
1/37

Threat Analysis: MSI - Masquerading as a Software
Installer

cybereason.com/blog/threat-analysis-msi-masquerading-as-software-installer

Written By
Cybereason Global SOC Team

December 5, 2022
|
16 minute read

The Cybereason Global Security Operations Center (GSOC) issues a Purple Team Series of
its Threat Analysis reports to provide a technical overview of the technologies and techniques
threat actors use to compromise victims’ machines. 

In this Threat Analysis report, the Cybereason GSOC team analyzes a technique that utilizes
Microsoft’s Windows Installation file (.msi) to compromise victims’ machines.  

This report is divided into four sections: 

https://www.cybereason.com/blog/threat-analysis-msi-masquerading-as-software-installer


2/37

1. 
1. 

1. 
1. Introduction: An overview of the MSI file format.

2. Red Team: Offensive approach leveraging MSI files for attacking
purposes.

3. Blue Team: Defenders' perspective, studying how MSI files are
exploited by threat actors. 

4. Purple Team: Detection proposals for possible malicious MSI files and
analysis tools. 

KEY POINTS

Masquerade as legitimate installer: Malicious MSI files are sometimes difficult to
distinguish from legitimate installers. Threat actors will often masquerade as well-known
software updates and manipulate victims into “updating” the software on their
machines.  

Execute with elevated privilege: MSI allows execution with a LocalSystem account
(NT Authority\System). The unauthorized access via LocalSystem privilege can lead to
compromise of the system and to further network compromise. 

Numerous ways to exploit MSI: MSI is based on COM Structure Storage, which allows
threat actors to store malicious files in a MSI file and to control stored files with custom
actions. This technology gives threat actors a variety of options for execution patterns
they can use to infect victims’ machines. 

INTRODUCTION

This chapter explains the fundamentals of Windows Installer packages (MSI).

Overview

MSI, formerly known as Microsoft Installer, is a Windows installer package format. MSI allows
for the installation and deployment of necessary Windows applications or packages to end-
users’ machines. MSI is a standardized installation method that simplifies the installation
process for users. The installation process with MSI files is simple and often does not require
much user interaction. Usually, the installation process with MSI is similar to running an
executable. 

https://docs.microsoft.com/en-us/windows/win32/stg/about-structured-storage
https://web.archive.org/web/20090115213653/http://blogs.msdn.com/robmen/archive/2003/11/25/56510.aspx


3/37

MSI utilizes Microsoft’s technology COM Structured Storage, which allows an MSI file to have
a file system structure. This technology is also referred to as OLE documents, components
often used by Microsoft Office. This technology is constructed with two types of objects called
storage and streams, which are conceptually similar to directories and files. This structure
allows MSI components to store multiple files to allow for easy access.

The ability to store and deploy necessary files with minimal user action makes this technology
similar to self-extracting zip files, which are often in the form of executables.  

The installation procedure also allows execution with a LocalSystem account (NT
Authority\System). The elevated privilege behavior as well as the COM Structure makes MSI
an attractive malware deployment method for threat actors.  

Structure

MSI contains a main stream called a Database stream. This section provides an overview of
the Database stream and its relevant components. 

Database

The Database stream consists of tables that form a relational database. These tables are
linked with primary and foreign key values. This structure allows MSI to maintain relationships
between the different tables and contain basic information required to perform the
installation.  

Database stream, representing primary/foreign key relationships



4/37

The information within each table has important roles for the installation, such as tables
storing information on installing software applications. 

File: Metadata of installing application files. 

Registry: Registry key values of installing applications. 

Shortcut: Shortcuts of relevant installing applications.




Other tables include information about package executions of the installation and execution
sequences. These tables are crucial for MSI to determine the execution flow, as well as the
exact actions needed for the installation. The tables allow developers to manipulate the
installation process and allow installation to have complex logic. The installation logic is often
manipulated with Actions and Sequences. 

