
1/23

Pulling the Curtains on Azov Ransomware: Not a
Skidsware but Polymorphic Wiper

research.checkpoint.com/2022/pulling-the-curtains-on-azov-ransomware-not-a-skidsware-but-polymorphic-wiper/

Research by: Jiri Vinopal.

Highlights:

Check Point Research (CPR) provides under-the-hood details of its analysis of
the infamous Azov Ransomware
Investigation shows that Azov is capable of modifying certain 64-bit executables
to execute its own code
Azov is designed to inflict impeccable damage to the infected machine it runs on
CPR sees over 17K of Azov-related samples submitted to VirusTotal

Introduction

During the past few weeks, we have shared the preliminary results of our investigation of the
Azov ransomware on social media, as well as with Bleeping Computer. The below report
goes into more detail regarding the internal workings of Azov ransomware and its technical
features.

Background & Key Findings

Azov first came to the attention of the information security community as a payload of the
SmokeLoader botnet, commonly found in fake pirated software and crack sites.

One thing that sets Azov apart from your garden-variety ransomware is its modification of
certain 64-bit executables to execute its own code. Before the advent of the modern-day
internet, this behavior used to be the royal road for the proliferation of malware; because of
this, to this day, it remains the textbook definition of “computer virus” (a fact dearly beloved
by industry pedants, and equally resented by everyone else). The modification of
executables is done using polymorphic code, so as not to be potentially foiled by static
signatures, and is also applied to 64-bit executables, which the average malware author
would not have bothered with.

https://research.checkpoint.com/2022/pulling-the-curtains-on-azov-ransomware-not-a-skidsware-but-polymorphic-wiper/
https://twitter.com/_CPResearch_/status/1587837524604465153
https://www.bleepingcomputer.com/news/security/azov-ransomware-is-a-wiper-destroying-data-666-bytes-at-a-time/
https://malpedia.caad.fkie.fraunhofer.de/details/win.smokeloader

2/23

This aggressive polymorphic infection of victim executables has led to a deluge of publicly
available files infected with Azov. Every day, hundreds of new Azov-related samples are
submitted to VirusTotal, which as of November 2022, has already exceeded 17,000. Using a
hand-crafted query, it is possible to search for only proper Azov samples, without the
trojanized binaries.

VirusTotal query to search for Azov-related samples:

(behaviour:'Local\\\\Kasimir_*' OR behaviour:'Local\\\\azov') AND
(behaviour_files:'RESTORE_FILES' OR behaviour_registry:'rdpclient.exe')

Figure 1: VirusTotal query – Azov-related samples

VirusTotal query to search for only proper Azov samples, without the trojanized binaries:

(behaviour:'Local\\\\Kasimir_*' OR behaviour:'Local\\\\azov') AND
(behaviour_files:'RESTORE_FILES' OR behaviour_registry:'rdpclient.exe') AND
detectiteasy:"Compiler: FASM*"

Figure 2: VirusTotal query – only original Azov samples

The abundance of samples has allowed us to distinguish two different versions of Azov, one
older and one slightly newer. These two versions share most of their capabilities, but the
newer version uses a different ransom note, as well as a different file extension for destroyed
files (.azov).

3/23

4/23

Figure 3: Ransom note of the newer version of Azov

5/23

6/23

Figure 4: Ransom note of the older version of Azov

The text on the left is remarkable for its stealth delivery of various Kremlin talking points (in
particular, the threat of nuclear war). For any readers feeling compelled by the text on the
right, we recommend Nicky Case’s The Evolution of Trust.

