Cova and Nosu: a new loader spreads a new stealer

@D bitsight.com/blog/cova-and-nosu-new-loader-spreads-new-stealer

Written by Jodo Batista December 06, 2022 Share Facebook Twitter LinkedIn

BitSight Security Research

Summary

BitSight has discovered two previously undocumented malware families named Cova and
Nosu. They have different purposes and capabilities, although we found some similarities
during our research:

o Cova is a tiny loader with capabilities to update itself, download and execute files, and
load DLLs.
» Nosu is a stealer capable of gathering credentials, cookies, crypto wallets, and files.

o The threat actor is using Cova to distribute both SystemBC proxy bot and Nosu stealer.

o The server where the Cova web panel is installed is also hosting a SystemBC panel.
¢ Given the similarity between Cova and Nosu web panels, it is very likely that these two
malware families are developed by the same individual(s).

Cova overview

1/9

https://www.bitsight.com/blog/cova-and-nosu-new-loader-spreads-new-stealer
https://www.bitsight.com/blogs?field_topics_target_id=496
https://www.bitsight.com/blog/systembc-multipurpose-proxy-bot-still-breathes

During our research efforts to track the usage of the SystemBC proxy bot, we came across a
command and control (C2) server that was hosting a web panel in the root of the http server
with "Cova" as the title. From there it didn't take us too long to find a sample with a PDB
string that matched the title of the web panel:

Offset Name Value Meaning
6020 Characteris... 0
6024 TimeDateSt... 6350D52E Thursday, 20.10.2022 04:57:18 UTC
6028 MajorVersion 0
602A MinorVersion 0
602C Type 2 Visual C++ (CodeView)
6030 SizeOfData 4A
6034 AddressOfR... 8A98
2N20 NaintarTaD 2000
RSDSI Table
Offset Name Value
7898 Sig RSDS
789C GUID {D29FB504-B9B0-468E-A96D-E2A32B001E1C}
78AC Age 1
78B0 PDB C:\xcova\cova\ludar\ludar\x64\Release\emerson.pdb

Figure 1 - PDB string (h/t PE-Bear)

PDB's store symbols. When executables refer to PDB files it means they were compiled in
debug mode. This usually gives hints about the internal names of the projects and other
interesting details.

After reverse engineering the sample, we concluded that this malware was in fact a loader
that waits for instructions to download additional malware into the infected system. Loaders
are a type of malware whose sole purpose is to download and run other malware onto
infected systems. The process of successfully infecting systems with another malware is
often referred to as “loads” and a loader's success is often measured by the number of loads
it can provide as well as the quality of the infections.

To get further instructions, Cova sends a request to the C2 server every 15 minutes using a
HTTP GET request to the following endpoint http://<c2 ip>/client.php?p=<encoded data>.
To build the data that goes into the p query parameter, the loader generates a bot ID based
on the value that is stored in the registry key Software\Microsoft\Cryptography under
MachineGuid:

112 v13 = (apis.SHGetValueW)(HKEY_LOCAL_MACHINE, xor_data, &xor_data[1@0], REG_NONE, machine_guid_wide, &guid_buf_size);
113 result = fn_xor_data(xor_data, 112ui64d);

114 if (v13 <0)

115 return result;

116 | machine_guid_size = (apis.lstrlenW)(machine_guid_wide);

117 (apis.HashData)(machine_guid_wide, (2 * machine_guid_size), &machine_guid_hash, 8i64);

118 (apis._uibdtow)(machine_guid_hash, bot_id, 10i64);

2/9

https://github.com/hasherezade/pe-bear

Figure 2 - Bot ID generation

Next, it collects the hostname and the username and builds a unicode string with the
following format: <computer name>||<username>||0||<random number computed with
RtIRandomEx>||<bot ID>

As the final step, the loader builds a string with the hex values of the previous unicode string
containing the data. For example, the string
MYPC||user1]|0[|1749582054||11510924602506494874 is converted into
4D005900500043007C007C00750073006500720031007C007C0030007C007C003100370034
0039003500380032003000350034007C007C003100310035003100300039003200340036003
0003200350030003600340039003400380037003400.