Actions

The MSI contains a set of subroutines to execute the installation. These routines are divided
into two types: 

Standard Actions: These are built-in actions that allow developers to perform the
installation. Some notable actions include the following–

Initialize installation directories
Drop files to the installation directories
Add a registry value for the installing softwares 

Custom Actions: Standard Actions may not be enough for developers to execute the
installation logic. Custom actions allow developers to embed logic outside of Standard
Actions by executing specific binary or scripts during the installation. Some notable
custom actions include the following–

Execute executables stored within the MSI file
Execute specific exported functions from DLLs 

Execute JavaScript or Visual Basic scripts




The above actions can be manipulated by utilizing Properties, which are similar to
environment variables. Properties often contain various data and control parameters required
to execute certain actions, including: 

A flag which identifies if reboot is needed
Installation directory

https://learn.microsoft.com/en-us/windows/win32/msi/file-table
https://learn.microsoft.com/en-us/windows/win32/msi/registry-table
https://learn.microsoft.com/en-us/windows/win32/msi/shortcut-table
https://learn.microsoft.com/en-us/windows/win32/msi/standard-actions
https://learn.microsoft.com/en-us/windows/win32/msi/custom-actions
https://learn.microsoft.com/en-us/windows/win32/msi/properties


5/37

System information

Control information on installation




The Property table exists within the Database Stream. However, note that not all properties
are stored in the Property table. Since some Properties are set during the installation in
specific actions, Properties that are set dynamically may not be in the Property table. 

Sequences

Developers can set the order in which Standard Actions and Custom Actions are executed in
the Sequence table. Within the Sequence table, they can assign conditions to control the
actions’ behavior. 

There are two main types of sequences:

Install UI Sequence - This refers to the sequence of actions for installation UI, which
includes user interactions with the dialog.

Install Execute Sequence - This refers to the sequence of actions for actual installation
execution, such as dropping files and creating registry entries. When conducting silent
installation, the Install UI Sequence is ignored and only the Install Execute Sequence is
used.




For this report, the focus will be on the Install Execute Sequence, since this table is most
relevant to the actual installation behavior. 

https://learn.microsoft.com/en-us/windows/win32/msi/using-a-sequence-table


6/37

Example MSI database tables layout and its relations

Red Team

This section describes how to reproduce the staging of a malicious MSI file, in order to
analyze it and build detections for it. Similar to archived files, an MSI file can contain various
malicious binaries or scripts to conduct its malicious actions. 

In this section, the MSI file will reference the MSFVenom template with minor updates.
However the section will focus more on the inner workings of MSI file format. 



7/37

Malicious MSI execution flow

MSI files can allow attackers to embed malicious binaries or scripts and take over the machine
with elevated privileges. To demonstrate this, a malicious stager binary is embedded into an
MSI file, which later fetches and executes the payload from the C2 server. 

The overall flow is as follows: 

1. Execute the MSI file.
2. Execute the embedded binary. 
3. Execute the stager shellcode. 
4. Fetch and execute the payload from a C2 server. 

5. Terminate installation. 




The main usage here is to execute any relevant binary within memory without dropping any
files to the disk. 

Preparation



8/37

In this section, we show how MSI files can be created using the Windows Installer XML(WiX)
toolset. This is free software for building Windows Installer packages from XML files.

WXS file content, showing Stager and ExitInstallation Custom Actions

The executable needs to be stored in a table where it can be accessed by the CustomAction
element prior to its execution. The Binary table is often used to place animations, bitmaps,
and icons; however it also allows the MSI to store relevant binary data needed for
CustomAction, even malicious PE files and scripts.

Id assigns unique identifiers to the elements, which developers can call and utilize for specific
actions. The MyStager id is assigned to the malicious executable stager.exe. This executable
will allocate and execute stager shellcode.

Binary and CustomAction elements

The MyStager binary element is followed by a CustomAction element with Id Stager. This is
the key element that will decide the behavior of the MyStager. 

Each attribute from the configuration of CustomAction is described below:

BinaryKey: Attribute which specifies Binary element ID.
Impersonate: Attribute which specifies if the installer impersonates the installing user’s
context. If attribute is no, then the installer will be executed with elevated privileges
(LocalSystem). 
Execute: Attribute which specifies the scheduling of the CustomAction. The parameter
“deferred” will delay the execution and allow the developer to control the specific
CustomAction. This is the only value that allows the execution to run in elevated
privileges. 
Return: Attribute which specifies the return behavior of CustomAction. asyncNoWait
value allows the CustomAction to be executed asynchronously from the installer. 
ExeCommand: Attribute which specifies arguments for the executable. 

