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We at K7 Labs recently found an interesting new .NET loader which downloads and
executes KoiVM virtualized binary, which in turn drops Remcos RAT and Agent Tesla
based on the availability of its C2. The samples under consideration uses hastebin URLs
as its C2 server to download the next stage payloads. The overall flow of this multistage
malware can be observed in the following flow diagram.
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https://labs.k7computing.com/index.php/koivm-loader-resurfaces-with-a-bang/
https://github.com/Loksie/KoiVM-Virtualization#koivm
https://hastebin.com/about.md
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Figure 1: Execution Flow

The initial downloader is dropped through spam emails containing attachments of the
names “New Orders.zip” or “Export Invoice — 8026137.zip”. The Zip contains a .NET
executable with the same name as the Zip file and disguises itself as a calculator
application. However, it is actually a multistage downloader.
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Figure 2: Original Name of Downloader

Stage-1 (Downloader Analysis)
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The downloader initially starts to decode the C2 using an interesting decoding routine

given below.



Figure 3: C2 decoding routine

Each character of the C2 string is XOR’ed with the index value of the corresponding
character to obtain the C2 address. We can easily mimic this in Python using the code
given below.

urnrn

Code to decode C2 URL’s

aurrn

c2servers = ""
decoded = r'"huvsw?)
( "hy\ueoe7fioga>r}~;gw 7w{huwquISW\u@OOfLQRW[\u0013\u6e05\u@004DL ]
[US[]\uB01aVYZ\ube17K[L\u®O13A_N5,7!1<)"
for ¢ in range(@, len(decoded)):

c2servers += chr(ord(decoded[c]) ~ c)
print(c2servers.replace(",", "\n"))

Extracted C2’s:

hxxps://hastebin[.]com/raw/nasijojiru
hxxps://hastebin[.]com/raw/caqumubuyo

Once the C2 address is decoded, it sends a GET request to download the encoded 2nd
stage KoiVM Droppers. After receiving the response from the server, the downloader starts
its multistage decoding routine. It base64 decodes the response and decompresses it in
memory using the DeflateStream class. The resultant buffer is XORed with the hardcoded
key in the stage-1 downloader “M4use” to get the final decoded stage-2 KoiVM dropper
binaries.
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Figure 4: Payload decoding flow
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Stage2 (Virtualized Droppers)
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Figure 5: KoiVM Dropper

The stage-2 payload is highly obfuscated and virtualized with KoiVM. It is used along with
ConfuserEx to virtualize the execution of the sample. It changes all the IL-Instruction to the
byte format understandable only by the KoiVM Runtime.

As stated in KoiVM Readme, virtualization with KoiVM can be done in two ways

1. Virtualize only the methods which we select
2. Virtualize all the functions including ConfuserEx integrity protection

The stage-2 dropper payloads had chosen the 2" option to virtualize all the functions,
which made our analysis harder. Since Win32API and structs are accessed using PInvoke
in C# and it can’t be virtualized or obfuscated, we were able to identify the API's and
correlate the behavior of this KoiVM dropper. The sample imports all the API’s which are
required for Process Injection and In-memory execution.
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https://github.com/yck1509/ConfuserEx
https://github.com/Loksie/KoiVM-Virtualization#:~:text=first%20one%20is%20certainly%20ridiculous%20as%20it%20will%20%22merge%22%20with%20cex%20and%20virtualize%20every%20single%20method%2C%20including%20protections%20from%20ConfuserEX%2C%20however%20note%20that%20this%20might%20KILL%20your%20performan

ort({"kernel32.d11", EntryPoint "CreateRemoteThread”)]
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Figure 6: Imports accessed through Plnvoke
The encoded stage-3 payload is found in the resource section of the KoiVM binary. On
analyzing the blob, we found an interesting string pattern which seems to be repeating.
When Null bytes are XOR’ed with a key, the resultant value is the key itself. Since the 3™
stage payload has many NULL bytes we are able to extract the XOR key used for
decoding. Similarly, the KoiVM sample downloaded from the other hastebin URL (second
C2 address) had a similar pattern. There are two different final 3" stage payloads which
are dropped based on the C2 address accessed , of which the first binary is XOR decoded
using the key “Jus3ify” and the second binary is XOR decoded using the key “Monito3“.
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Figure 7: Decoded stage-3 payloads
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The key can also be identified by debugging the KoiVM Runtime using dnSpyEx and
stepping into the yielder function “Selectlterator” as shown in image below. We were able
to view payload data and key as plaintext because all functions of KoiVM dropper binary

are only virtualized and not the calls to string methods.
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https://github.com/dnSpyEx
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Figure 9: XOR decoded payload in memory

