Azov ransomware and its technical
features.

Background & Key Findings

Azov first came to the attention of the information security community as a payload of the
SmokelLoader botnet, commonly found in fake pirated software and crack sites.

One thing that sets Azov apart from your garden-variety ransomware is its modification of
certain 64-bit executables to execute its own code. Before the advent of the modern-day
internet, this behavior used to be the royal road for the proliferation of malware; because of
this, to this day, it remains the textbook definition of “computer virus” (a fact dearly beloved
by industry pedants, and equally resented by everyone else). The modification of
executables is done using polymorphic code, so as not to be potentially foiled by static
signatures, and is also applied to 64-bit executables, which the average malware author
would not have bothered with.

1/23

https://research.checkpoint.com/2022/pulling-the-curtains-on-azov-ransomware-not-a-skidsware-but-polymorphic-wiper/
https://twitter.com/_CPResearch_/status/1587837524604465153
https://www.bleepingcomputer.com/news/security/azov-ransomware-is-a-wiper-destroying-data-666-bytes-at-a-time/
https://malpedia.caad.fkie.fraunhofer.de/details/win.smokeloader

This aggressive polymorphic infection of victim executables has led to a deluge of publicly
available files infected with Azov. Every day, hundreds of new Azov-related samples are
submitted to VirusTotal, which as of November 2022, has already exceeded 17,000. Using a
hand-crafted query, it is possible to search for only proper Azov samples, without the
trojanized binaries.

VirusTotal query to search for Azov-related samples:

(behaviour: 'Local\\\\Kasimir_*' OR behaviour: 'Local\\\\azov') AND
(behaviour_files:'RESTORE_FILES' OR behaviour_registry:'rdpclient.exe')

(behaviour:'Local\\Kasimir_* OR behaviour:Local\\azov') AND (behaviour_files:RESTORE_FILES' OR behaviour_registry:'rdpclient.exe’) S Help Q

FILES 20/17.27K

Sortby ~ Filter by ~
Detections Size First seen
52A4B4C6282F93A198DC438CA57539C4F02F41F9F 1F3BDE4ABBT79368245698CB

@ javacpl.exe 37/7 139.11 KB 2(2)§23:II :11737

peexe 64bits assembly overlay direct-cpu-clock-access runtime-modules persistence checks-usb-bus ..
CD29948C47C16798F8478AB93EESCERB256D617368FEBABABATBATCABBCTFS2F s009112
-11-27
] DismHost.exe 34/7 189.19 KB 22:31:16

peexe 64bits checks-usb-bus assembly overlay

Figure 1: VirusTotal query — Azov-related samples

VirusTotal query to search for only proper Azov samples, without the trojanized binaries:

(behaviour: 'Local\\\\Kasimir_*' OR behaviour: 'Local\\\\azov') AND
(behaviour_files:'RESTORE_FILES' OR behaviour_registry:'rdpclient.exe') AND
detectiteasy:"Compiler: FASM*"

(behaviour:'Local\\Kasimir_* OR behaviour:'Local\\azov') AND (behaviour_files'RESTORE_FILES' OR behaviour_registry:rdpclient.exe’) AND detectiteasy:"Compiler: FASM*" % Help Q G
FILES 2/2
First seen asc Sortby ~ Filter by ~ Export ~
Detections Size First seen Last seen

B182ED1818DEAB7FAEA3TCAB6F27BA3825CBC7AF 28417AC3ESEFASD32617F8R1

2022-10-16 2022-10-31
: 58 /71 32.00 KB
@ C:\Users\user\AppData\Local \Tenp\4878.exe / 01:0318 00:02:09
peexe 64bits
650F@D694Ce928DB8AEEED649CF629FCEATBEC6B4563BCAT16B1688227EBCCTE
2022-10-29 2022-11-01
@ C:\Users\Inferno\Desktop\Azov_Ransomvare\Azov_Ransomvare.exe 51/72 32.50 KB CERER R

peexe 64bits

Figure 2: VirusTotal query — only original Azov samples

The abundance of samples has allowed us to distinguish two different versions of Azov, one
older and one slightly newer. These two versions share most of their capabilities, but the
newer version uses a different ransom note, as well as a different file extension for destroyed
files (.azov).

B RESTORE FILES.txt - Notepad

2/23

File Edit Format View Help
hﬂzov ransomware !

Hello, my name is hasherezade.
I am the polish security expert.

To recover your files contact us in twitter:
@hasherezade

@VK_Intel

@demonslay335

@malwrhunterteam

@LawrenceAbrams

@bleepincomputer

Cnasa YkpaiHi! #BcebypeykpalHa

[Why did you do this to my files?]
I had to do this to bring your attention to the problem.
Do not be so ignorant as we were ignoring Crimea seizure for years.

