
1/20

Dominik Reichel, Esmid Idrizovic, Bob Jung December 2, 2022

Blowing Cobalt Strike Out of the Water With Memory
Analysis

unit42.paloaltonetworks.com/cobalt-strike-memory-analysis/

By Dominik Reichel, Esmid Idrizovic and Bob Jung

December 2, 2022 at 6:00 AM

Category: Malware

Tags: Cloud-Delivered Security Services, Cobalt Strike, Cortex XDR, Evasive Malware,
KoboldLoader, LithiumLoader, MagnetLoader, memory detection, Sandbox, WildFire

This post is also available in: 日本語 (Japanese)

Executive Summary

Unit 42 researchers examine several malware samples that incorporate Cobalt Strike
components, and discuss some of the ways that we catch these samples by analyzing
artifacts from the deltas in process memory at key points of execution. We will also discuss
the evasion tactics used by these threats, and other issues that make their analysis
problematic.

https://unit42.paloaltonetworks.com/cobalt-strike-memory-analysis/
https://unit42.paloaltonetworks.com/author/dominik-reichel/
https://unit42.paloaltonetworks.com/author/esmid-idrizovic/
https://unit42.paloaltonetworks.com/author/bob-jung/
https://unit42.paloaltonetworks.com/category/malware-2/
https://unit42.paloaltonetworks.com/tag/cloud-delivered-security-services/
https://unit42.paloaltonetworks.com/tag/cobalt-strike/
https://unit42.paloaltonetworks.com/tag/cortex-xdr/
https://unit42.paloaltonetworks.com/tag/evasive-malware/
https://unit42.paloaltonetworks.com/tag/koboldloader/
https://unit42.paloaltonetworks.com/tag/lithiumloader/
https://unit42.paloaltonetworks.com/tag/magnetloader/
https://unit42.paloaltonetworks.com/tag/memory-detection/
https://unit42.paloaltonetworks.com/tag/sandbox/
https://unit42.paloaltonetworks.com/tag/wildfire/
https://unit42.paloaltonetworks.jp/cobalt-strike-memory-analysis/


2/20

Cobalt Strike is a clear example of the type of evasive malware that has been a thorn in the
side of detection engines for many years. It is one of the most well-known adversary
simulation frameworks for red team operations. However, it’s not only popular among red
teams, but it is also abused by many threat actors for malicious purposes.

Although the toolkit is only sold to trusted entities to conduct realistic security tests, due to
source code leaks, its various components have inevitably found their way into the arsenal of
malicious actors ranging from ransomware groups to state actors. Malware authors abusing
Cobalt Strike even played a role in the infamous SolarWinds incident in 2020.

Related Unit 42 Topics Cobalt Strike, Sandbox

Table of Contents

Overview of Cobalt Strike
 KoboldLoader SMB Beacon

 In-Memory Evasion
 MagnetLoader

 LithiumLoader
 LithiumLoader Detection Issues

 Catching Cobalt Strike Through Analyzing Its Memory
 Automatic Payload Extraction

 Function Pointer Data
 OS Structure Modifications

 Page Permissions
 Conclusion

 Indicators of Compromise
 Appendix

Overview of Cobalt Strike

The main driver for the proliferation of Cobalt Strike is that it is very good at what it does. It
was designed from the ground up to help red teams armor their payloads to stay ahead of
security vendors, and it regularly introduces new evasion techniques to try to maintain this
edge.

One of the main advantages of Cobalt Strike is that it mainly operates in memory once the
initial loader is executed. This situation poses a problem for detection when the payload is
statically armored, exists only in memory and refuses to execute. This is a challenge to many
security software products, as scanning memory is anything but easy.

https://www.cobaltstrike.com/
https://unit42.paloaltonetworks.com/solarstorm-supply-chain-attack-timeline/
https://unit42.paloaltonetworks.com/tag/cobalt-strike/
https://unit42.paloaltonetworks.com/tag/sandbox/


3/20

In many cases, Cobalt Strike is a natural choice for gaining an initial footprint in a targeted
network. A threat actor can use a builder with numerous deployment and obfuscation options
to create the final payload based on a customizable template.