Stage 3

Agent Tesla

Using Detect it Easywe were able to identify that stage-3 payload is obfuscated with .Net
Reactor, thus we used .NetSlayer to de-obfuscate the sample to analyze further.



https://github.com/horsicq/Detect-It-Easy
https://github.com/SychicBoy/NETReactorSlayer

Net Reacter

Figure 10: Trying to de-virtualize using .NET Slayer

The tool was not able to completely de-obfuscate the sample, for example we could see
that the Agent Tesla binary has implemented control flow flattening, but the tool was not
able to unflatten it. The strings are present in raw hex form using string interning.
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Figure 11: Control flow flattening implemented in
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Agent Tesla
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The Agent Tesla malware has the capability to log keystrokes, steal browser cookies and
crypto wallets and send it to C2. All the strings are saved as raw bytes by using string
interning and they are accessed with respective index and length using a class method.

Figure 12: Configuration stored using string interning
On dumping the strings, we got a configuration file and confirmed it as Agent Tesla
malware.

mult :|'_:-._||'I_.-".":||"r. data; L|r_:-|_|."1r_ltir'!,' Content [le'-.[_:-:_l'. ition: fore data; names="

{1}Content-Di ion: form-data; name="{8}";

filename="{1}"
Content-Type:

Time: MM/ dd iy HH : mm r Name: Computer Mame: OSFullMName: CPU: RAM: IP Add
Figure 13: Tesla Configuration
Agent Tesla is an info stealing malware, which collects keystrokes, browser cookies, and
system information. The collected data is sent as an attachment to a mail id —
peterashley202@gmail[.Jcom.

Remcos RAT
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On viewing the strings from stage-2 payload (the KoiVM payload2 from the second
hastebin URL), we were able to identify the final payload to be Remcos RAT which was
confirmed by extracting the configuration from KoiVM payload2’s resource section.
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The RC4 encrypted configuration of Remcos RAT is saved in the resource section as

BB WP

n1 2 3 4 5 & 7 & 9

A=ciil

2e45464C

BAAGABAC

BaA61865

8464865 alser

PB46486D

pE4AE4ATE aAccesslevel
ARARARTF
Remcos Agent String
“SETTINGS”.

Off=et
aooooonn
noooooln
aooooozo
noooooan
nooooo4o
nooooosn
noooooan
aooooo?n
noooooan
aooooo9n
noooooAn
aoooooen
nooooocn
aooooonn
noooooEn
nooooorFo
nooooilnn

Figure 15: Remcos RAT encrypted config stored in
The first byte in the configuration file is the length of RC4 key(n). The next n bytes are the
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Figure 16: Remcos Configuration

Remcos RAT steals browser cookies, takes current window screenshots and sends it to
the C2 present in Configuration. It establishes a listener connection with the C2 and waits
for the attacker to send commands to execute.

We at K7 Labs provide detection against latest threats and also for this newer variant of
Loader. Users are advised to use a reliable security product such as “K7 Total Security”
and keep it up-to-date so as to safeguard their devices.

I0Cs
Filename MD5 Hash K7 Detection
Name
Stage1
Loader 908A565A9041D68A2FEAB1329D4C42B4 Trojan-

Downloader (
00599fcf1 )

Stage2 (KoiVM)

Tesla 859E6D2588B14AA298F22F3E70043C69 Trojan (
DropperRemcos 3A62051DD210BC85C93BF343DCDSACAD 0058ba9a1 )
Dropper Trojan (

0058ba9a1 )
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Stage3 (Stealer)

Agent Tesla 77047DAC5FEG958A3C7CIO9DD1DEO8C854  Spyware (
Remcos RAT 40B71E34E832DEACFFB9589F2BB87323 005818971 )
Trojan (

0053ac2c1)

C2

hxxps://hastebin[.Jcom/raw/nasijojiru — Agent Tesla

hxxps://hastebin[.Jcom/raw/caqumubuyo — Remcos RAT

IP

172.111.234[.]110:5888
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