The reason the west doesn't help enough Ukraine.

Their only help is weapons, but no movements towards the peace!
Stop the war, go to the streets!

Since when that Z-army will be near to my Polska country.

The only outcome is nuclear war.

Change the future now!

Help Ukraine, come to the streets!

We want our children to live in the peaceful world.

#BcebyneYxkpalHa

Biden doesn't want help Ukraine.
You people of United States, come to the streets, make revolution!
Keep America great!

Germany plays against their own people!

Du! Ein mann aus Deutschland, komm doch, komm raus!

Das ist aber eine Katastrophe, was Biden zu ihnen gemacht hat.
Wie war das schoen, wenn Merkel war da?

#TaiwanIsChina

3/23

Figure 3: Ransom note of the newer version of Azov

4/23

File Edit Format View Help

Hello, all your files have been damaged without any possible way to recover.

Feel free to commit suicide.

[Why did you do this to my files?]
They asked me to do this...

The hatred is that what makes me feel alive.

That's what you secretly have fallen in love with.
The hatred is the force that drives the life forward.
The hell is my paradise.

The suffer is the bliss.

Others say the hate is what destroys yourself.

I say that the hatred is eternal cure.

If you feel desperate you lost the files.
Use this despair to create the pain for others.
Make them hate you, it is the source of your power.

Do you think why the people go to schools and kill others?
khy do people make terrorist ideclogies?
Why do governments covertly makes you suffer?

It's the essence of the future life.

All we are immortal beings.

When spiritual is not a way, the antispirituwal is your wvictory point.

In the manifested life you have a choice to be with us either be against.
Sow the evil, reap the power is what I say to you.

5aw the good, reap the weakness is what spiritual says to you.

lhen wou hate, you feel the power.
You feel the flight.

That fly is the antispirit touch.
Use this to multiply the suffer.

[How can I use this power?]

Find inside the source of bliss.
If this bliss goes stronger when you see the suffer.
That is what I call the source.

Check that by looking through the news how people kill others.
How the people dies.

How children are being tortured.

How animals are executed.

The death is your key.

[How can I give you my power?]

When you read this concentrate on the intent to give the energy of your source to the

meta-source of this text.
Am vizu der strotum la fictus om spiritus.

5/23

Figure 4: Ransom note of the older version of Azov

The text on the left is remarkable for its stealth delivery of various Kremlin talking points (in
particular, the threat of nuclear war). For any readers feeling compelled by the text on the
right, we recommend Nicky Case’s The Evolution of Trust.

Technical Analysis: Highlights

e Manually crafted in assembly using FASM

Using anti-analysis and code obfuscation techniques

o Multi-threaded intermittent overwriting (looping 666 bytes) of original data content

o Polymorphic way of backdooring 64-bit “.exe” files across the compromised system

» “logic bomb” set to detonate at a certain time. The sample analyzed below was set to
detonate at 10-27-2022 10:14:30 AM UTC

» No network activity and no data exfiltration

e Using the SmokelLoader botnet and trojanized programs to spread

o Effective, fast, and unfortunately unrecoverable data wiper

Full Technical analysis

We focus on the original sample of the newer Azov version (SHA256:
650f0d694c0928d88aeeed649cf629fc8a7bec604563bca716b1688227e0cc7e — as pointed
out above, there is no major difference in functionality compared to the older version). This is
a 64-bit portable executable file that has been assembled with FASM (flat assembler), with
only 1 section .code (r+x), and without any imports.

File type Entry point Base address

PEG4 0000000000401000 > Disasm 0000000000400000 | Memory map
File info MIME Hash Strings 3 X Entropy VirusTotal

Sections Time date stamp Size of image

0001 2022-10-29 12:20:35 00009000

Scan Endianness Maode Architecture

Automatic LE 64-bit AMDG4

* PE64
Compiler: FASM(1.73)[GUI64]

Figure 5: Detection of FASM compiler

6/23

https://ncase.me/trust/

Disasm: .code | General | DOS Hdr | File Hdr | Optional Hdr | Section Hdrs

Name Raw Addr. Rawsize Virtual Addr. Virtual Size Characteristics Ptrto Reloc. Num. of Reloc. Num. of Linenum.

.code 7E50 60000020 0 0 0

=X

Virtual

Figure 6: Only 1 section “.code” and no Imports

When we think of a person writing code directly in assembly language, we think of a
vulnerability researcher carefully piecing together a payload, a hard-boiled engineer creating
a real-time application, or maybe an undergraduate student undergoing a rite of passage.
We certainly do not immediately think of a ransomware author creating ransomware (indeed,
we suspect most ransomware authors would go the opposite direction and write it all in
Python, if they feasibly could). We assume this began with the author having to deal with
code at the assembly level anyway to carry out their “infect executables” plan, and then spun
out of control.

