KoiVM Loader Resurfaces With a Bang

W labs.k7computing.com/index.php/koivm-loader-resurfaces-with-a-bang/

By Rahul R December 2, 2022

USER CREDENTIALS
+ >

We at K7 Labs recently found an interesting new .NET loader which downloads and
executes KoiVM virtualized binary, which in turn drops Remcos RAT and Agent Tesla
based on the availability of its C2. The samples under consideration uses hastebin URLs
as its C2 server to download the next stage payloads. The overall flow of this multistage
malware can be observed in the following flow diagram.

1/12

https://labs.k7computing.com/index.php/koivm-loader-resurfaces-with-a-bang/
https://github.com/Loksie/KoiVM-Virtualization#koivm
https://hastebin.com/about.md

Trojan Downloader
Spam Email

. A\
: Dreps} g}

Downloads two KaiviM
payloads and executes it

J Downloac&

KoivM payloadl KoivM payload2 Stage - 2
dropping Agent Tesla dropping Remcos RAT KoiVM Droppers

Dropsl/
ﬁ.gentTeslaSteaLerl v I | v IRemcos RAT S‘tage -3

Figure 1: Execution Flow

The initial downloader is dropped through spam emails containing attachments of the
names “New Orders.zip” or “Export Invoice — 8026137.zip”. The Zip contains a .NET
executable with the same name as the Zip file and disguises itself as a calculator
application. However, it is actually a multistage downloader.

Stage -1

Downloader

Mew Orders.zip

- _— — . Property Value
B tew Orders.zip ievaluation Cop) - O Comments
File Commands Tools Favorites Options Help CompanyMame
------ = o 4 FileDescriptien Calculator
W E Eme
FileVersion 1.0.0.0

Add Extract To Test View Delete Find Wizard

T |m Mew Orders.zip - ZIP archive, unpacked size 19368 bytes

-~

Mame Size Packed Type

2= Mew Crders.exe 19968

Figure 2: Original Name of Downloader

Stage-1 (Downloader Analysis)

IntzrnalMamsz
LegalCopyright
LegalTrademarks

File folder
2,090 Applicaten :>1Origina|ﬁ|ename

ProductMame

PreductVersizn

Calculator.exe

Copyright @ 2016

Calculator.exe
Calculatar

1.0.0.0

The downloader initially starts to decode the C2 using an interesting decoding routine

given below.

Figure 3: C2 decoding routine

Each character of the C2 string is XOR’ed with the index value of the corresponding
character to obtain the C2 address. We can easily mimic this in Python using the code
given below.

urnrn

Code to decode C2 URL’s

aurrn

c2servers = ""
decoded = r'"huvsw?)
("hy\ueoe7fioga>r}~;gw 7w{huwquISW\u@OOfLQRW[\u0013\u6e05\u@004DL]
[US[]\uB01aVYZ\ube17K[L\u®O13A_N5,7!1<)"
for ¢ in range(@, len(decoded)):

c2servers += chr(ord(decoded[c]) ~ c)
print(c2servers.replace(",", "\n"))

Extracted C2’s:

hxxps://hastebin[.]com/raw/nasijojiru
hxxps://hastebin[.]com/raw/caqumubuyo

Once the C2 address is decoded, it sends a GET request to download the encoded 2nd
stage KoiVM Droppers. After receiving the response from the server, the downloader starts
its multistage decoding routine. It base64 decodes the response and decompresses it in
memory using the DeflateStream class. The resultant buffer is XORed with the hardcoded
key in the stage-1 downloader “M4use” to get the final decoded stage-2 KoiVM dropper
binaries.

(joeBidenLirk);

ontent, joeBlder i + joeBldenIdk. 13
denContent, joeE - joeBidenIdk. » joeBidenIdk.
nIdk

denLink =
(joeBidenContent, joeBidenPw);

Decoding routine

[] Dr3w, Mont1)

) (Mont1[i # Montl.