The CustomAction Stager is set up to execute the malicious executable stored in the Binary
table with elevated privileges and to continue executing even after installation is terminated.

https://wixtoolset.org/documentation/manual/v3/xsd/wix/customaction.html
https://wixtoolset.org/documentation/manual/v3/xsd/wix/binary.html
https://docs.microsoft.com/en-us/windows/win32/msi/deferred-execution-custom-actions


9/37

CustomAction ExitInstallation

After the MyStager setup, another CustomAction ExitInstallation is set to attempt executing
VBScript. However, this execution will purposely fail and exit since this installation will not
contain relevant VBScript. This CustomAction has another purpose which will be explained in
the next paragraph. 

Once the CustomActions are set, the element InstallExecuteSequence, an Install Execute
Sequence table, is set. For its first action, ResolveSource sets the source location and
sourcedir property. This is needed to initialize the installation process. Once initialization is
complete, the relevant CustomActions Stager and ExitInstallation will be set for the execution
in this order respectively. 

ExitInstallation plays an important role in this execution, which will force the installation to
purposely fail and exit. This then forces the MSI to exit with a failure. However, the malicious
binary will continue executing since it is set up to run asynchronously. The victim may
disregard this error and may not take into account that malicious activities are running in the
background. 

Execution

The execution in this section assumes the victim retrieves the MSI file via phishing email.
Once the file is deployed onto the victim’s machine, the victim executes the MSI file by simply
double-clicking. The execution prompts with a UAC warning, as execution is performed by a
high-privilege user. Once the UAC warning is accepted by the user, the execution will proceed
with the usual installation process. 

MSI process tree

After MSI execution, the installation fails and exits with the following message: 



10/37

Error message due to CustomAction ExitInstallation

The MSI terminates itself; however, since the Stager is set to execute asynchronously, the
malicious binary will continue executing. 

Attack Tree of MSI execution 

As soon as MSI starts executing itself, the execution flow enters the malicious executable in
the Custom Action, which is msia8a.tmp. 

Msia8a.tmp (the name will vary) proceeds to retrieve the payload from the C2 server and
deploy it onto the victim's machine. Once the payload is successfully deployed, the stager
continues executing the payload. Successful payload execution leads to successful



11/37

connection to the C2 server, and it is also evident that the payload is being executed with an
elevated privilege account. At this point, the attacker has remote control over the machine. 

Attacker’s terminal, which is a Metasploit listener



12/37

Execution Flow Chart

Blue Team

This section focuses on an analysis of malware that abused MSI files in the past. Technical
Analysis dives into MSI file usage by three different malware families seen in the wild. The
section ends with Comparative Charts for each sample's MSI file execution.

Technical Analysis

This section analyzes three different malware families. The analysis focuses on the following
Secure Hash Algorithm (SHA)-256 samples. 



13/37

Malware
Family

SHA-256

Magniber
Ransomware

0e65657740d7f06acda53b7d3190f9728801b984d5bd6ccb0b865d218ae71f66

MatanBuchus
Loader

face46e6593206867da39e47001f134a00385898a36b8142a21ad54954682666

Qbot /
Qakbot

c0beb47f629a5debe0e99790d16a4d04afe786d6fb42c5ab6dfcaed84d86e7ad

Magniber Ransomware

Magniber Ransomware is known to utilize infection methods such as exploiting vulnerabilities
and masquerading as a legitimate software update to infect a victim’s machine. The following
are known infection methods seen in the past:

Exploiting the PrintNightmare vulnerability.
Masquerading as a legitimate Google Chrome or Microsoft Edge update by abusing
Windows Application Package (.appx) files. 
Masquerading as legitimate Windows 10 upgrades by abusing MSI.  

MSI Analysis

According to file metadata, the MSI file is built with the WiX toolset. 