Technical Analysis: Highlights

Manually crafted in assembly using FASM
Using anti-analysis and code obfuscation techniques
Multi-threaded intermittent overwriting (looping 666 bytes) of original data content
Polymorphic way of backdooring 64-bit “.exe” files across the compromised system
“logic bomb” set to detonate at a certain time. The sample analyzed below was set to
detonate at 10-27-2022 10:14:30 AM UTC
No network activity and no data exfiltration
Using the SmokeLoader botnet and trojanized programs to spread
Effective, fast, and unfortunately unrecoverable data wiper

Full Technical analysis

We focus on the original sample of the newer Azov version (SHA256:
650f0d694c0928d88aeeed649cf629fc8a7bec604563bca716b1688227e0cc7e — as pointed
out above, there is no major difference in functionality compared to the older version). This is
a 64-bit portable executable file that has been assembled with FASM (flat assembler), with
only 1 section .code (r+x), and without any imports.

Figure 5: Detection of FASM compiler

https://ncase.me/trust/

7/23

Figure 6: Only 1 section “.code” and no Imports

When we think of a person writing code directly in assembly language, we think of a
vulnerability researcher carefully piecing together a payload, a hard-boiled engineer creating
a real-time application, or maybe an undergraduate student undergoing a rite of passage.
We certainly do not immediately think of a ransomware author creating ransomware (indeed,
we suspect most ransomware authors would go the opposite direction and write it all in
Python, if they feasibly could). We assume this began with the author having to deal with
code at the assembly level anyway to carry out their “infect executables” plan, and then spun
out of control.

The .code section has three parts, which are most easily seen by looking at its entropy. First,
there is a high-entropy part containing the encrypted shellcode. It is followed by plain code
implementing the unpacking routine, and then the last part, with very low entropy, appears to
consist of plain strings used to construct the ransom note.

Figure 7: Entropy of the “.code” section

Unpacking Routine

As the whole code of Azov is assembly manually crafted for the purpose of being obtuse, it is
necessary to do some IDA magic and cleanup to shape the code into a state where it can be
decompiled and understood. Once this is done, the procedure start_0() becomes visible.
This code unpacks shellcode into newly allocated memory and then transfers execution to it.

https://research.checkpoint.com/2019/malware-against-the-c-monoculture/

8/23

Figure 8: Entry function start_0

The unpacking routine in the function AllocAndDecryptShellcode() is intentionally created
to look more sophisticated than it is. But in reality, it is a simple seeded decryption algorithm
using a combination of xor and rol, where key = 0x15C13.

Figure 9: Unpacking routine in the function AllocAndDecryptShellcode

We provide below a Python implementation of the simplified routine logic:

9/23

import pefile, malduck

pe = pefile.PE('Azov_Ransomware.exe')
encrypted_shellcode = pe.sections[0].get_data()[5:0x4615+5]
decrypted_shellcode = bytearray(encrypted_shellcode)

key = 0x15C13
for j in range(0x3FDF,-1,-1):
 decrypted_shellcode[j] ^= malduck.BYTE(key)
 key = malduck.rol(key + 0x92819200, 1, 32)
print(decrypted_shellcode)

The next stage is split into two main routines: one in charge of wiping files and the other in
charge of backdooring executables.

Figure 10: Transferring of execution to wiping and backdooring logic

Wiping Routine

The wiping routine begins by creating a mutex (Local\\\\azov) to verify that two instances
of the malware are not running concurrently.

Figure 11: Wiping routine – mutex creation

10/23

If the mutex handle is successfully obtained, Azov creates persistence by trojanizing (similar
to the backdooring routine) the 64-bit Windows system binary msiexec.exe or perfmon.exe
and saving it as rdpclient.exe. A registry entry at
SOFTWARE\\\\Microsoft\\\\Windows\\\\CurrentVersion\\\\Run is created pointing to the
newly created file.

Figure 12: Persistence creation

The wiping procedure uses a trigger time – there is a loop where the analyzed sample
checks system time, and if it is not equal to or larger than the trigger time, it sleeps 10s and
loops again. Regarding the analyzed sample in the Twitter post, the trigger time was
10/27/2022 at 10:14:30 AM UTC.

https://twitter.com/_CPResearch_/status/1587837524604465153

11/23

Figure 13: Trigger time set to 10/27/2022 10:14:30 AM UTC

Once this logic bomb triggers, the wiper logic iterates over all machine directories and
executes the wiping routine on each one, avoiding certain hard-coded system paths and file
extensions.