Figure 4: Payload decoding flow

3/12

Stage2 (Virtualized Droppers)

:'l_l‘@g?:'{:ade‘ File Name C\Users\ I Desktop\VM-Read\Blog\stage2
& Nt Headers File Type Portabl
A File Header =
File Inf
B Otiorsal Hoader ile Info Mo mat
& Data Directories [x] File Size 430.50
— (5 Section Headers] PE Size 430.50
= |2) Resource Directony
[I NET Directory Created Friday 2|
Modified Friday 2|
ssed Tuesda
MD5 859E|
SHA-1 T
Property ' Vi
5 #blob Comments
I :" Address Cu“:ter Companyhame
| @) Hex Editor FileDescription RunpeX.Stub.Framework
— ‘-:l,, Identifier FileVersion 1.0.0.0
— "k Import Adder
L ~'\)Gud‘ Disassembiler InternalMame RunpeX.Stub.Framework.exe
— @), Rebuilder : ;
- LegalCopyright Copyright © 2022
L— %, Resource Editor
3 LegalTrademarks
OriginalFilename RunpeX.Stub.Framework.exe
ProductName RunpeX.Stub.Framework
ProductVersion 1.0.0.0

Figure 5: KoiVM Dropper

The stage-2 payload is highly obfuscated and virtualized with KoiVM. It is used along with
ConfuserEx to virtualize the execution of the sample. It changes all the IL-Instruction to the
byte format understandable only by the KoiVM Runtime.

As stated in KoiVM Readme, virtualization with KoiVM can be done in two ways

1. Virtualize only the methods which we select
2. Virtualize all the functions including ConfuserEx integrity protection

The stage-2 dropper payloads had chosen the 2" option to virtualize all the functions,
which made our analysis harder. Since Win32API and structs are accessed using PInvoke
in C# and it can’t be virtualized or obfuscated, we were able to identify the API's and
correlate the behavior of this KoiVM dropper. The sample imports all the API’s which are
required for Process Injection and In-memory execution.

4/12

https://github.com/yck1509/ConfuserEx
https://github.com/Loksie/KoiVM-Virtualization#:~:text=first%20one%20is%20certainly%20ridiculous%20as%20it%20will%20%22merge%22%20with%20cex%20and%20virtualize%20every%20single%20method%2C%20including%20protections%20from%20ConfuserEX%2C%20however%20note%20that%20this%20might%20KILL%20your%20performan

ort({"kernel32.d11", EntryPoint "CreateRemoteThread”)]

rt("kernel32.d11", EntryPoint = "Wow64GetThreadContext™)

[D11Import(“ntdll.d11", EntryPoint = ™
(

Figure 6: Imports accessed through Plnvoke
The encoded stage-3 payload is found in the resource section of the KoiVM binary. On
analyzing the blob, we found an interesting string pattern which seems to be repeating.
When Null bytes are XOR’ed with a key, the resultant value is the key itself. Since the 3™
stage payload has many NULL bytes we are able to extract the XOR key used for
decoding. Similarly, the KoiVM sample downloaded from the other hastebin URL (second
C2 address) had a similar pattern. There are two different final 3" stage payloads which
are dropped based on the C2 address accessed , of which the first binary is XOR decoded
using the key “Jus3ify” and the second binary is XOR decoded using the key “Monito3“.

5/12

BEEM_HARFS PERFECT ASSHOLE

SemcCh) 00 03 03 %3 #4 OF D6 U7 0O 0P
} 55 83
€3 18 0
58 5B

Mt by i vl
stvirn nud] Brytars st
wrareled

75 71 33 &6 66 TH

Froes Haa

At
b3c-14 2 L T .'--".'.5¢“7""ll

OB F3 TH AT 5T B9 4D BB QA AL %6 8E 53 7C 55

IF T TE 54 75 ME 4B 0% T8 A5 ST 53 30 54 33 40 e TusE.u0.3 Ui

iF BE &F T4 E3 33 4D &F QE 58 10 SZ 5B 7C 17 BF olocdio.X.”