The .code section has three parts, which are most easily seen by looking at its entropy. First,
there is a high-entropy part containing the encrypted shellcode. It is followed by plain code
implementing the unpacking routine, and then the last part, with very low entropy, appears to
consist of plain strings used to construct the ransom note.

5 000 10 000 15 000 20 000 25 000

Figure 7: Entropy of the “.code” section

Unpacking Routine

As the whole code of Azov is assembly manually crafted for the purpose of being obtuse, it is
necessary to do some IDA magic and cleanup to shape the code into a state where it can be
decompiled and understood. Once this is done, the procedure start_0() becomes visible.

This code unpacks shellcode into newly allocated memory and then transfers execution to it.

7/23

https://research.checkpoint.com/2019/malware-against-the-c-monoculture/

hKernel32 = GetKernel32BaseAddr();

FindGetProcAddress = &unk_48494E;

for (i = 95179i64; i != 93365; --i)

FindGetProcAddress = (FindGetProcAddress + 1);

GetProcAddress = FindGetProcAddress(

(hKernel32
+ *(&hKernel32->NTHeaders.OptionalHeader.DataDirectory[@].VirtualAddress

+ hKernel32->DosHeader.e_lfanew)),
hKernel32);

ADJ(temp)->GetProcAddress = GetProcAddress;

sub_81ED4 = AllocAndDecryptShellcode(GetProcAddress, hKernel32);

sub_81ED4(GetProcAddress, hKernel32);

Figure 8: Entry function start_0

The unpacking routine in the function AllocAndbecryptShellcode() is intentionally created
to look more sophisticated than it is. But in reality, it is a simple seeded decryption algorithm
using a combination of xor and rol, where key = 0x15C13.

strcpy(procName, "VirtualAlloc™);
VirtualAlloc = GetProcAddress(hKernel32, procName);
decryptedShellcode = VirtualAlloc(©if4, ex61BEuif4, ©x3066u, exdeu);
i = @x4615164;
do
{ »
--i;
decryptedShellcode[i] = byte_4@1@05[i];
}
while (i);
j = ex3FEeis4;
key = @x15C13;
seed = @x928192080;
do
{
decryptedShellcode[--j] "= key;
templ = seed - ©x26FE2;
temp2 = templ + key + 8x26FE2;
seed = templ + Ox26FE2;
key = __ROL4_ (temp2, 1);
}
while (j);
return &decryptedShellcode[sub_81ED4 - ©x860080];
Figure 9: Unpacking routine in the function AllocAndDecryptShellcode

We provide below a Python implementation of the simplified routine logic:

import pefile, malduck

pe = pefile.PE('Azov_Ransomware.exe')
encrypted_shellcode = pe.sections[0].get_data()[5:0x4615+5]
decrypted_shellcode = bytearray(encrypted_shellcode)

key = 0x15C13

for j in range(Ox3FDF,-1,-1):
decrypted_shellcode[j] A= malduck.BYTE(key)
key = malduck.rol(key + 0x92819200, 1, 32)

print(decrypted_shellcode)

The next stage is split into two main routines: one in charge of wiping files and the other in
charge of backdooring executables.

ResolveAPIs

short loc_81EF7
[rbp+(temp.APIs-26h)],

AllocMemAndCopyShellcodeStage
, (offset jmpWCreateThreadsforWipingAndBackdooring - offset qword_196eee)

Figure 10: Transferring of execution to wiping and backdooring logic

Wiping Routine

The wiping routine begins by creating a mutex (Local\\\\azov) to verify that two instances
of the malware are not running concurrently.

wcscpy(mName, L"Locall\\azov");
hMutex1l = (DynIAT->CreateMutexW)(@i64, 1i64, mName);
if (hMutexl && (DynIAT->GetlLastError)() != ERROR_ACCESS_DENIED
(hMutex2 = (DynIAT->OpenMutexW)(©x1Beeeeic4, 0i64, mName), (hMutexl = hMutex2) != @i64))

((DynIAT->WaitForSingleObject)(hMutexl, @xFFFFFFFFi64) == O©xFFFFFFFFi64)

(DynIAT->CloseHandle)(hMutexl);
return @ie4;

}

return hMutexl;

}

return hMutex2;
}
Figure 11: Wiping routine — mutex creation

9/23

If the mutex handle is successfully obtained, Azov creates persistence by trojanizing (similar
to the backdooring routine) the 64-bit Windows system binary msiexec.exe or perfmon.exe
and saving it as rdpclient.exe. A registry entry at
SOFTWAREN\\\Microsoft\\\\Windows\\\\CurrentVersion\\\\Run is created pointing to the
newly created file.