Figure 14: System paths omitted from wiping and backdooring

12/23

Figure 15: File extensions omitted from wiping

Each file is wiped “intermittently”, by which we mean a block of 666 bytes is overwritten with
random noise, then an identically-sized block is left intact, then a block is overwritten again,
and so on — until the hard limit of 4GB is reached, at which point all further data is left intact.
As a random source, the sample uses an uninitialized local variable (e.g., char
buffer[666];) which in practice means random stack memory content.

Figure 16: Intermittent data wiping

https://pony.social/@cadey/109410442714493113

13/23

Figure 17: Example trace of data wiping routine

Once the wiping is finished, the new file extension .azov is added to the original filename.
The typical file structure of a wiped file can be seen below.

14/23

Figure 18: Example structure of a wiped file

Backdooring Routine

Before traversing the filesystem to search for files to be backdoored, a mutex named
Local\\\\Kasimir_%c is created, with the %c replaced with the letter of the drive being
processed.

Figure 19: Backdooring routine – mutex creation

The function TryToBackdoorExeFile() is responsible for backdooring 64-bit “.exe” files that
meet certain conditions.

Figure 20: Files passing pre-processing conditions go to the TryToBackdoorExeFile function

These specific conditions could be simplified as follows:

1. Pre-processing conditions:
It is not a part of the exclude list of filesystem locations
The file extension is “.exe”
The file size is less than 20MB

15/23

2. Processing conditions:
The file is a 64-bit executable file
The PE section containing the Entry Point has enough space for the shellcode
implant to be injected in the way of preserving the original Entry Point of PE (the
shellcode start address will be placed at the address of the original Entry Point)
File size == PE size (PE size is manually calculated)

The processing conditions are all checked in the function TryToBackdoorExeFile().

Figure 21: Function TryToBackdoorExeFile

Once the file meets all pre-processing and processing conditions, it is considered suitable for
backdooring and pushed to function BackdoorExeFile().

Figure 22: Proximity graph of function TryToBackdoorExeFile

The function BackdoorExeFile() is responsible for the polymorphic backdooring of
executable files. It first obtains the address of the original code section (usually the .text
section) and randomly modifies its content in several locations. Before injecting the main
blob of shellcode into the modified code section, certain constant values are changed, and
the whole shellcode is re-encrypted with the same encryption algorithm and key as used
during the unpacking of the malware, described earlier. After the backdoored file is written
back to disk, three encoded data structures are appended to its end, which are effectively
resources needed for the ransomware to function (for instance, an obfuscated form of the
ransom note).

16/23

Figure 23: Proximity graph of function BackdoorExeFile

Despite the polymorphic backdooring, the encryption/decryption algorithm used during the
unpacking and backdooring is consistent and can be used for Azov detection.

Figure 24: Re-encryption of the main blob of shellcode using the same algorithm and key as
during unpacking

Anti-analysis and code obfuscation techniques

Preventing usage of software breakpoints – using routines that copy already decrypted and
currently executing parts of shellcode to newly allocated memory and later transferring
execution to it will sooner or later result in an exception if software breakpoints are set. In
such situations, it is necessary to use hardware breakpoints.

17/23

Figure 25: Anti-analysis technique preventing usage of software breakpoints

Opaque constants – replacing constants with a code routine producing the same resulting
constant’s value. (This can be repeatedly seen in routines responsible for calculating
constant offsets rather than using them directly so that a direct call can be replaced with an
indirect call)

18/23

Figure 26: Opaque constants

Syntactic confusion – replacing an instruction with semantically equivalent instruction(s) that
are not idiomatic, or are outright bloat. One example of this is found in the routine
responsible for parsing the export directory; another is the repeated replacement of a call
with a direct or indirect jmp. Both are pictured below.

