
1/15

Technical Analysis of DanaBot Obfuscation Techniques
zscaler.com/blogs/security-research/technical-analysis-danabot-obfuscation-techniques

Key Points

DanaBot is a malware-as-a-service platform discovered in 2018 that is designed to
steal sensitive information that may be used for wire fraud, conduct cryptocurrency
theft, or perform espionage related activities

The malware is heavily obfuscated which makes it very difficult and time consuming to
reverse engineer and analyze
Zscaler ThreatLabz has reverse engineered the various obfuscation techniques used
by DanaBot and developed a set of tools using IDA Python scripts to assist with binary
analysis

DanaBot, first discovered in 2018, is a malware-as-a-service platform that threat actors use
to steal usernames, passwords, session cookies, account numbers, and other personally
identifiable information (PII). The threat actors may use this stolen information to commit
banking fraud, steal cryptocurrency, or sell access to other threat actors.

While DanaBot isn’t as prominent as it once was, the malware is still a formidable and
active threat. Recently, version 2646 of the malware was spotted in the wild and also a
researcher tweeted screenshots of Danabot’s advertisement website shown in Figure 1.

https://www.zscaler.com/blogs/security-research/technical-analysis-danabot-obfuscation-techniques
https://malpedia.caad.fkie.fraunhofer.de/details/win.danabot
https://www.zscaler.com/blogs/security-research/spike-danabot-malware-activity
https://www.zscaler.com/blogs/security-research/danabot-launches-ddos-attack-against-ukrainian-ministry-defense
https://twitter.com/CryptoInsane/status/1592540701015052290


2/15

Figure 1: DanaBot’s advertisement website

Unfortunately, the DanBot developers have done a very good job of obfuscating the
malware code. Therefore, it is very difficult and time consuming process to to reverse
engineer and analyze. This is a companion blog post to a set of IDA Python scripts that
Zscaler ThreatLabz is releasing on our Github page. The goal of the scripts is to help peel
away some of the layers of DanaBot’s obfuscations and inspire additional research into not
only the obfuscation techniques, but the malware itself.

Technical Analysis

The following sections summarize the numerous techniques that the DanaBot developers
have implemented to obfuscate the malware binary code.

Junk Byte Jumps

One of the first anti-analysis techniques that DanaBot employs is a “junk byte jump”
instruction. This is an anti-disassembly technique where a jump instruction will always jump
over a junk byte. The junk byte is skipped during normal program execution, but causes IDA
Pro to display an incorrect disassembly. An example of this technique is shown in Figure 2:

https://github.com/threatlabz/tools/tree/main/danabot


3/15

Figure 2: An example of a junk byte jump

The 01_junk_byte_jump.py IDA Python script searches for junk byte jump patterns and
patches them with NOP instructions. This operation fixes IDA Pro’s disassembly as shown
in Figure 3.

Figure 3: An example of a patched junk byte jump

Dynamic Returns

The next anti-analysis technique is a “dynamic return” operation. This technique calculates
a new return address at the end of a function, causing a change in the program’s control
flow. In DanaBot’s implementation, they are used to “extend” a function–exposing additional
hidden code. An example of a dynamic return is shown in Figure 4.

Figure 4: An example of a dynamic return

https://github.com/threatlabz/tools/blob/main/danabot/01_junk_byte_jump.py


4/15

Using the 02_dynamic_return.py IDA Python script, these dynamic returns can be patched,
the functions extended, and the hidden code exposed. An example of this is shown in
Figure 5.

Figure 5: An example of a patched dynamic return

Stack String Deobfuscation Preparation and Code Re-analysis

Before moving on to additional DanaBot anti-analysis techniques, we’ve included three IDA
Python scripts:

03_uppercase_jumps.py
04_letter_mapping.py
05_reset_code.py

The first two scripts are preparation steps to help with stack string deobfuscation described
in a later section. The first script patches out a code pattern that is used to uppercase
letters (this removes a small function basic block that interferes with stack string
reconstruction) and the second script renames variables that store the letters used in stack
strings.