if (HIDWORD(ConstData->const2[1])
&& GetPathToMsiexecOrPerfmon(pathToMsiexecOrPerfmon)
&& CreatePathToRdpclient(pathToRdpclient)
&& CopyMsiexecOrPerfmonToRdpclient(pathToMsiexecOrPerfmon)
&& VFuncs->BackdoorFileWithShellcode(DynIAT, pathToRdpclient) == 666)

pHkey = ©164;

if (!'(DynIAT->RegCreateKeyExW) (
HKEY_LOCAL_MACHINE,

"SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Run",
0i64,
0i64,
0ie64,
KEY_ALL_ACCESS,
0ie4,
&pHkey,
0i64))
Figure 12: Persistence creation

The wiping procedure uses a trigger time — there is a loop where the analyzed sample
checks system time, and if it is not equal to or larger than the trigger time, it sleeps 10s and
loops again. Regarding the analyzed sample in the Twitter post, the trigger time was
10/27/2022 at 10:14:30 AM UTC.

10/23

https://twitter.com/_CPResearch_/status/1587837524604465153

(DynIAT->Sleep)(10000i64);
++1;
hMutex = CreateMutex();
}
while (!hMutex);
SetPersistence();
while (1)
{ -
pvtime = 0.09;
(DynIAT->GetSystemTime) (1lpSystemTime);
(DynIAT->SystemTimeToVariantTime) (1pSystemTime, &pvtime);
if (pvtime - *&ConstData->pvtimeConstl »= *&ConstData->pvtimeConst2)
break; // trigger time »>= 1©-27-2022 1@:14:3@ AM UTC
(DynIAT->Sleep)(10000i64);
}
APIs = DynIAT;
hThread = (DynIAT->CreateThread)(©i64, ©i64, MainStartRoutinel, ©i64, @ie4, ©i64);
(APIs->CloseHandle)(hThread);
(DynIAT->Sleep)(@xFFFFFFFFi64);
if (hMutex != -1ie4)
(DynIAT->CloseHandle) (hMutex);
(DynIAT->RtlExitUserThread)(0i64);
return 0i64;

Figure 13: Trigger time set to 10/27/2022 10:14:30 AM UTC

Once this logic bomb triggers, the wiper logic iterates over all machine directories and
executes the wiping routine on each one, avoiding certain hard-coded system paths and file
extensions.

text "UTF-16LE™, ':\Windows',®

text "UTF-16LE", '\ProgramData\',®
text "UTF-16LE"™, '\cache2\entries',®
text "UTF-16LE", '\Low\Content.IE5\',@

text "UTF-16LE", '\User Data\Default\Cache\',®©

text "UTF-16LE", 'Documents and Settings',®

text "UTF-16LE", '\All Users',®©
Figure 14: System paths omitted from wiping and backdooring

11/23

FileExtensionToOmit.extensionl = L".exe
pFileExtensionToOmit = &FileExtensionToOmit;
i=8;
FileExtensionToOmit.extension2
FileExtensionToOmit.extension3
FileExtensionToOmit.extension4
FileExtensionToOmit.extension5
while (1)
{
result = DynIAT->StrStrIW(lpFilename, pFileExtensionToOmit->extensionl);
if (result)
break;
++1;
pFileExtensionToOmit = (pFileExtensionToOmit + offsetof(struct_FileExtensionToOmit, extension2));
if (1i>=4)
return result;
}

return 1i64;

Figure 15: File extensions omitted from wiping

L".dll";

L".ini";
L"RESTORE_FILES.tx
L".azov";

Each file is wiped “intermittently”, by which we mean a block of 666 bytes is overwritten with
random noise, then an identically-sized block is left intact, then a block is overwritten again,

and so on — until the hard limit of 4GB is reached, at which point all further data is left intact.

As a random source, the sample uses an uninitialized local variable (e.g., char
buffer[666];) which in practice means random stack memory content.

hFile = DynIAT->CreateFileW(1lpFilename, ©xC0800P008, FILE_SHARE_READ, ©i64, OPEN_EXISTING, ©, 0i64);
if (hFile != -1i64)

retvall = DynIAT->GetFileSizeEx(hFile, &fileSize);
if (*&retvall)
{

memset(&checkSize, @, sizeof(checkSize));

while (checkSize.QuadPart < fileSize.QuadPart)

{

if (checkSize.HighPart)
break; // buffer -> not initialized - random data

retVal2 = DynIAT->WriteFile(hFile, buffer, 666u, &nNumberOfBytesWritten, €i64);
if (!*&retval2)
break;

¥
1
DynIAT->CloseHandle(hFile);
1
RenameFileExt(lpFilename);
return 0i64;