MSI file metadata

The presence of CustomAction in the table below provides a better idea of potentially
malicious behavior: 

https://www.cybereason.com/blog/threat-analysis-report-printnightmare-and-magniber-ransomware
https://www.bleepingcomputer.com/news/security/magniber-ransomware-using-signed-appx-files-to-infect-systems/
https://asec.ahnlab.com/en/32226/


14/37

Sample’s CustomAction table, as seen from the Orca tool

The CustomAction table has two actions configured: 

1. 
1. 

1. SetProgramFilesFolder: Set Program Files folder to local appdata folder
(C:\Users\UserName\AppData\Local).

2. h54pstl1: Fetch binary m21iivix0ds.




SetProgramFilesFolder has Custom Action type 51, which indicates the action will configure
the property's value. The Custom Action SetProgramFilesFolder configures the source
ProgramFilesFolder property, which is a placeholder for the Program Files folder.
ProgramFilesFolder is set to a value specified by the target LocalAppDataFolder property,
which is a local appdata folder (e.g. C:\Users\UserName\AppData\Local). 

https://learn.microsoft.com/en-us/windows/win32/msi/programfilesfolder
https://learn.microsoft.com/en-us/windows/win32/msi/localappdatafolder


15/37

Sample’s Directory table, as seen from the Orca tool

The Directory table includes information on the installation’s directory location. As shown in
the image, ProgramFilesFolder is seen to have Directory_Parent as the TARGETDIR property,
which is the root installation directory. Based on the Directory and CustomAction tables, the
installation directory will be placed under the local appdata directory.

The Custom Action h54pstl1 has Type 65, which indicates combinations of the type and
relevant options. 

Type 1: Indicates the DLL file is stored within the Binary Table. 

Optional Constant +64: Indicates that the execution will continue regardless of
CustomAction failure.




According to the Custom Action Type, m21iivix0ds is a DLL file stored in the Binary Table and
is expected to execute the exported function t5thamku.

https://learn.microsoft.com/en-us/windows/win32/msi/targetdir
https://learn.microsoft.com/en-us/windows/win32/msi/custom-action-type-1
https://docs.microsoft.com/en-us/windows/win32/msi/custom-action-return-processing-options


16/37

Sample’s Binary Table, as seen from the Orca tool

In order to identify at which point in the installation process the Custom Actions are executed,
the InstallExecuteSequence table must be analyzed. 

Sample’s InstallExecuteSequence table, as seen from the Orca tool



17/37

The actions with sequence number 800 to 1000 are related to costing of the installation, which
is an action to calculate the amount of disk space in which relevant files are to be installed or
removed. Since the cost of installation files are also related to the installation directory, the
relevant directory needs to be configured. As a result, the SetProgramFilesFolder (Sequence
number 999) action is within the costing process and the directory resolution configured in the
Directory table is configured in the CostFinalize action.

Custom Action h54pstl1 is executed right after InstallInitialize, which is a sequence for actual
installation execution. Anything between InstallInitialize and InstallFinalize is part of the
installation activities that will update and change the target system. At this point, the Custom
Action h54pstl1 executes the exported function t5thamku with elevated privileges. 

InstallFiles is an action that places the relevant files in the destination location, which in this
case is the destination set up by Custom Action SetProgramFilesFolder. This file information
is often stored in the Media table, the File table, and the Component table. 

Sample’s File table, as seen from the Orca tool

Reviewing the Media table, the MSI includes the cabinet file Product.cab. However, in the File
Table, the file v514749 has a file size of 0. This indicates a cabinet file exists, but it does not
drop any files during the installation. Even though the directory was configured via
CustomAction and Directory tables, since no files will be dropped, the installation directory
becomes irrelevant. 

https://learn.microsoft.com/en-us/windows/win32/msi/c-gly
https://docs.microsoft.com/en-us/windows/win32/msi/file-installation
https://learn.microsoft.com/en-us/windows/win32/msi/cabinet-files


18/37

Magniber MSI execution snippet, as seen from the Cybereason platform

Magniber MSI infection flow

MatanBuchus Loader

MSI Analysis

MatanBuchus is a Malware-as-a-Service (MaaS) platform developed by the threat actor
BelialDemon and identified on Russian cybercrime forums in early 2021. Operating as a
second-stage malware loader, MatanBuchus contains functionality to download and execute
malicious payloads, run arbitrary PowerShell commands, and conduct stealthy C2 server
communications.