& 4% Er 6F CF S E4 58 M8 &L A3 TC M@ OSF P48 LG boedetd

'3 02 ES SF £ 58 C4 SE &7 TC DT SF DS 45 AF 02 a.dcAkcs -_l:‘-!

19 S RS 38 AC BL 38 7F 77 L 41 46 3T 03 03 30 wIKeT: . whAME,
E 5B I8 2043 7F 1B SC T 46 FE 01 €D 5C 4k SR . [.]C..\Of0. Z

M BE DB T4 83 5T 9% 4D 6D OA BS 56 32T 50 T4 55 FRloremis.ovrPed

1T LB L4 3L 4B 13 08 D1 L8 OF 53 A8 S5 83 e ww(TSA. B8O | [T Kl presening
IF B8 ID 4F 0B 08 C% 54 OF 52 BB 54 DF 76 57 55 OUD-0..ETIR TéwD

S A8 33 oF 11 83 14 33 EC &3 33 4D &F 4F 8% 4 git el

iF 33 4D £F #E &5 74 &6F 33 4D &F X &% 74 &F 33

D &F &% &9 T4 &F 33 4D EF &L &F T4 &F 33 40 &7

IE &% T4 £F %3 4D &F 4EF &% T4 &F 33 4D &F d4E 69

' BF 3D AD EF &E &3 T4 6F ¥] 4D §F &L &% 74 6F

13 4D EF £F €5 74 &F 33 4D £F & £0 74 EF 31 4D

Figure 7: Decoded stage-3 payloads

1 o &5
i LT
&F o Fars) rnal atage § &y e
- parytoud ronlwrt 1 D A
B FEY 3 o
Ak TH 7D NN b b B0 b TROTD ORD A s M
o I | 8 0 AL T OTH DD S0 B D 4R
3 ORI Ry 4
W AL &8 Wi T
Output . Viealdecded binary
progran Casrat BT Dir mofe
3 B N - i

The key can also be identified by debugging the KoiVM Runtime using dnSpyEx and
stepping into the yielder function “Selectlterator” as shown in image below. We were able
to view payload data and key as plaintext because all functions of KoiVM dropper binary

are only virtualized and not the calls to string methods.

6/12

https://github.com/dnSpyEx

, > < > predicatel, Fun

At memedd eadnd et 00 oA e a B ar

Value
.k

(0=x0000000000000000

{Byte (_k, Byte, Int32)}

(04000007 FE90265EL

(0:400000000000000¢
.k

Jus3ify

XOR Key loaded in
memory

num = index;
index = (pum + 1);

selector(tsource, index);

> enumerator =

Yalue
[Dn00036800]
(a0 7
Mhc2F
0xE3
033
XOR decoded binary G A
(habit
(a7
(et A
i1
i3
033
(8

Figure 9: XOR decoded payload in memory

Stage 3

Agent Tesla

Using Detect it Easywe were able to identify that stage-3 payload is obfuscated with .Net
Reactor, thus we used .NetSlayer to de-obfuscate the sample to analyze further.

https://github.com/horsicq/Detect-It-Easy
https://github.com/SychicBoy/NETReactorSlayer

Net Reacter

Figure 10: Trying to de-virtualize using .NET Slayer

The tool was not able to completely de-obfuscate the sample, for example we could see
that the Agent Tesla binary has implemented control flow flattening, but the tool was not
able to unflatten it. The strings are present in raw hex form using string interning.

hile (num != 4)
s
L

[ila"H

-

£

if (num ==

now =

num

Figure 11: Control flow flattening implemented in

- now;

intPtr;

Agent Tesla

8/12

The Agent Tesla malware has the capability to log keystrokes, steal browser cookies and
crypto wallets and send it to C2. All the strings are saved as raw bytes by using string
interning and they are accessed with respective index and length using a class method.