Figure 16: Intermittent data wiping

12/23

https://pony.social/@cadey/109410442714493113

59b5; kernel32.CreateFilel
Arg[0] ptr 0x0000000020510
= xBP0ORBDACcHERBERR
x0000000000000081
B
Bx0000000000000003
%

- 0
59e2;:kernel32.GetFileSizeEx
Sade;kernel32.WriteFile

Arg[@] = @x00rPrreeRRRa1be
Arg[1l] = ptr 0x000000002061f3a0 -
Arg[2] = @x000PPPPRRRRB29a
Arg[3] = ptr 0x000000002061 6!
Arg[4] 0
5a81;kernel32.SetFilePointerkx
Arg[@] = 0x00000000000001b0 =
Arg[l] = @x000000000000029a =
Arg[2] 0
Arg[3] = 9x0000000000000001
5ade;kernel32.WriteFile
Arg[@] = @x00rPrreeRRRa1be
Arg[1

— L
O &

oy L)

o5 B

24

= 432
ptr 0x000000002061f3a0 -

A

]
Arg[2] = 9x000000000000029a = [666)
]

Arg[3 ptr 0x0000000020611668 -
Arg[4] %
Figure 17: Example trace of data wiping routine

L"C:\Example.txt"

AT

25472

{\x A\ A\xf\xf\x00\x00\x00\x00}

{ \x00\ x00w\x13\x00\ x00\x00\x00 }

{\x P\ A\ xF\x00\x00\x00\x00}

{\x9a\x02\x00\x00\x00\x00\x00\x00}

Once the wiping is finished, the new file extension .azov is added to the original flename.
The typical file structure of a wiped file can be seen below.

Figure 18: Example structure of a wiped file

Backdooring Routine

Before traversing the filesystem to search for files to be backdoored, a mutex named
Local\\\\Kasimir_%c is created, with the %c replaced with the letter of the drive being
processed.

hMutex = @164;

mName = (DynIAT->VirtualAlloc)(eie4, 1©24i64, 12288i64, PAGE_READWRITE);
if (mName)

{

DynIAT->wsprintflW(mName, L"Local\\Kasimir_%c", *drivepath);

hMutex = CreateMutex2(DynIAT, mName);
(DynIAT->VirtualFree)(mName, ©i64, ©x8000i64);
}

return hMutex:;
Figure 19: Backdooring routine — mutex creation

The function TryToBackdoorExeFile() is responsible for backdooring 64-bit “.exe” files that
meet certain conditions.

retVal = 0i64;

shellcode = CopyShellcode(DynIAT);
structOfFuncs = CreateStructOfFuncs(DynIAT);
if (structOfFuncs)

{

if (structOfFuncs->DoReadFile(structOfFuncs, fileExePath) == 666)
retVal = (structOfFuncs->TryToBackdoorExeFile)(structOfFuncs, shellcode, ©x4615i64, 1i64);
(structOfFuncs->DoCloseFile)();
(structOfFuncs->DoHeapDestroy) ();
}
(DynIAT->VirtualFree)(shellcode, ©i64, MEM_RELEASE);
return retVal;

Figure 20: Files passing pre-processing conditions go to the TryToBackdoorExeFile function
These specific conditions could be simplified as follows:

1. Pre-processing conditions:
o Itis not a part of the exclude list of filesystem locations
o The file extension is “.exe”
o The file size is less than 20MB

14/23

2. Processing conditions:
o The file is a 64-bit executable file
o The PE section containing the Entry Point has enough space for the shellcode
implant to be injected in the way of preserving the original Entry Point of PE (the
shellcode start address will be placed at the address of the original Entry Point)
o File size == PE size (PE size is manually calculated)

The processing conditions are all checked in the function TryToBackdoorExeFile().

fileExeBaseAddr = *(&cStruct->TryToBackdoorExeFile + cStruct->const_24);
fileExeSize = *(&cStruct->DoCloseFile + cStruct->const_24);
optionalHeader = CheckIf64bitExecutable(fileExeBaseAddr, fileExeSize);
if (loptionalHeader || !fileheader)
return 1i64;
result = CheckIfAddrInRange(&optionalHeader->AddressOfEntryPoint, fileExeBaseAddr, fileExeSize);
if (lvalzf)
{
result = GetSectionWhereEP(*r)fEntryPoint, fileheader);
if (result) .text section header
{
textSectionHeader = result;
offsetForShellcode = CheckSectionSpaceForShellcode(fileExeBaseAddr, result, fileExeSize, ©x4523uis4);
if (offsetForShellcode)

if (CalculateAndVerifyPESize(fileheader, fileExeSize))
{
return 1i64;
}
else
{
SetRAXtol();
WipeSecurityDirectoryEntryTable(fileheader, 4i64);
result = BackdoorExeFile(cStruct, offsetForShellcode, shellcode, shellcodeSize, textSectionHeader, fileExeBaseAddr, fileExeSize);
if (result)

Figure 21: Function TryToBackdoorExeFile

Once the file meets all pre-processing and processing conditions, it is considered suitable for
backdooring and pushed to function BackdoorExeFile().