This payload is typically embedded into a file loader in encrypted or encoded form. When the
file loader is executed by a victim, it decrypts/decodes the payload into memory and runs it.
As the payload is present in memory in its original form, it can be detected easily due to
some specific characteristics.

As malware researchers, we often see potentially interesting malicious samples that turn out
to just be loaders for Cobalt Strike. It’s also often unclear if a loader was created by a red
team or a real malicious actor, thus making attribution even more challenging.

In the next few sections, we’re going to take a closer look into three different Cobalt Strike
loaders that were detected out of the box by a new hypervisor based sandbox we designed
to allow us to analyze artifacts in memory. Each sample loads a different implant type,
namely an SMB, HTTPS and stager beacon. We dubbed these Cobalt Strike loaders
KoboldLoader, MagnetLoader and LithiumLoader. We will also discuss some of the methods
we can use to detect these payloads.

KoboldLoader SMB Beacon

The sample we’re looking at was detected during a customer incident.

SHA256: 7ccf0bbd0350e7dbe91706279d1a7704fe72dcec74257d4dc35852fcc65ba292

This 64-bit KoboldLoader executable uses various known tricks to try to bypass sandboxes
and to make the analysis process more time consuming.

To bypass sandboxes that hook only high-level user mode functions, it solely calls native API
functions. To make the analyst's life harder, it dynamically resolves the functions by hash
instead of using plain text strings. The malware contains code to call the following functions:

NtCreateSection
NtMapViewOfSection
NtCreateFile (unused)
NtAllocateVirtualMemory (unused)
RtlCreateProcessParameters
RtlCreateUserProcess
RtlCreateUserThread
RtlExitUserProcess

The malware creates two separate tables of function hash/address pairs. One table contains
one pair for all native functions, while the second table only pairs for Nt* functions.



4/20

For the Rtl* functions that were used, it loops through the first table and searches for the
function hash to get the function address. For the Nt* functions that were used, it loops
through the second table and simultaneously increases a counter variable.

When the hash is found, it takes the counter value that is the system call number of the
corresponding native function, and it enters a custom syscall stub. This effectively bypasses
many sandboxes, even if the lower level native functions are hooked instead of the high-level
ones.

The overall loader functionality is relatively simple and uses mapping injection to run the
payload. It spawns a child process of the Windows tool sethc.exe, creates a new section and
maps the decrypted Cobalt Strike beacon loader into it. The final execution of the Cobalt
Strike loader that in turn loads an SMB beacon happens by calling RtlCreateUserThread.

You can find the decrypted beacon configuration data in the Appendix section.

In-Memory Evasion

With our new hypervisor-based sandbox, we were able to detect the decrypted Cobalt Strike
SMB beacon in memory. This beacon loader even uses some in-memory evasion features
that create a strange sort of chimeric file. While it’s actually a DLL, the “MZ'' magic PE bytes
and subsequent DOS header are overwritten with a small loader shellcode as shown in
Figure 1.

Figure 1. Disassembled Cobalt Strike beacon loader shellcode.
The shellcode loader jumps to the exported function DllCanUnloadNow, which prepares the
SMB beacon module in memory. To do this, it first loads the Windows pla.dll library and
zeroes out a chunk of bytes inside its code section (.text). It then writes the beacon file into
this blob and fixes the import address table, thus creating an executable memory module.

During the analysis of the file, we could figure out some of the in-memory evasion features
that were used, as shown in Table 1.

https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/malleable-c2-extend_pe-memory-indicators.htm#_Toc65482856


5/20

Evasion
feature Description

Used
in our
sample

allocator Set how beacon's ReflectiveLoader allocates memory for the
agent. Options are: HeapAlloc, MapViewOfFile and
VirtualAlloc.

No

cleanup Ask beacon to attempt to free memory associated with the
reflective DLL package that initialized it.

Yes

magic_mz_x64 Override the first bytes (MZ header included) of beacon's
reflective DLL. Valid x86 instructions are required. Follow
instructions that change CPU state with instructions that undo
the change.