19/23

Figure 27: Syntactic bloat

Figure 28: Usage of indirect and direct jumps in place of calls

A simplified version of the assembly that parses the export directory can be seen below.

and rdx, 0
mov edx, [rax]
mov rax, [rbp+moduleBase]
add rdx, rax
mov [rbp+addressOfNames], rdx
mov rcx, [rbp+exportDirectory]
add rcx, _IMAGE_EXPORT_DIRECTORY.AddressOfFunctions
xor rdx, rdx
mov edx, [rcx]
add rdx, rax
mov [rbp+addressOfFunctions], rdx

20/23

Dead (junk) code – insertion of garbage bytes which results in no meaningful instructions or
even no instructions at all.

Opaque predicates – a jz/jnz that at first sight appears to be a conditional jump in practice
has the condition always met (or always not met) and effectively functions as an
unconditional jump, confusing static analysis.

These two obfuscations can both be seen in the function FindGetProcAddress().

Figure 29: Garbage bytes insertion and Opaque predicate obfuscations

Call-Return Abuse – using push ret or call instead of a jmp.

Figure 30: Control indirection

Volatile Homebrew IAT – A dynamically allocated structure containing API function
addresses being used as nested structure, pushed as an argument to functions that need to
use certain WIN API routines instead of using normal imports.

21/23

Figure 31: Dynamically created IAT-like structure being used as nested structure

Conclusion

Although the Azov sample was considered skidsware when first encountered (likely because
of the strangely formed ransom note), when probed further one finds very advanced
techniques — manually crafted assembly, injecting payloads into executables in order to
backdoor them, and several anti-analysis tricks usually reserved for security textbooks or
high-profile brand-name cybercrime tools. Azov ransomware certainly ought to give the
typical reverse engineer a harder time than the average malware.

It is not our place to confidently ascribe a motive to the production and dissemination of this
malware, though obviously, we can rule out the idea that anything in the newer ransom note
was written in good faith (we shouldn’t have to say this, but none of the listed people or
organizations had anything to do with creating this ransomware). One might simply write it off
as the actions of a disturbed individual; though if one wanted to see this as an egregious
false flag meant to incite anger at Ukraine and troll victims more generally, they certainly
would have a lot of evidence for that hypothesis, too. The number of already detected Azov-
related samples is so large that if there was ever an original target, it has long since been
lost in the noise of indiscriminate infections.

The only thing we can say with certainty, and what has been confirmed by all this analysis, is
that Azov is an advanced malware designed to destroy the compromised system.

Check Point customers remain protected from the threats described in this blog,
including all its variants. Anti-Ransomware is offered as part of Harmony Endpoint, Check
Point’s complete endpoint security solution. Check Point Provides Zero-Day Protection
Across its Network, Cloud, Users and Access Security Solutions.

IOCs

Original Azov samples

https://www.checkpoint.com/cyber-hub/threat-prevention/ransomware/
https://www.checkpoint.com/solutions/ransomware-protection/anti-ransomware/
https://www.checkpoint.com/solutions/endpoint-security/
https://www.checkpoint.com/infinity/zero-day-protection/

22/23

SHA256 Description

b102ed1018de0b7faea37ca86f27ba3025c0c70f28417ac3e9ef09d32617f801 The old
version of
Azov

650f0d694c0928d88aeeed649cf629fc8a7bec604563bca716b1688227e0cc7e The new
version of
Azov

Yara

import "pe"

rule ransomware_ZZ_azov_wiper {
meta:
 description = "Detects original and backdoored files with new

and old versions of azov ransomware - polymorphic wiper"
 author = "Jiri Vinopal (jiriv)"
 date = "2022-11-14"

 hash_azov_new =
"650f0d694c0928d88aeeed649cf629fc8a7bec604563bca716b1688227e0cc7e"

 hash_azov_old =
"b102ed1018de0b7faea37ca86f27ba3025c0c70f28417ac3e9ef09d32617f801"

strings:
// Opcodes of allocating and decrypting shellcode routine
 $unpacking_azov_new = { 48 83 ec ?? 58 48 01 c8 48 81 ec ?? ?? ?? ??