The C2 server response is always 648 bytes long and it contains an instruction for the bot.
The structure below shows the format of the C2 response:

struct reply {
unsigned int command_id;
unsigned int constant; // Always O
wchar_t download_ur1[128]; // Used to specify the url to download the payload.
wchar_t arguments[128]; // Used to set the arguments to Taunch the exe when the command ID is 300 (Dlexec)
wchar_t drop_filename[64]; // Name to save the file on disk when the command ID is 300 (Dlexec)

Figure 3 - C2 response structure
Example of a parsed response:

3/9

O 00|00 OO0
10 00 (00 o0 0o

0 0000 Qo

00|64 Q0

y ooloo oo

Template Results - cova_replybt o

Re

Figure 4 - Parsed C2 response

Name
ply
Command ID
Constant
Download url[128]
Arguments[128)
Drop filename[64]

0o
Qo
&1
0o
oo

200

o
http:/Mocalhostffileexe
argument argumeant2
dsdadad.exe

Currently, the loader supports the following commands:

ID

100
200
300

400

Name

Idle

Update

Download and Execute

Parsed DlI|

Description

Do nothing

Download and execute an update

Download executable file, drop to disk, and execute

Download and launch DIl (in memory)

The URLs from command ID 400 (Parsed DII) retrieve a custom encoded DLL with some
bootstrap code in it. The function below is responsible for parsing, decoding, and launching
the bootstrap code that will load and execute the DLL in memory:

4/9

Lo~V W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

__int64 __fastcall fn_process_parsed_dll_task({dl1l_task_args *args)

{
__inte4 *buf; // rdi
__1int64 *pos; // rbx

buf = args->response;

buf[1] = buf;
buf[3] = args->api_tbl_ptr->GetModuleHandleA;
buf[2] = args->api_tbl_ptr->GetProcAddress;

if (buf[6])
{

pos = buf + 7;

do
if (*(pos - 1) == Ox5DCAQ)
¢ *¥(buf + *(pos - 2)) = *(pos - 5) + *(buf + *(pos - 4));
%lse if (*(pos - 1) == 0x3DA18)

(pos - 2) = ((pos - 6))(*(pos - 4), *(pos - 5), pos[1], *(pos - 3), *pos);
pos += 9;
}
while (*(pos - 1));
}

return @i64;

Figure 5 - Encoded DLL parser

We didn't have to figure out the encoding in detail given that the easiest solution was to build
a simple C loader that would take an encoded file as input and perform the same exact
operations as the previous decoder function (Figure 5). From there it was easy to dump the
decoded DLLs from memory with a tool like PE-sieve.

Cova web panel

The web panel is very simple and allows the botnet operator to view all the bots, define
tasks, and search/filter for specific bots.

5/9

https://github.com/hasherezade/pe-sieve

Login

Username:

Password:

bef3

Submit

Figure 6 - Cova login and panel

5

" & Tasks

Type
#ID
2 dil
1 dil

Q Query

437317

431768

430645

424392

386962

384121

383675

£ Tasks Query

Country

Romania

Taiwan
Jnited States
United States
United States
Brazil

United Kingdom
United States
Argentina
Argentina

Iran

United States
Ecuado

United States

United States

[I

2022-11-30 11:38:40
2022-11-30 11:06:07

2022 01:14:05

2022-112915:13

2022-11-30 00:16:45

2022-11-28 21:37:26

2022-11-28 05:21:10

2022-11-30 11:49:03

2022+

2022-11-29 03:23:57

2022-11-26 05:20:36

2022-11-2517:57

20221128 18:15:29

2022

2022-11-28 03:58:53
20221123 06:57:12

2022-11-23 01:44:41

Type

BotiD

Country

MaxCount

Figure 7 - Cova panel task creation

System Username

2219

Create Task

Update
Parsed DIl
Download and execute

9999999

Submit

Seen

2 mins 50 sec
45 mins 23 se
0 hrs 37 min
20 hrs 38 min
11 hrs 34 min
1days 14 hrs
2days 6 hrs
2 mins 27 sec
days 22 hrs
days 8 hrs
4days 6 hrs
4days 17 hrs
days 17 hrs
5days 7 hrs
2days 7 hrs