Yes

magic_pe Override the PE character marker used by beacon's
ReflectiveLoader with another value.

No

module_x64 Ask the x86 reflective loader to load the specified library and
overwrite its space instead of allocating memory with
VirtualAlloc.

Yes

obfuscate Obfuscate the reflective DLL’s import table, overwrite unused
header content, and ask ReflectiveLoader to copy beacon to
new memory without its DLL headers.

Yes

sleep_mask Obfuscate beacon and its heap, in-memory, prior to sleeping. No

smartinject Use embedded function pointer hints to bootstrap beacon
agent without walking kernel32 Export Address Table (EAT).

No

stomppe Ask ReflectiveLoader to stomp MZ, PE and e_lfanew values
after it loads beacon payload.

No

userwx Ask ReflectiveLoader to use or avoid read, write or execute
(RWX) permissions for Beacon DLL in memory.

No

Table 1. Cobalt Strike evasion techniques that were used.

To sum up, the beacon loader and the beacon itself are the same file. Parts of the PE header
are used for a shellcode that jumps to an exported function, which in turn creates a module
of itself inside a Windows DLL. Finally, the shellcode jumps to the entry point of the beacon
module to execute it in memory.

As discussed, there is no way for us to detect this beacon of our KoboldLoader sample
successfully unless we can peer inside memory during execution.

MagnetLoader



6/20

The second loader we will look into is a 64-bit DLL that imitates a legitimate library.

SHA256: 6c328aa7e0903702358de31a388026652e82920109e7d34bb25acdc88f07a5e0

This MagnetLoader sample tries to look like the Windows file mscms.dll in a few ways, by
using the following similar features:

The same file description
An export table with many of the same function names
Almost identical resources
A very similar mutex

These features are also shown in Figure 2, where the malware file is contrasted with the
valid mscml.dll.

Figure 2. Comparison of file description, export table and resources of MagnetLoader (left)
and mscml.dll (right) as seen with EXE Explorer.
MagnetLoader not only tries to mimic the legitimate Windows library statically, but also at
runtime.

All of the exported functions of MagnetLoader internally call the same main malware routine.
When one of them is called, the DLL entry point is run first. In the entry point, the malware
loads the original mscms.dll and it resolves all the functions it fakes.

The addresses of these original functions are stored and called after a fake method is
executed. Thus, whenever an exported function of MagnetLoader is called, it runs the main
malware routine and afterward calls the original function in mscms.dll.



7/20

The main malware routine is relatively simple. It first creates a mutex named
SM0:220:304:WilStaging_02_p1h that looks very similar to the original one created by
mscms.dll.

The Cobalt Strike beacon loader gets decrypted into a memory buffer and executed with the
help of a known trick. Instead of calling the beacon loader directly, the loader uses the
Windows API function EnumChildWindows to run it.

This function contains three parameters, one of which is a callback function. This parameter
can be abused by malware to indirectly call an address via the callback function and thus
conceal the execution flow.

You can also find the decrypted beacon configuration data in the Appendix section.

LithiumLoader

This last Cobalt Strike sample is part of a DLL side-loading chain where a custom installer for
a type of security software was used. DLL side-loading is a technique that hijacks a
legitimate application to run a separate, malicious DLL.

SHA256: 8129bd45466c2676b248c08bb0efcd9ccc8b684abf3435e290fcf4739c0a439f

This 32-bit LithiumLoader DLL is part of a custom attacker-created Fortinet VPN installation
package submitted to VirusTotal as FortiClientVPN_windows.exe (SHA256:
a1239c93d43d657056e60f6694a73d9ae0fb304cb6c1b47ee2b38376ec21c786).

The FortiVPN.exe file is not malicious or compromised. Because the file is signed, attackers
used it to evade antivirus detection.

The installer is a self-extracting RAR archive that contains the following files:

File name Description

FortiVPN.exe Legit signed FortiClient VPN Online installer v7.0.1.83

GUP.exe Legit signed WinGup for Notepad++ tool v5.2.1.0

gup.xml WinGup config file

libcurl.dll LithiumLoader

Table 2a. FortiClientVPN_windows.exe file contents.