The malware itself has been observed being spread as a ZIP file in phishing emails. This file
contains an HTML file which drops another ZIP file when accessed. This second ZIP file
contains the MSI file that loads the MatanBuchus payload and initiates downloads from its C2
server.

The loader for MatanBuchus payload is confirmed as an MSI file created using WiX through
file metadata analysis. The file itself appears with the subject “Adobe Font Pack 3.0.12.9” and
is signed by “Westeast Tech Consulting, Corp.” in an attempt to masquerade as a legitimate
Adobe file. However, it is notable that the certificate has been invalidated. 

MatanBuchus MSI File Metadata, through the file Unix utility

https://unit42.paloaltonetworks.com/matanbuchus-malware-as-a-service/


19/37

MatanBuchus MSI file digital signature information

As with Magniber, investigating the file's CustomAction values can give a better understanding
of how the file executes. The CustomAction table below contains two actions with the value
226, which is of type 34 with option 192. Custom Action Type 34 executes executables with
the command line, and option 192 allows this execution to run asynchronously. These values
indicate that the files can be executed even if MSI Installer itself fails. Regardless of whether
MSI Installer fails or runs, the following Custom Actions will occur:

regsvr32.exe will install main_dll.
wscript.exe will execute notify_vbs.

MatanBuchus MSI file digital signature information, as seen from the Orca tool

https://learn.microsoft.com/en-us/windows/win32/msi/custom-action-type-34
https://learn.microsoft.com/en-us/windows/win32/msi/custom-action-return-processing-options


20/37

The source is defined as INSTALLLOCATION, which is confirmed through investigation into
the Directory to be the LocalAppDataFolder. 

Directory Information, as seen from the Orca tool

According to the File table below, two files main.dll and notify.vbs will be dropped into the
INSTALLLOCATION directory. As shown in CustomAction table, the command line will
execute each of these files, which replace formatted data types [#main_dll] and [#notify_vbs]
with the actual file path.

File metadata Information, as seen from the Orca tool

The [#main_dll] and [#notify_vbs] will not be replaced with an actual file path unless the
Custom Actions are sequenced after CostInitialize, FileCost, and CostFinalize. The files also
need to be dumped to the directory before executing via Custom Actions. Thus, the actions
need to be executed after InstallInitialize, InstallFiles, and InstallFinalize actions.
Consequently, both RunApplicationQQQ and RunApplicationNotifyVBS are sequenced at the
very end of InstallExecuteSequence. 

https://learn.microsoft.com/en-us/windows/win32/msi/formatted


21/37

Custom Actions placed in the very end of InstallExecuteSequence, as seen from the Orca tool

Since MSI files are COM Structured Storage constructs, it is possible to dump the file’s data
streams via OLE in order to investigate the file further. While the output for initial analysis is
unreadable, several data streams containing significant amounts of data can be observed.



22/37

Matanbuchus MSI file OLE streams

Investigating the fourth data stream reveals that it begins with the ASCII characters (MSCF),
indicating that this stream is a Cabinet Archive (CAB) file. 

Fourth OLE stream data

By dumping this stream and opening the archive, the files (in this case, main.dll and notify.vbs)
are dropped. The file notify.vbs is notable because it contains an error message that appears
related to Adobe Acrobat; this is an attempt to fool the user into believing that a legitimate
Adobe Acrobat file did not run. 

In reality, while this message is displayed to the user once the MSI file is run, MatanBuchus
executes the main.dll file via regsvr32.exe in the background.



23/37

Contents of notify.vbs

Fake error message displayed by notify.vbs

The file main.dll is used by MatanBuchus to load the payload, create C2 connections, and
establish persistence in the exploited system. 

Matanbuchus Attack Tree, as seen from the Cybereason platform



24/37

MatanBuchus MSI infection flow

Qbot / Qakbot

Qbot (also known as Qakbot, Quakbot, and Pinkslipbot) is a modular Trojan that has been in
circulation for over a decade. Its most prevalent campaigns consist of phishing attacks that
attach malicious macros in Office documents, in particular Excel 4.0 macros, to evade
detection. 