Figure 12: Configuration stored using string interning
On dumping the strings, we got a configuration file and confirmed it as Agent Tesla
malware.

mult :|'_:-._||'I_.-".":||"r. data; L|r_:-|_|."1r_ltir'!,' Content [le'-.[_:-:_l'. ition: fore data; names="

{1}Content-Di ion: form-data; name="{8}";

filename="{1}"
Content-Type:

Time: MM/ dd iy HH : mm r Name: Computer Mame: OSFullMName: CPU: RAM: IP Add
Figure 13: Tesla Configuration
Agent Tesla is an info stealing malware, which collects keystrokes, browser cookies, and
system information. The collected data is sent as an attachment to a mail id —
peterashley202@gmail[.Jcom.

Remcos RAT

9/12

On viewing the strings from stage-2 payload (the KoiVM payload2 from the second
hastebin URL), we were able to identify the final payload to be Remcos RAT which was
confirmed by extracting the configuration from KoiVM payload2’s resource section.

o oo O

SH D5 ®
= I~ I]
el = ol =
e S S
= I~ I
fo s L
]

align 1eh
db "Inj’,®

align 4

db 'User’,@ 3 DATA XREF:
align 1eh

db 'Access Level: ',@ 3 DATA XREF
alien 18K

« Figure 14:

The RC4 encrypted configuration of Remcos RAT is saved in the resource section as

BB WP

n1 2 3 4 5 & 7 & 9

A=ciil

2e45464C

BAAGABAC

BaA61865

8464865 alser

PB46486D

pE4AE4ATE aAccesslevel
ARARARTF
Remcos Agent String
“SETTINGS”.

Off=et
aooooonn
noooooln
aooooozo
noooooan
nooooo4o
nooooosn
noooooan
aooooo?n
noooooan
aooooo9n
noooooAn
aoooooen
nooooocn
aooooonn
noooooEn
nooooorFo
nooooilnn

Figure 15: Remcos RAT encrypted config stored in
The first byte in the configuration file is the length of RC4 key(n). The next n bytes are the

65 DF 11 AC F4
0A 71 F8 68 F&
39 14 CBE 34 34 40

resource

RC4 key followed by the payload bytes.

cl4-all ozldld' o
gehd; I TTEEkU] i
9-F: 4@0TH-8R; 7 . ¢
Plceli. | a&—inEs
aR7u7 CEIIN 211
Dalig Helkr—&7 i1
svd Eljac®{: II!
HIIL ozHizsiy. &0
g0 »yiialli
AvID"HleC+Uo9ks
X REO o io. 7
- OE1Y-S4s=00itm
i 1A 1B k-
“t1d 9®EeDAp pl:
1IN 41 A0b<FRész 1
vhr, 33 . J:afa 1~

E.HE ~dg]}-oS1Ew

10/12

F4 CF 8SF 1C Fa ET7
F5 3R _RR 49 DD _AE

D
RC4 Key 3

eff.~0I¥.6¢Ia.A ¢
.qehé:¢ IYERET™ ;
9.E:4@0IH.®6:7. 7
“gEIi.!.aé.n.Fe
"R7u7 0B5.¥.az21%
aUa-3260kp.87; 4
d va . Efiac®{}.I,*
48 CC CC 4C 1F F2 E6 48 69 32 53 94 25 20 FO D1 HIIL.deHi2s"3: &0
27 A5 30 21 90 20 3E 29 EC 69 61 32 &C 05 A8 EF '¥0!. >)iia2l."i
90 CO 79 9B DO 22 4E 83 65 12 4F 10 DA 39 BD A5 .Av:@"Nfe.C.U%¥
EC 08 58 20 3F C3 58 D3 AA AF F2 FD CD 08 BT 3F i.X ?ANG= ayi.-?
AD 01 D4 C2 26 BC F7 E4 11 0B 07 51 08 BF B2 Fe ..0Ethzd...Q.:%0
Bl 76 F1 5C 23 295 C2 86 97 42 BF 6B 1B 77 08 BE +vA\$+At—Bik.w.X
©.1d" 9@E°Dan.p.;