The self-extracting script commands are as follows:

https://wingup.org/


8/20

Table 2b. List of self-extracting script commands.
When the installer is run, all files get silently dropped to the local %AppData% folder and
both executable files get started. While the FortiClient VPN installer executes, the WinGup
tool side-loads the libcurl.dll LithiumLoader malware. The malware does so because it
imports the following functions from a legit copy of the libcurl library as shown in Figure 3.:

Figure 3. Import address table of WinGup.exe.
This threat also tries to add the %AppData% folder path to the exclusion list in Windows
Defender via PowerShell.

On the startup of GUP.exe, the malicious libcurl.dll file is loaded into the process space as it
statically imports the functions shown in Figure 3, above. While all four libcurl functions are
run, only curl_easy_cleanup contains a malicious routine that was injected while compiling a
new version of the library. Thus, we’re not dealing with a patched version of the legitimate
DLL. This is a cleaner solution that doesn’t break the code after the inserted malicious
routine, as is often seen in other malware.

This curl_easy_cleanup function usually contains only one subroutine (Curl_close) and has
no return value (as shown in its source code on GitHub). The altered function is as shown in
Figure 4.

https://curl.se/libcurl/
https://curl.se/libcurl/c/curl_easy_cleanup.html
https://github.com/curl/curl/blob/2610142139d14265ed9acf9ed83cdf73d6bb4d05/lib/easy.c#L727


9/20

Figure 4. Modified curl_easy_cleanup export function of libcurl.dll.
The load_shellcode function decrypts the shellcode via XOR and key 0xA as shown in Figure
5.

Figure 5. Shellcode loader function load_shellcode().
This function runs the Cobalt Strike stager shellcode indirectly via EnumSystemGeoID
instead of directly jumping to it. This Windows API function has three parameters, the last
one of which is a callback function abused by LithiumLoader.

The Cobalt Strike stager shellcode is borrowed from Metasploit and is the reverse HTTP
shell payload, which uses the following API functions:

LoadLibrary
InternetOpenA
InternetConnectA
HttpOpenRequestA



10/20

InternetSetOptionA
HttpSendRequestA
GetDesktopWindow
InternetErrorDlg
VirtualAllocStub
InternetReadFile

The shellcode connects to the IP address of a university in Thailand.

LithiumLoader Detection Issues

At the time of writing this analysis, the Cobalt Strike beacon payload was no longer available.
Without a payload or any actionable information in the execution report of API calls, it’s often
challenging for a sandbox to determine whether the sample is malicious. This sample doesn’t
have any functionality that can be classified as malicious per se.

Catching Cobalt Strike Through Analyzing Its Memory

In all three of these examples there are some common detection challenges. These samples
do not execute in normal sandbox environments. But as we discussed, there is a wealth of
information that we can use for detection if we look inside memory during execution, like
function pointers, decoded stages of the loader, and other artifacts.

For many years now, it has been standard practice for sandbox systems to instrument and
observe the activity of executing programs. If our team has learned anything over the years,
it’s that this alone is not enough for highly evasive malware. This is why we’ve been working
hard the past few years on figuring out how we can add more thorough processing for this
type of highly evasive malware.

For accurate detection, one of the key features we’ve found to address highly evasive
malware is that we need to look at memory as samples execute in addition to using the
system API to get a better understanding of what’s happening.



11/20

Figure

6. High level Advanced WildFire detection strategy.
We’ve found that, in malware detection, it’s useful to look at the deltas in memory at key
points of execution to extract meaningful information and artifacts. As our system processes
a vast number of samples, there have been a lot of challenges to make this work at scale.
However, a lot of clever engineering built on top of our flagship custom hypervisor tailored for
malware analysis has helped make this idea a reality.

In these next few sections, we will detail some of the main types of data that we are currently
collecting from memory to aid detection. This data can be utilized by both our analysts for
manual signatures as well as machine learning pipelines, which we’ll be discussing in a
future post.