The MSI variants of Qbot started circulating in late April 2022, which coincidentally occurred
around the time Microsoft implemented the VBA macro auto block feature, which made it
harder for threat actors to launch successful attacks via macro-enabled malicious documents.

MSI Analysis

According to the file metadata, the file is signed and verified by P.REGO, s.r.o. 

https://www.cisa.gov/stopransomware/qbotqakbot-malware-report
https://www.bleepingcomputer.com/news/security/qbot-malware-switches-to-new-windows-installer-infection-vector/
https://learn.microsoft.com/en-us/deployoffice/security/internet-macros-blocked


25/37

File Signature

Within the Property Table, there were multiple references to VSDNET* properties, which are
.NET components utilized by Visual Studio. 

MSI is known to organize an installation around the concepts of components, which is
essentially an installing application or software. The malware is seen to have two
components. 

Component Table, as seen from the Orca tool

C__FEAF4022223844D1906F79DF588CDB8A: This component has a value
_FEAF4022223844D1906F79DF588CDB8A in KeyPath, which is a primary key into the
Registry, ODBCDataSource or File Table. The KeyPath
_FEAF4022223844D1906F79DF588CDB8A appears to be a primary key of File (1.dll);
this indicates the malware is going to drop a module 1.dll during installation.




File Table, as seen from the Orca tool

https://learn.microsoft.com/en-us/windows/win32/msi/windows-installer-components


26/37

C__653B5566E1394F029FA3A18ACFFE5CC8: Unlike the
C__FEAF4022223844D1906F79DF588CDB8A, this component does not have a
KeyPath value. When the KeyPath value is NULL, then by default the Directory_ value
will be utilized as the KeyPath value, which in this case is TARGETDIR. This component
is for CreateFolder, and it contains references to a directory that needs to be created
explicitly for a particular component. Once emptied during the installation, any
directories created during the installation are removed. This component ensures that the
directory set in TARGETDIR exists during and after the installation. 




CreateFolder Table, as seen from the Orca tool

To understand the behavior of this MSI, inspecting Custom Action is necessary. The
CustomAction table contains four actions; however, the main actions of this malware are
_9BED75AC_30E3_4BB1_9F26_1A4F247F32EF and DIRCA_TARGETDIR. 

1. _9BED75AC_30E3_4BB1_9F26_1A4F247F32EF: Fetch and execute binary
_C212458FE5F810E2D8287472A14C2665

2. DIRCA_TARGETDIR: Sets a target directory (TARGETDIR) to a local appdata directory
(LocalAppDataFolder\ProductName)

Custom Action Table

The first action (_9BED75AC_30E3_4BB1_9F26_1A4F247F32EF) refers to the source
(_C212458FE5F810E2D8287472A14C2665), which is found under the Binary table. 

Binary Table, as seen from the Orca tool

The Custom Action _9BED75AC_30E3_4BB1_9F26_1A4F247F32EF has Type 3590, which
indicates combinations of the type and relevant option. 

https://learn.microsoft.com/en-us/windows/win32/msi/targetdir
https://learn.microsoft.com/en-us/windows/win32/msi/localappdatafolder
https://learn.microsoft.com/en-us/windows/win32/msi/productname


27/37

Type 6: Indicates VBScript stored within the Binary Table. 

Optional Term +3584: Indicates a scheduled execution after the successful completion of
InstallFinalize action.




With further investigation on Custom Action _C212458FE5F810E2D8287472A14C2665, the
VBScript appears to execute dropped module (1.dll) from Component
C__FEAF4022223844D1906F79DF588CDB8A via regsvr32.exe. 

VBScript _C212458FE5F810E2D8287472A14C2665

The second Custom Action DIRCA_TARGETDIR configures the installation directory in the
designated subdirectory (ProductName) of the local AppData directory (LocalAppDataFolder).
The Product Name in this case has been named (SetupTest) as designated in the Property
Table. As a result, DIRCA_TARGETDIR action configures the installation directory as 
(C:\Users\<UserName>\AppData\Local\SetupTest).