Before running the third script, check that IDA Pro’s ”Options->Compiler…” is set to “Delphi”
(see Figure 6.)

https://github.com/threatlabz/tools/blob/main/danabot/02_dynamic_return.py
https://github.com/threatlabz/tools/blob/main/danabot/03_uppercase_jumps.py
https://github.com/threatlabz/tools/blob/main/danabot/04_letter_mapping.py
https://github.com/threatlabz/tools/blob/main/danabot/05_reset_code.py


5/15

Figure 6: IDA Pro’s Compiler options

Since the previous scripts patched a lot of existing code and exposed a bunch of new code,
the 05_reset_code.py script helps reset and re-analyze the modified code in IDA Pro to get
a cleaner IDB database. Once the script and analysis completes, some manual clean up
may be required. Our general method is:

Search → Sequence of bytes…
Search for the standard function prolog: 55 8B EC
Sort by Function
For each result without a defined function:

Right click → Create function…
Look for any addresses that are causing issues in the Output window
Right click → Undefine
Right click → Code

Junk StrAsg and StrCopy Function Calls

DanaBot adds a lot of junk code to slow down and complicate reverse engineering. One of
the junk code patterns is adding extraneous StrAsg and StrCopy function calls. These
functions are part of the standard Delphi library and are used to assign or copy data
between variables. Figure 7 shows an example snippet of code with a number of these
calls. If we trace the variable arguments we can see that they are usually assigned to
themselves or a small set of other variables that aren’t used in actual malware code.

https://github.com/threatlabz/tools/blob/main/danabot/05_reset_code.py


6/15

Figure 7: Example of junk StrAsg and StrCopy function calls

The IDA Python script 06_fake_UStrLAsg_and_UStrCopy.py tries to find and patch these
junk calls. Figure 8 shows the result in the example from Figure 7.

https://github.com/threatlabz/tools/blob/main/danabot/06_fake_UStrLAsg_and_UStrCopy.py


7/15

Figure 8: Example of patched junk StrAsg and StrCopy function calls

Stack Strings

The next obfuscation method is DanaBot’s version of creating “stack strings”. The malware
assigns letters of the alphabet to individual variables and then uses those variables,
pointers to those variables, and various Delphi character/string handling functions to
construct strings one character at a time. Figure 9 is an example construction of the string
“wow64.dll”.



8/15

Figure 9: Example stack string of “wow64.dll”

These stack strings litter most of the malicious functions in DanaBot and very easily lead to
reverse engineering fatigue. On top of that, while some of the constructed strings are used
for malware purposes, most of them turn out to be junk strings. Figure 10 is a snippet of
output from a script that will be introduced below. As can be seen in the figure, most of the
strings are random DLL, executable, and Windows API names.



9/15

Figure 10: Example script output showing junk strings

The best way to extract these stack strings is by emulating the construction code, but due to
the following reasons we experimented with another deobfuscation technique:

There are thousands of these strings
There are not clear start/end patterns to automatically extract the construction code
They rely on standard Delphi functions which aren’t particularly easy to emulate
Most of them are junk strings
The sheer amount of construction code hinders malware analysis the most

The goal of the IDA Python scripts 07_stack_string_letters_to_last_StrCatN_call.py and
08_set_stack_string_letters_comments.py is not to extract a wholly accurate stack string,
but enough of the string to determine whether the string is junk or not. After some trial and
error experimentation, the scripts also try their best to remove the stack string construction
code to allow for much easier analysis. If the string turns out to be legitimate, the original
construction code is saved as comments so a proper extraction of the string can be done
if/when needed.