7 days 4 hrs

days 10 hrs

Date
Status

748 /9999999 11/26/2022

858 /9999999 11/26/2022

Installed Commar

11/30,

11/30

11/30,

11/29;

11/30,

11/28,

11/28,

11/30,

11/28,

11/29;

11/26,

11/25;

11/28,

11/25/2

11/28,

11/23,

11723,

2022
2022
2022
2022
2022
2022
2022
2022
2022
2022
2022
2022
2022
022
2022
2022

2022

Command

nd

8 82 8 8 8 8B 8 8 8B 8 8 8 8 8 8 8 &

6/9

5 2219 4

#® & Tasks Q Query

Submit

Figure 8 - Cova panel search

Cova infections

Since we started tracking this loader, we observed over 3700 infected systems pretty much
worldwide but with much more impact in North and South American countries. The top 10
most affected countries are (in order) the United States, Brazil, Indonesia, Vietnam,
Philippines, Colombia, Mexico, Thailand, Argentina, and Chile.

1 529

Figure 9 - Geographic distribution of victims

7/9

Cova loads Nosu

During our research, we observed that the botnet operator has been using Cova to infect
systems with SystemBC proxy bot and a new malware named Nosu stealer. Nosu is capable

of stealing credentials from various types of applications, browser cookies, crypto wallets,

and stealing files from the infected systems. We also found that Nosu web panel is very

similar to Cova panel suggesting that this might be work done by the same developer:

Q. Query

n 2 3

Login

Username:

Code:

#1D

76113

76112

76111

76110

76109

76108

76107

76106

76105

76104

76103

76102

76101 €

76100

76099

76098

76097

76096

76095

wallets

Archive

Figure 10 - Nosu stealer login and panel

Conclusion

While tracking the current usage of the SystemBC proxy bot, BitSight has discovered two
previously undocumented malware families being used in the wild. Cova is a tiny and simple

browser

Host

keychain

em

ail

User

cards

ftp

git/svn

Password

db

files

ssh

Profile

rdp

6ywhyOx1 default-release

6ywhyOx1 default-release

Gywhy0x1.default

release

6ywhyOx1 default-release

6ywhyOx1 default-r

6ywhy0x1 defaultrelease

6ywhy0xT defaultrelease

6ywhy0x1 default-release

wincred

App Cookies

uuuuuuu

loader but it seems capable of doing its job. On the other hand Nosu seems to be just

another stealer capable of providing the threat actor(s) with tons of information that can be

monetized.

We could see the similarities between the web panels of these two families and it seems very
likely that they are developed by the same individual(s). We'll keep an eye on these families

and see how they evolve.

If you got curious about the SystemBC proxy bot have a look at our blog post where we

© © © 0 06 06 6 06 06 06 6 6 6 6 0 ¢
5 8 8 8 8 8 8 8 8 8 8 8 88881

explain how it works: https://www.bitsight.com/blog/systembc-multipurpose-proxy-bot-still-

breathes

I0Cs

C2 servers:

8/9

80.66.77[.]6 - Cova & SystemBC C2 server
80.66.77[.]54 - Cova & SystemBC C2 server
80.66.77[.]63 - Cova & SystemBC C2 server
80.66.77[.]95 - Cova & SystemBC C2 server
80.66.77[.]125 - Cova & SystemBC C2 server
80.66.77[.]33 - Nosu stealer C2 server

File hashes:

11ffd58d2707121ab5363d6c08560a50d3209bf60dd4b8eec066eb4241aa7bee - Cova
(packed)

bOeaf0cc2f88701a216bb994a7bcbd43cb21ac11e295af9f99e6b56d6797eal1 - Cova
(unpacked)

8d6ba779eb230cb2f0f2db98179d5342f0d9f2cd74c7537d736ecea156195292 - Cova
(packed)

alae4a7440c7f2f0d03c6f2e05ff97b875e8295cf2b340b96fdda919af6c7eb5 - Cova
(unpacked)

6499cadaea169c7dfe75b55f9c949659af49649a10c8b593a8db378692a11962 - Nosu stealer
b369ed704c293b76452ee1bdd99a69bbb76b393a4a9d404e0b5df59a00cff074 - SystemBC
(dropped by Cova)

9/9