Output folder path for installed file(s)

From inspecting the MSI, it is evident that the malware drops a module (1.dll) onto the
subdirectory (SetupTest) of the local appdata directory, which executes it by calling the
VBScript embedded in the Binary table. 

https://learn.microsoft.com/en-us/windows/win32/msi/custom-action-type-6
https://learn.microsoft.com/en-us/windows/win32/msi/custom-action-in-script-execution-options


28/37

QBot Attack Tree, as seen from the Cybereason platform

Qbot MSI infection flow

Comparative Chart

The following chart identifies key points seen in each malware’s MSI behavior introduced in
this chapter. 

Techniques in-use Magniber
Ransomware

MatanBuchus
Loader

Qbot

Set installation directory to
LocalAppDataFolder

✔️ ✔️ ✔️

Dump files to installation directory    
✔️

✔️

Custom Action: Execute executable via
specified command line 

  ✔️  



29/37

Custom Action: Execute PE/script stored in
Binary Table

✔️   ✔️

Execute dumped file in the installation
directory

  ✔️ ✔️

Fake error message   ✔️  

Continuous malicious execution regardless of
MSI failure.

✔️ ✔️  

Comparative Chart

Purple Team

This chapter focuses on key points for possibly identifying a malicious MSI, as well as a tool
which can assist defenders to analyze the MSI files, which has already been leveraged in the
Blue Team section.  

Suspicious Indicators 

There are three malicious indicators that can identify suspicious MSI files: 

1. Mismatch between file detail and digital signature 
2. Misleading errors

3. Suspicious installation path 






30/37

Checkpoints

Mismatch in File Detail and Digital Signature

MSI files often masquerade as legitimate installation software of well known applications.
However, the digital signature for the MSI file does not match with the issuing author, as
shown in the images below. Mismatches between the description or origin of an MSI file and
the digital signature can indicate the file is actually malicious, especially when it purports to be
from a well-known software vendor. 

Magniber Ransomware

Mismatch between the file information and the digital signature

MatanBuchus Loader

Mismatch between the file information and the digital signature

Misleading Errors

Many different types of malware are known to trick victims in various ways. For malware that
utilizes MSI, it is seen to output false error messages either by embedding a script or crashing
the installation. The error message is designed to trick victims into thinking the software



31/37

installation was not successful because the installer or their environment was not configured
properly. The false error outputs can indicate malicious activity. 

Possible error messages

Suspicious Installation Path

Often, the purpose of an MSI is to install software and drop relevant applications onto a disk.
However, when the root destination directory for the installation is set to the local AppData
folder, this can indicate malicious behavior. Legitimate installations usually drop necessary
files under C:\Program Files or C:\Program Files (x86).

Installation directory configuration

In the above image, the malware drops “installation” files into the subfolder (ProductName) of
the local AppData folder (LocalAppDataFolder). 

Tools 

There are tools defenders can use to analyze MSI files. This section introduces some of the
tools and demonstrates their usage. 

Msitools

Msitools are a set of tools that allow developers to create and inspect MSI files. However, the
tools can be also used by defenders to analyze malicious MSI files. There are three main
Msitools that defenders can use: msiinfo, msidump, and msidiff. These tools are command-
line-based, which makes them easier to automate and include in a malware analysis pipeline.

Msiinfo

Msiinfo is a command-line tool that allows users to list and extract streams or tables stored in
the MSI file.

https://learn.microsoft.com/en-us/windows/win32/msi/productname
https://learn.microsoft.com/en-us/windows/win32/msi/localappdatafolder


32/37

As an example, an analyst investigates the relevant MSI file 15f4cfd.msi (Qbot) by executing
the streams command-line option and identifies a binary stored in the Binary Table. In order to
investigate Binary._C212458FE5F810E2D8287472A14C2665, the analyst can dump this
binary stream by utilizing the extract command-line option. 

Output streams with msiinfo 

Msidump

Msidump is also another command-line tool that dumps relevant tables as idt text and streams
stored in an MSI file. The investigative method and use is similar to msiinfo. 