Empty Loops and Junk Math Loops

After removing the junk StrAsg and StrCopy function calls and the stack strings, there will
be a bunch of empty loops. The IDA Python script 09_empty_loops.py can be used to
remove these loops. There will also be loops left that just contain junk math code (see

https://github.com/threatlabz/tools/blob/main/danabot/07_stack_string_letters_to_last_StrCatN_call.py
https://github.com/threatlabz/tools/blob/main/danabot/08_set_stack_string_letters_comments.py
https://github.com/threatlabz/tools/blob/main/danabot/09_empty_loops.py


10/15

Figure 11.) The IDA Python script 10_math_loops.py will remove these junk code math
loops.

Figure 11: Example junk math loops

Junk Strings and Junk Global Variables

As we saw in the stack strings section above, there were a lot of DLL, executable, and
Windows API name based junk strings. These junk strings exist as normal strings as well,
see Figure 12 as an example.

Figure 12: Example junk strings

https://github.com/threatlabz/tools/blob/main/danabot/10_math_loops.py


11/15

While we haven’t found good patterns to automatically remove references to these junk
strings, the IDA Python script 11_rename_junk_variables.py renames them as “junk” to
ease manual analysis.

DanaBot also adds a lot of junk code involving global variables and various math
operations, see Figure 13 for an example.

Figure 13: Example junk global variable math

The IDA Python script 12_rename_junk_random_variables.py attempts to locate and
rename these variables as “junk” to help with analysis.

Miscellaneous Tips and Tricks

Based on our experience reverse engineering DanaBot over the years, we have found the
following miscellaneous tricks and tips to be helpful. The first is using the Interactive Delphi
Reconstructor (IDR) program to export standard Delphi library function and variable names.
We use Tools → MAP Generator and Tools → IDC Generator to export MAP and IDC files.
While IDR creates an IDA IDC script, we don’t use it directly as it degrades the quality of the
IDA Pro disassembly/decompilation. Instead, we use the scripts idr_idc_to_idapy.py and
idr_map_to_idapy.py to extract the information from the generated IDC and MAP files and
use the output scripts to import the naming information.

DanaBot resolves some of its Windows API functions by hash, so we use OALabs’ HashDB
IDA Plugin (which recently added support for DanaBot’s hashing algorithm) to resolve the
names by hash.

Finally, we make liberal use of IDA Pro’s right click → Collapse item feature to hide the
remaining junk code, especially the renamed junk strings and global variables.

Before and After Example

As an overall example, Figure 14 is a screenshot for a section of DanaBot code before the
deobfuscation scripts have been applied. The details of the code don’t particularly matter for
this discussion, but the snippet shows DanaBot’s initialization of its 455-byte binary

https://github.com/threatlabz/tools/blob/main/danabot/11_rename_junk_variables.py
https://github.com/threatlabz/tools/blob/main/danabot/12_rename_junk_random_variables.py
https://github.com/crypto2011/IDR
https://github.com/threatlabz/tools/blob/main/danabot/idr_idc_to_idapy.py
https://github.com/threatlabz/tools/blob/main/danabot/idr_map_to_idapy.py
https://github.com/OALabs/hashdb-ida
https://github.com/OALabs/hashdb/pull/35


12/15

structure used in its initial “system information” command and control beacon.

Figure 14: Example of code before deobfuscations

Figure 15 is an example of the same code snippet after applying the deobfuscation scripts. 



13/15

Figure 15: Example of code after deobfuscations

Conclusion

While there is still room for improvement, the DanaBot malware code is much easier to
analyze and reason about. Expanding the scope to the entire binary, the deobfuscation
techniques significantly reduce the complexity and time spent while reverse engineering the
malware. We look forward to making further improvements/additions and welcome other
researchers’ contributions to the existing scripts to peel away more layers of DanaBot’s
obfuscation.

Zscaler Detection Status

W32/Danabot

Cloud Sandbox Detection

https://threatlibrary.zscaler.com/threats/780213b1-9cc5-4732-9565-9a3a5903adba


14/15



15/15

Indicators of Compromise

IOC Notes

8c6224d9622b929e992500cb0a75025332c9cf901b3a25f48de6c87ad7b67114 SHA256
hash of
DanaBot
version
2646 main
component