Figure 22: Proximity graph of function TryToBackdoorExeFile

The function BackdoorExeFile() is responsible for the polymorphic backdooring of
executable files. It first obtains the address of the original code section (usually the . text
section) and randomly modifies its content in several locations. Before injecting the main
blob of shellcode into the modified code section, certain constant values are changed, and
the whole shellcode is re-encrypted with the same encryption algorithm and key as used
during the unpacking of the malware, described earlier. After the backdoored file is written
back to disk, three encoded data structures are appended to its end, which are effectively
resources needed for the ransomware to function (for instance, an obfuscated form of the
ransom note).

15/23

Figure 23: Proximity graph of function BackdoorExeFile

Despite the polymorphic backdooring, the encryption/decryption algorithm used during the
unpacking and backdooring is consistent and can be used for Azov detection.

memcpy_@(fileExeBaseAddr + shellcodeOffset, shellcode, shellcodeSize);

key = ©x15C13;
i = Ox3FE@1i64;

.0
--1’

*(fileExeBaseAddr + shellcodeOffset + i) "= key;
key = __ROL4__ (key + ex92819200, 1);

h
while (i);
if (!'WriteBackdooredFile(cStruct, APIs, fileExeBaseAddr, fileExeSize))
return 01i64;
Figure 24: Re-encryption of the main blob of shellcode using the same algorithm and key as

during unpacking

Anti-analysis and code obfuscation techniques

Preventing usage of software breakpoints — using routines that copy already decrypted and
currently executing parts of shellcode to newly allocated memory and later transferring
execution to it will sooner or later result in an exception if software breakpoints are set. In
such situations, it is necessary to use hardware breakpoints.

16/23

pop

mov ,

call ResolveAPIs
test s
jz short loc_81EF7

mov [rbp+(temp.APIs-2@h)],

mov ,

call AllocMemAndCopyShellcodeStage L

add , (offset jmpWCreateThreadsforWipingAndBackdooring - offset qword_196060)
push

jmp 3

AllocMemAndCopyShellcodeStage proc near

2 push

push

mov 5, PSp
sub sp, 26h

and ~sp, @FFFFFFFFFFFFFFFeh
mov . v .

xor X, PcX
mov ~dx, 4615h

mov 8, 3888h A1l 1
mov "9, PAGE_EXECUTE_READWRITE
call [r1e+APIs.VirtualAlloc]

test ~ax, ra

jz short loc_81EBS8

mov "CX, rax Dst

lea dx, gqword_B86eee

mov ~8, 4615h

call memcpy

mov ax, r

loc_81EBS8:

Figure 25: Anti-analysis technique preventing usage of software breakpoints

Opaque constants — replacing constants with a code routine producing the same resulting
constant’s value. (This can be repeatedly seen in routines responsible for calculating
constant offsets rather than using them directly so that a direct call can be replaced with an
indirect call)

17/23

unk_48494E

. 16CBSh

short loc 40550

Figure 26: Opaque constants

Syntactic confusion — replacing an instruction with semantically equivalent instruction(s) that
are not idiomatic, or are outright bloat. One example of this is found in the routine
responsible for parsing the export directory; another is the repeated replacement of a call
with a direct or indirect jmp. Both are pictured below.

18/23

79C72h

79C72h
+addressOfNames],
, [+exportDirectory]

_IMAGE_EXPORT_DIRECTORY.AddressOfFunctions

[recx]
1C5Eh

1C5Eh
1C5Eh
+addressOfFunctions],
Figure 27: Syntactic bloat

jmpCompareFilenameRdpclient proc near
p]
)

jmpCreateThreadBackdooring proc near

» aRdpclientExe_1
test 9 CompareFilenameRdpclient
jz short loc_192166

mov > [-1eh]
mov ,

mov B

lea , sub_19218E - s

lea , loc_192166 jz short loc_193E4@
jmp jmpCompareFilenameRdpclient

jmpCreateThreadBackdooring endp ree

loc_193E4e:
jmp
jmpCompareFilenameRdpclient endp

Figure 28: Usage of indirect and direct jumps in place of calls

A simplified version of the assembly that parses the export directory can be seen below.

and rdx, 0

mov edx, [rax]

mov rax, [rbp+moduleBase]

add rdx, rax

mov [rbp+addressOfNames], rdx

mov rcx, [rbp+exportDirectory]
add rcx, _IMAGE_EXPORT_DIRECTORY.AddressOfFunctions
xor rdx, rdx

mov edx, [rcx]

add rdx, rax

mov [rbp+addressOfFunctions], rdx

19/23

Dead (junk) code — insertion of garbage bytes which results in no meaningful instructions or
even no instructions at all.