S uu Le e Zs o

96 94 SE F4 DC 6B

«H3~4!1ACh<F.&szk
FD 36 23 1A ¥6>,83 Jrafaz.®™.
CE 00) . 58 77 E.HE /aq]l..5-Xw
D TE RC4 encrypted configuration A 19 .6.q0380% ‘Y yz.
07 44 E7 38 .D—k-,. ., 0XN-f¥gs
84 BD CO 4B 5%84a. U117 i§.=AK
BE CB 66 LF 20 Bl 2C 5& AD EI T . T R

T + f=3 -

10 76 DC 2D SE 22 C2 BE ED D: " OmE fon 8l oas
TB TC BA BE ?1 51 76 D2 53 Ti From Hax P n G4 EQ 63 AE 7B TD BF 49 82 B9 48 CC OC &C 1F F2 E6 48 65 32 53 94 25 30 FO D1 27 AS 3

21 %2 20 3E 29 EC &9 61 32 60 05 A2 EF 90 (@ 79 58 D@ 22 4E 83 65 12 4F 10 D& 39 B0 AS
EC 82 58 20 3F (3 S8 D3 AR AF F2 FD CD 98 B7 3F AD @1 D4 C% BE BC F7 E4 11 0@ €7 51 @8

:‘ﬂ.‘t.r BF B FE B1 76 F1 5C I3 95 C} 85 97 42 BF 6B 1B 77 88 BE B4 18 &(64 92 39 Af CE BA 44
ue B B5 90 78 7F 3B 55 4 64 58 34 21 €5 &F 62 3C 46 O £8 73 74 &9 FD 36 3E 6 F5 33 20
44 JE E2 66 61 F7 50 93 14 CB 00 48 EB 20 2F 26 71 5D 7D 17 @8 53 96 S8 77 AD F& OF 64
RC4 & n e
Output weou: B0 @
'5:;',"'1’3"13 37 Al BE A2 76 E1 1D c9 gc HER” I:ra.111.234.113:5535:1|... [T =TT P 1 (R [P0 R P DO R YR | D (e

Latinl

atini ;
Lt 15700101 2000007 . . 209012 3100000070 0ve. . _* Wi .t nis. . B. R “geck
i Symata, Ka:7E us)p=0A. . DbgvAD=AZE <. @

€. uoet0PWagu. sBsyh. ... " E. . 58]18]5. | 120 Magh. &, skbd),

Figure 16: Remcos Configuration

Remcos RAT steals browser cookies, takes current window screenshots and sends it to
the C2 present in Configuration. It establishes a listener connection with the C2 and waits
for the attacker to send commands to execute.

We at K7 Labs provide detection against latest threats and also for this newer variant of
Loader. Users are advised to use a reliable security product such as “K7 Total Security”
and keep it up-to-date so as to safeguard their devices.

I0Cs
Filename MD5 Hash K7 Detection
Name
Stage1
Loader 908A565A9041D68A2FEAB1329D4C42B4 Trojan-

Downloader (
00599fcf1)

Stage2 (KoiVM)

Tesla 859E6D2588B14AA298F22F3E70043C69 Trojan (
DropperRemcos 3A62051DD210BC85C93BF343DCDSACAD 0058ba9a1)
Dropper Trojan (

0058ba9a1)

11/12

Stage3 (Stealer)

Agent Tesla 77047DAC5FEG958A3C7CIO9DD1DEO8C854 Spyware (
Remcos RAT 40B71E34E832DEACFFB9589F2BB87323 005818971)
Trojan (

0053ac2c1)

C2

hxxps://hastebin[.Jcom/raw/nasijojiru — Agent Tesla

hxxps://hastebin[.Jcom/raw/caqumubuyo — Remcos RAT

IP

172.111.234[.]110:5888

12/12