Although we are focusing on memory here, we are by no means suggesting that
instrumenting and logging API calls are not useful for detection. Our belief is that bringing
execution logs and memory analysis data together creates a sum greater than its parts.



12/20

Automatic Payload Extraction

As previously discussed, it is increasingly common for malware authors to obfuscate their
initial payloads. While using executable packers that can compress and obfuscate files to
accomplish this is nothing new, it becomes problematic when it’s used in combination with
evasion strategies, because there is no static or dynamic data that’s useful for an accurate
detection.

There are infinite combinations of strategies for encoding, compressing, encrypting or
downloading additional stages for execution. The ability to craft signatures for these
payloads is obviously an important way that our analysts can catch lots of different malware
components from frameworks like Cobalt Strike. If we can catch them in memory, it ultimately
doesn’t matter if the malware decides not to execute.

The following simplified diagram in Figure 7 shows an example of what we might see in a
couple of stages that were never present in the initial executable file.

Figure 7. Typical stages we might see in a packed malware executable.
On the left side of the diagram, we see an example of a shellcode stage. Although the term
“shellcode” was originally coined for hand crafted assembly utilized in exploits to pop a shell
on a target system, the word has evolved to encompass any blobs of custom assembly
written for nefarious purposes. Some malware stages are blobs of custom assembly with no
discernable executable structure. A common pattern for malware authors taking this
approach is to dynamically resolve all of the function pointers into a table for ease of access.

On the right side of the diagram, we see that the later stage is an example of a well-formed
executable. Some malware stages or payloads are well-formed executables. These can be
loaded by the OS via the system API, or the malware author might use their own PE loader if
they’re trying to be stealthy in avoiding calling any APIs to do this for them.

Function Pointer Data



13/20

Another rich set of data we can pull from memory that we’ve begun to use for detection is
dynamically resolved function pointers, as shown in Figure 8. Malware authors learned long
ago that if they explicitly call out all of the WINAPI functions they plan to use in the import
table, it can be used against them. It is now standard practice to hide the functions that will
be used by the malware or any of its stages.

Shellcode hashing is another common stealthy strategy used to resolve pointers for functions
without needing their string.

Figure 8. Examples of dynamically resolved WINAPI pointers we might see in a memory
segment.
In Advanced WildFire we have begun to selectively search for and use this information about
which WINAPI function pointers were resolved in our detection logic.

OS Structure Modifications

Another useful source of detection data we’ve found from analyzing memory is to look for
any changes to Windows bookkeeping structures (Malware authors love to mess with
these!). These structures are important for the OS to maintain state about the process, such
as what libraries have been loaded, where the executable image was loaded, and various
other characteristics about the process that the OS might need to know later. Given that
many of these fields should never be modified, it’s often useful to keep track of when and
how malware samples are manipulating them.



14/20

The diagram in Figure 9 shows how a sample might unhook a module it loaded from the LDR
Module list. Unhooking a module would mean that there is no longer a record that the
module exists. So, for example, after doing this the Task Manager in Windows would no
longer list it.

This diagram represents only one of many different OS Structure modifications we’ve seen,
but it shows that there are many different types of OS structure modifications that are useful
for the malware detection problem.

Figure 9. An example of how a module might be unhooked from the LDR Modules List.

Page Permissions

Finally, another useful source of detection data is a full log of all changes made to page
permissions. Authors of packed malware often need to change memory permissions in order
to properly load and execute further stages. Understanding which pages of memory had their
permissions changed often provides important insights into where code was loaded and
executed, which can be useful for detection.

Conclusion

Although Cobalt Strike has been around for some years, detecting it is still a challenge to
many security software providers. That is because this tool works mostly in memory and
doesn’t touch the disk much, other than with the initial loader.



15/20

We’ve looked into three new loaders and showed how they can be detected using a variety
of techniques. These detection techniques are available within our new hypervisor based
sandbox.

Figure 10 illustrates our detection reasons for KoboldLoader.