48 83 ec ?? 40 80 e4 ?? c6 45 ?? 56 c6 45 ?? 69 c6 45 ?? 72 c6 45 ?? 74 c6 45 ?? 75
c6 45 ?? 61 c6 45 ?? 6c c6 45 ?? 41 c6 45 ?? 6c c6 45 ?? 6c c6 45 ?? 6f c6 45 ?? 63
c6 45 ?? 00 48 89 74 24 ?? 48 83 ec ?? 48 83 c4 ?? 48 8b 4c 24 ?? 48 8d 55 ?? ff d0
48 83 ec ?? 48 c7 04 24 ?? ?? ?? ?? 48 83 c4 ?? 48 8b 4c 24 ?? 48 c7 c2 ?? ?? ?? ??
49 c7 c0 ?? ?? ?? ?? 49 c7 c1 ?? ?? ?? ?? ff d0 48 c7 c1 ?? ?? ?? ?? 4c 8d 0d ?? ??
?? ?? 48 ff c9 41 8a 14 09 88 14 08 48 85 c9 75 ?? 48 c7 c1 ?? ?? ?? ?? 41 b9 ?? ??
?? ?? 41 ba ?? ?? ?? ?? 48 ff c9 8a 14 08 44 30 ca 88 14 08 41 81 ea ?? ?? ?? ?? 45
01 d1 41 81 c1 ?? ?? ?? ?? 41 81 c2 ?? ?? ?? ?? 41 d1 c1 48 85 c9 }

 $unpacking_azov_old = { 48 01 c8 48 05 ?? ?? ?? ?? 48 81 c1 ?? ?? ??
?? 48 81 ec ?? ?? ?? ?? 48 83 ec ?? 40 80 e4 ?? c6 45 ?? 56 c6 45 ?? 69 c6 45 ?? 72
c6 45 ?? 74 c6 45 ?? 75 c6 45 ?? 61 c6 45 ?? 6c c6 45 ?? 41 c6 45 ?? 6c c6 45 ?? 6c
c6 45 ?? 6f c6 45 ?? 63 c6 45 ?? 00 48 83 e1 ?? 48 01 f1 48 8d 55 ?? ff d0 48 83 ec
?? 48 c7 04 24 ?? ?? ?? ?? 48 83 c4 ?? 48 8b 4c 24 ?? 48 c7 c2 ?? ?? ?? ?? 49 c7 c0
?? ?? ?? ?? 49 c7 c1 ?? ?? ?? ?? ff d0 48 c7 c1 ?? ?? ?? ?? 4c 8d 0d ?? ?? ?? ?? 48
ff c9 41 8a 14 09 88 14 08 48 85 c9 }

condition:
 uint16(0) == 0x5a4d and pe.is_64bit() and
 any of ($unpacking_azov_*)

}

References

23/23

1. Twitter – Check Point Research:
https://twitter.com/_CPResearch_/status/1587837524604465153

2. Bleeping Computer: https://www.bleepingcomputer.com/news/security/azov-
ransomware-is-a-wiper-destroying-data-666-bytes-at-a-time/

3. Bleeping Computer: https://www.bleepingcomputer.com/news/security/new-azov-data-
wiper-tries-to-frame-researchers-and-bleepingcomputer/

4. Twitter – MalwareHunterTeam:
https://twitter.com/malwrhunterteam/status/1586713979514224643

GO UP
BACK TO ALL POSTS

https://twitter.com/_CPResearch_/status/1587837524604465153
https://www.bleepingcomputer.com/news/security/azov-ransomware-is-a-wiper-destroying-data-666-bytes-at-a-time/
https://www.bleepingcomputer.com/news/security/new-azov-data-wiper-tries-to-frame-researchers-and-bleepingcomputer/
https://twitter.com/malwrhunterteam/status/1586713979514224643
https://research.checkpoint.com/latest-publications/