Output streams with msidump

Msidiff

Msidiff is a command-line tool that compares two MSI files by diffing each sample. For
example, an analyst may compare two different installers for its validity using msidiff. To verify
if the two installers are installing and dumping the same files, the analyst can use command-
line option -l to list and compare the files likely to be dumped. 



33/37

List of files from msidiff, from the QBot example

Oledump.py

Oledump.py is a python script created by Didier Stevens that’s mainly utilized to analyze OLE
documents. Since OLE documents are COM Structured Storage, this Python script allows
defenders to analyze the MSI file as well. 

Oledump.py showing streams from 15f4cfd.msi

Each row consists of the following three columns: 

1. Stream Number 
2. Stream Size

3. Stream Name




In most cases, when utilizing MSI file with oledump.py, the stream name is usually
incomprehensible, as shown in the image above.

https://blog.didierstevens.com/programs/oledump-py/


34/37

Oledump.py showing stream 4 detail

By specifying the stream number with “-s” option, the oledump.py dumps the content of the
stream. In the image above, the stream 4 has file header MSCF, which is a header for a CAB
file. 

ORCA

ORCA is a GUI-based Windows SDK component that allows users to edit and view MSI
database tables. An analyst can open the MSI file in question and navigate to each table to
investigate. The GUI makes the process of investigation simpler since it is visually easier to
follow. 

Orca showing CustomAction table

Recommendations

The Cybereason GSOC recommends the following actions to detect and respond to malicious
MSI attacks:



35/37

In the Cybereason platform, enable both the Signature and Artificial Intelligence modes
on the Cybereason NGAV, and enable the Detect and Prevent modes of these features.
Handle files originating from external sources (email, web browsing) with caution.
Contact a Cybereason Defender. The Cybereason MDR team provides custom hunting
queries for detecting specific threats. To find out more about threat hunting and
managed detection and response with the Cybereason Defense Platform, see Managed
Detection and Response.
If you are a Cybereason customer, see the NEST for more information, including custom
hunting queries for detecting this threat.

Cybereason is dedicated to teaming with Defenders to end cyber attacks from endpoints to
the enterprise to everywhere. Learn more about Cybereason XDR, check out our Extended
Detection and Response (XDR) Toolkit, or schedule a demo today to learn how your
organization can benefit from an operation-centric approach to security.



About The Researchers 

Kotaro Ogino, Principal Security Analyst, Cybereason Global SOC

Kotaro Ogino is a Principal Security Analyst with the Cybereason Global SOC team. He is
involved in threat hunting, administration of Security Orchestration, Automation, and
Response (SOAR) systems, and Extended Detection and Response (XDR). Kotaro holds a
bachelor of science degree in information and computer science.

Ralph Villanueva, Senior Security Analyst, Cybereason Global SOC

Ralph Villanueva is a Senior Security Analyst with the Cybereason Global SOC team. He
works hunting and combating emerging threats in the cybersecurity space. His interests
include malware reverse engineering, digital forensics, and studying APTs. He earned his
Master’s Degree in Network Security from Florida International University. 

https://www.cybereason.com/company/contact-us
https://www.cybereason.com/platform
https://www.cybereason.com/services/managed-detection-response-mdr
https://www.cybereason.com/platform/xdr
https://www.cybereason.com/get-the-xdr-toolkit
https://www.cybereason.com/request-a-demo
https://www.cybereason.com/blog/the-cybereason-malop-achieving-operation-centric-security


36/37

Robin Plumer, Security Analyst, Cybereason Global SOC

Robin Plumer is a Security Analyst with the Cybereason Global SOC team. He analyzes and
triages malware operations and researches new and emerging threats. He earned his
Bachelor’s degree in cybersecurity management from Bournemouth University, UK.

About the Author

Cybereason Global SOC Team

The Cybereason Global SOC Team delivers 24/7 Managed Detection and Response services
to customers on every continent. Led by cybersecurity experts with experience working for
government, the military and multiple industry verticals, the Cybereason Global SOC Team
continuously hunts for the most sophisticated and pervasive threats to support our mission to
end cyberattacks on the endpoint, across the enterprise, and everywhere the battle moves.



37/37

All Posts by Cybereason Global SOC Team

https://www.cybereason.com/blog/authors/cybereason-global-soc-team