Figure 10. Internal KoboldLoader sample analysis report.
Palo Alto Networks customers receive protections from these threats:

Indicators of Compromise

KoboldLoader

7ccf0bbd0350e7dbe91706279d1a7704fe72dcec74257d4dc35852fcc65ba292
 6ffedd98d36f7c16cdab51866093960fe387fe6fd47e4e3848e721fd42e11221

 fc4b842b4f6a87df3292e8634eefc935657edf78021b79f9763548c74a4d62b8
 062aad51906b7b9f6e8f38feea00ee319de0a542a3902840a7d1ded459b28b8d

 a221c7f70652f4cc2c76c2f475f40e9384a749acd1f0dbaefd1a0c5eb95598d2

MagnetLoader



16/20

6c328aa7e0903702358de31a388026652e82920109e7d34bb25acdc88f07a5e0

LithiumLoader

8129bd45466c2676b248c08bb0efcd9ccc8b684abf3435e290fcf4739c0a439f
 82dcf67dc5d3960f94c203d4f62a37af7066be6a4851ec2b07528d5f0230a355

LithiumLoader Installer

a1239c93d43d657056e60f6694a73d9ae0fb304cb6c1b47ee2b38376ec21c786
 cbaf79fb116bf2e529dd35cf1d396aa44cb6fcfa6d8082356f7d384594155596

Appendix

KoboldLoader beacon configuration data:

BeaconType - SMB
 Port - 4444

 SleepTime - 10000
 MaxGetSize - 1048576

 Jitter - 0
 MaxDNS - 0

 PublicKey_MD5 - 633dc5c9b3e859b56af5edf71a178590
 C2Server -

UserAgent -
 HttpPostUri -
 Malleable_C2_Instructions - Empty

 PipeName - \\.\pipe\servicepipe.zo9keez4weechei8johR.0521cc13
 DNS_Idle - Not Found

 DNS_Sleep - Not Found
 SSH_Host - Not Found

 SSH_Port - Not Found
 SSH_Username - Not Found

 SSH_Password_Plaintext - Not Found
 SSH_Password_Pubkey - Not Found

 SSH_Banner - Not Found
 HttpGet_Verb - Not Found
 HttpPost_Verb - Not Found
 HttpPostChunk - Not Found
 Spawnto_x86 - %windir%\syswow64\dfrgui.exe

 Spawnto_x64 - %windir%\sysnative\dfrgui.exe
CryptoScheme - 0

 Proxy_Config - Not Found
 



17/20

Proxy_User - Not Found
Proxy_Password - Not Found

 Proxy_Behavior - Not Found
 Watermark_Hash - Not Found

 Watermark - 666
 bStageCleanup - True

 bCFGCaution - True
KillDate - 0

 bProcInject_StartRWX - True
 bProcInject_UseRWX - False
 bProcInject_MinAllocSize - 35485

 ProcInject_PrependAppend_x86 - b'\x90\x90\x90\x90\x90\x90\x90'
 b'\x90\x90\x90\x90\x90\x90\x90'

 ProcInject_PrependAppend_x64 - b'\x90\x90\x90\x90\x90\x90\x90'
 b'\x90\x90\x90\x90\x90\x90\x90'

 ProcInject_Execute - ntdll.dll:RtlUserThreadStart
 NtQueueApcThread

 NtQueueApcThread-s
 SetThreadContext

 RtlCreateUserThread
 kernel32.dll:LoadLibraryA

 ProcInject_AllocationMethod - NtMapViewOfSection
 bUsesCookies - Not Found

 HostHeader - Not Found
 headersToRemove - Not Found

 DNS_Beaconing - Not Found
 DNS_get_TypeA - Not Found
 DNS_get_TypeAAAA - Not Found

 DNS_get_TypeTXT - Not Found
 DNS_put_metadata - Not Found
 DNS_put_output - Not Found

 DNS_resolver - Not Found
 DNS_strategy - Not Found
 DNS_strategy_rotate_seconds - Not Found