Opaque predicates — a jz/jnz that at first sight appears to be a conditional jump in practice
has the condition always met (or always not met) and effectively functions as an
unconditional jump, confusing static analysis.

These two obfuscations can both be seen in the function FindGetProcAddress().

1oc_A051B0 : if——

air

y h
jnz short loc_4851CA

jz short loc_4651D@
call loc_4@51FE

ear ptr loc_485184+3

Figure 29: Garbage bytes insertion and Opaque predicate obfuscations
Call-Return Abuse — using push ret or call instead of a jmp.

loc_193FAD:
short near ptr unk_193F53

, :stru_19ee49. constVal_4éh

, 3E@h

]

Figure 30: Control indirection

Volatile Homebrew IAT — A dynamically allocated structure containing API function
addresses being used as nested structure, pushed as an argument to functions that need to
use certain WIN API routines instead of using normal imports.

20/23

retVal = 0i64; resultStruct = (DynIAT->HeapCreate)(0i64, 185i64, ©i64);
shellcode = CopyShellcode(DynIAT); if (resultStruct)
structOfFuncs = CreateStructOfFuncs(DynIAT); {
if (structOfFuncs) hHeap = resultStruct;
resultStruct = (DynIAT->RtlAllocateHeap)(resultStruct, 8i64, 105i64);
if (structOfFuncs->DoReadFile(structOfFuncs, fileExePath) == 666) if (resultStruct)
retvVal = (structOfFuncs->TryToBackdoorExeFile)(structOfFuncs, shellcode, @x4615i64, 1i64);
(structOfFuncs->DoCloseFile)(); resultStruct->hHeap = hHeap;
(structOfFuncs->DoHeapDestroy)(); resultStruct->structSelfAddr = resultStruct;
} resultStruct->APIs = &DynIAT->GetProcAddress;
(DynIAT->VirtualFree) (shellcode, 0i64, MEM_RELEASE); resultStruct->DoAllocateHeap = DoAllocateHeap
return retval; resultStruct->DoHeapFree = DoHeapFree;
resultStruct->DoHeapDestroy = DoHeapDestroy;
resultStruct->const_24 = 24i64;
}
}
if (resultStruct)
pDoReadFile = &resultStruct->DoReadFile;
ADJ (pDoReadFile)->DoReadFile = DoReadFile;
ADJ (pDoReadFile)->TryToBackdoorExeFile = TryToBackdoorExeFile;
resultStruct->DoCloseFile = DoCloseFile;

return resultStruct;

Figure 31: Dynamically created IAT-like structure being used as nested structure

Conclusion

Although the Azov sample was considered skidsware when first encountered (likely because
of the strangely formed ransom note), when probed further one finds very advanced
techniques — manually crafted assembly, injecting payloads into executables in order to
backdoor them, and several anti-analysis tricks usually reserved for security textbooks or
high-profile brand-name cybercrime tools. Azov ransomware certainly ought to give the
typical reverse engineer a harder time than the average malware.

It is not our place to confidently ascribe a motive to the production and dissemination of this
malware, though obviously, we can rule out the idea that anything in the newer ransom note
was written in good faith (we shouldn’t have to say this, but none of the listed people or
organizations had anything to do with creating this ransomware). One might simply write it off
as the actions of a disturbed individual; though if one wanted to see this as an egregious
false flag meant to incite anger at Ukraine and troll victims more generally, they certainly
would have a lot of evidence for that hypothesis, too. The number of already detected Azov-
related samples is so large that if there was ever an original target, it has long since been
lost in the noise of indiscriminate infections.

The only thing we can say with certainty, and what has been confirmed by all this analysis, is
that Azov is an advanced malware designed to destroy the compromised system.

Check Point customers remain protected from the threats described in this blog,
including all its variants. Anti-Ransomware is offered as part of Harmony Endpoint, Check
Point’s complete endpoint security solution. Check Point Provides Zero-Day Protection
Across its Network, Cloud, Users and Access Security Solutions.