 DNS_strategy_fail_x - Not Found
 DNS_strategy_fail_seconds - Not Found

 Retry_Max_Attempts - Not Found
 Retry_Increase_Attempts - Not Found

 Retry_Duration - Not Found

MagnetLoader beacon configuration data:



18/20

BeaconType - HTTPS
Port - 443

 SleepTime - 3600000
 MaxGetSize - 1402498

 Jitter - 70
 MaxDNS - Not Found

 PublicKey_MD5 - 965fe5c869f3eea5e211fa7ee12130d3
C2Server - tileservice-weather.azureedge[.]net,/en-au/livetile/front/

 UserAgent - Microsoft-WebDAV-MiniRedir/10.0.19042
 HttpPostUri - /en-CA/livetile/preinstall

 Malleable_C2_Instructions - Remove 1380 bytes from the end
Remove 3016 bytes from the beginning

 Base64 URL-safe decode
 HttpGet_Metadata - ConstHeaders

 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
 Cache-Control: max-age=0

 Connection: keep-alive
 Host: tileservice-weather.azureedge[.]net

 Origin: https://tile-service-weather.azureedge[.]net
 Referer: https://tile-service.weather.microsoft[.]com/

 Metadata
 base64url
 append "/45.40,72.73"

 uri_append
 HttpPost_Metadata - ConstHeaders

 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
 Cache-Control: max-age=0

 Connection: keep-alive
 Host: tileservice-weather.azureedge[.]net

 Origin: https://tile-service-weather.azureedge[.]net
 Referer: https://tile-service.weather.microsoft[.]com/

 ConstParams
 region=CA

 SessionId
 base64url
 parameter "appid"

 Output
 base64
 print

 PipeName - Not Found
 DNS_Idle - Not Found

 DNS_Sleep - Not Found



19/20

SSH_Host - Not Found
SSH_Port - Not Found

 SSH_Username - Not Found
 SSH_Password_Plaintext - Not Found

 SSH_Password_Pubkey - Not Found
 SSH_Banner -

 HttpGet_Verb - GET
 HttpPost_Verb - POST

 HttpPostChunk - 0
 Spawnto_x86 - %windir%\syswow64\conhost.exe

 Spawnto_x64 - %windir%\sysnative\conhost.exe
 CryptoScheme - 0

 Proxy_Config - Not Found
 Proxy_User - Not Found

 Proxy_Password - Not Found
 Proxy_Behavior - Use IE settings

 Watermark_Hash - Not Found
 Watermark - 1700806454

 bStageCleanup - True
 bCFGCaution - False

 KillDate - 0
 bProcInject_StartRWX - False

 bProcInject_UseRWX - False
 bProcInject_MinAllocSize - 17500

 ProcInject_PrependAppend_x86 - b'\x90\x90'
 Empty

ProcInject_PrependAppend_x64 - b'\x90\x90'
 Empty

ProcInject_Execute - CreateThread
 SetThreadContext

 ProcInject_AllocationMethod - NtMapViewOfSection
 bUsesCookies - False

 HostHeader -
 headersToRemove - Not Found

 DNS_Beaconing - Not Found
 DNS_get_TypeA - Not Found
 DNS_get_TypeAAAA - Not Found

 DNS_get_TypeTXT - Not Found
 DNS_put_metadata - Not Found
 DNS_put_output - Not Found

 DNS_resolver - Not Found
 DNS_strategy - round-robin



20/20

DNS_strategy_rotate_seconds - -1
DNS_strategy_fail_x - -1

 DNS_strategy_fail_seconds - -1
 Retry_Max_Attempts - Not Found

 Retry_Increase_Attempts - Not Found
 Retry_Duration - Not Found

To decrypt the configuration data we used SentinelOne’s Cobalt Strike Parser.

Additional Resources

EXE Explorer
 Cobalt Strike Parser

Updated December 6, 2022, at 9:05 a.m. PT. 

Get updates from 
 Palo Alto

 Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy
Statement.

https://github.com/Sentinel-One/CobaltStrikeParser
https://www.mitec.cz/exe.html
https://github.com/Sentinel-One/CobaltStrikeParser
https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