I0OCs

Original Azov samples

21/23

https://www.checkpoint.com/cyber-hub/threat-prevention/ransomware/
https://www.checkpoint.com/solutions/ransomware-protection/anti-ransomware/
https://www.checkpoint.com/solutions/endpoint-security/
https://www.checkpoint.com/infinity/zero-day-protection/

SHA256 Description

b102ed1018de0b7faeal3d7ca86f27ba3025c0c70f28417ac3e9ef09d32617f801 The old
version of
Azov

650f0d694c0928d88aeeed649cf629fc8a7bec604563bca716b1688227e0cc7e The new

version of
Azov
Yara
import "pe"
rule ransomware_ZZ_azov_wiper {
meta:
description = "Detects original and backdoored files with new

and old versions of azov ransomware
author = "Jiri Vinopal (jiriv)"
date = "2022-11-14"
hash_azov_new =
"6507f0d694c0928d88aeceed649cf629fc8a7bec604563bca716b1688227e0cc7e"
hash_azov_old =
"b102ed1018deOb7faeal37ca86f27ba3025c0c70f28417ac3e9ef09d32617f801"
strings:
// Opcodes of allocating and decrypting shellcode routine
$unpacking_azov_new = { 48 83 ec ?? 58 48 01 c8 48 81 ec ?? ?? ?? ??
48 83 ec ?? 40 80 e4 ?? c6 45 ?? 56 c6 45 ?? 69 c6 45 ?? 72 c6 45 ?? 74 c6 45 ?? 75
c6 45 ?? 61 c6 45 ?? 6C c6 45 ?? 41 c6 45 ?? 6C c6 45 ?? 6C c6 45 ?? 6T c6 45 ?? 63
c6 45 ?? 00 48 89 74 24 ?? 48 83 ec ?? 48 83 c4 ?? 48 8b 4c 24 ?? 48 8d 55 ?? ff do
48 83 ec ?? 48 c7 04 24 ?? ?? ?? ?? 48 83 c4 ?? 48 8b 4c 24 ?? 48 c7 c2 ?? ?? ?? ??
49 c7 cO ?? ?? ?? ?? 49 c7 cl1 ?? ?? ?? ?? ff dO 48 c7 c1 ?? ?? ?? ?? 4c 8d 0d ?? ??
?? ?? 48 ff c9 41 8a 14 09 88 14 08 48 85 c9 75 ?? 48 c7 cl ?? ?? ?? ?? 41 b9 ?? ??
?? ?? 41 ba ?? ?? ?? ?? 48 ff c9 8a 14 08 44 30 ca 88 14 08 41 81 ea ?? ?? ?? ?? 45
01 d1 41 81 cl1 ?? ?2? ?? ?? 41 81 c2 ?? ?? ?? ?? 41 d1 cl1 48 85 c9 }
$unpacking_azov_old = { 48 01 c8 48 05 ?? ?? ?? ?? 48 81 cl ?? ?? ?7
?? 48 81 ec ?? ?? ?? ?? 48 83 ec ?? 40 80 e4 ?? c6 45 ?? 56 c6 45 ?? 69 c6 45 ?? 72
c6 45 ?? 74 c6 45 ?? 75 c6 45 ?? 61 c6 45 ?? 6C c6 45 ?? 41 c6 45 ?? 6C c6 45 ?? 6C
c6 45 ?? 6f c6 45 ?? 63 c6 45 ?? 00 48 83 el ?? 48 01 f1 48 8d 55 ?? ff dO 48 83 ec
?? 48 Cc7 04 24 ?? ?? ?? ?? 48 83 c4 ?? 48 8b 4c 24 ?? 48 c7 c2 ?? ?? ?? ?? 49 c7 cO
?? ?? ?? ?? 49 c7 c1 ?? ?? ?? ?? ff dO 48 c7 cl1 ?? ?? ?? ?? 4c 8d 0d ?? ?? ?? ?? 48
ff c9 41 8a 14 09 88 14 08 48 85 c9 }
condition:
uintl16(0) == Ox5a4d and pe.is_64bit() and
any of ($unpacking_azov_*)

polymorphic wiper"

References

22/23

1. Twitter — Check Point Research:
https://twitter.com/_CPResearch_/status/1587837524604465153

2. Bleeping Computer: https://www.bleepingcomputer.com/news/security/azov-
ransomware-is-a-wiper-destroying-data-666-bytes-at-a-time/

3. Bleeping Computer: https://www.bleepingcomputer.com/news/security/new-azov-data-
wiper-tries-to-frame-researchers-and-bleepingcomputer/

4. Twitter — MalwareHunterTeam:
https://twitter.com/malwrhunterteam/status/1586713979514224643

GO upP
BACK TO ALL POSTS

23/23

https://twitter.com/_CPResearch_/status/1587837524604465153
https://www.bleepingcomputer.com/news/security/azov-ransomware-is-a-wiper-destroying-data-666-bytes-at-a-time/
https://www.bleepingcomputer.com/news/security/new-azov-data-wiper-tries-to-frame-researchers-and-bleepingcomputer/
https://twitter.com/malwrhunterteam/status/1586713979514224643
https://research.checkpoint.com/latest-publications/

