
1/28

December 1, 2022

From Macros to No Macros: Continuous Malware
Improvements by QakBot

splunk.com/en_us/blog/security/from-macros-to-no-macros-continuous-malware-improvements-by-qakbot.html

 By Splunk Threat Research Team December

01, 2022
In 2007 we saw the initial beginnings and rise of QakBot, the same year when Windows XP
and Windows Server 2003 were still the primary operating systems in the enterprise.
QakBot, or QuackBot, made its presence known as a banking trojan and a loader. Over
time, it continually developed and became a standard in malicious software circles. Today,
we see QakBot used by a varied group of adversaries in a variety of ways, such as
deploying ransomware, persistence, and stealing credentials. Before an adversary has
access to an endpoint or the ability to move laterally, they have to gain initial access. That
initial access vector continues to evolve and keep pace with operating systems, browsers,
and antivirus vendors to ensure the deliverability of malicious payloads.

In this blog, the Splunk Threat Research Team (STRT) showcases a year's evolution of
QakBot. We also dive into a recent change in tradecraft meant to evade security controls.
Last, we reverse engineered the QakBot loader to showcase some of its functions.

Introduction

In February 2022 Microsoft pushed an update to disable macros by default in Office
products. A huge win within the industry is to prevent the vast amount of initial access
vectors into an organization. It wasn’t long before adversaries began to update their

https://www.splunk.com/en_us/blog/security/from-macros-to-no-macros-continuous-malware-improvements-by-qakbot.html
https://www.splunk.com/en_us/blog/author/secmrkt-research.html
https://www.splunk.com/en_us/blog/author/secmrkt-research.html
https://www.bleepingcomputer.com/news/microsoft/microsoft-starts-blocking-office-macros-by-default-once-again/

2/28

tradecraft to use everything except macros. Similar to what was mentioned by Bleeping
Computer in February, DarkReading mentioned in this article, the change went to HTML
Applications (.hta) and was very successful. Over time, we began to hear of Mark-of-the-
Web (MOTW) bypasses. Windows MOTW is a simple feature in the OS that labels items
and scrutinizes them as they are downloaded. As outlined by Outflank in 2020, the role of
MOTW in security measures is used by Windows SmartScreen, and Protected view
sandbox in Excel and Word, to name a few. How does an adversary bypass these controls?
Some downloaded files do not get scrutinized, therefore evading MOTW and allowing for
process execution. One popular format that we see today includes the delivery of ISO files
within an HTML file. Most containers, like ISO or VHDX, are not scrutinized by MOTW.

Want to simulate Mark of the Web Bypasses? Check out Atomic Red Team T1553.005.

Below is a timeline of changes from June to October. Proxylife monitors and tracks QakBot
campaigns and daily shares the indicators for each campaign. We began looking at how
QakBot operated in June, four months after Microsoft disabled macros, and we can see the
pattern of using .html files with embedded zip, and img files.

The simple flow chart below shows the basic infection flow of this QakBot sample.

To follow this evolution we monitor Proxylife as well as other sources (Proxylife monitors
Qakbot’s evolution and shares campaign indicators).

Based on this and other sources, below is a timeline of changes from June to October
captured by Proxylife updates. We began looking at how QakBot operated in June, four
months after Microsoft disabled macros, and we can see the pattern of using .html files with
embedded zip and img files.

https://www.darkreading.com/endpoint/post-macro-world-container-files-distribute-malware-replacement
https://outflank.nl/blog/2020/03/30/mark-of-the-web-from-a-red-teams-perspective/
https://github.com/redcanaryco/atomic-red-team/blob/master/atomics/T1553.005/T1553.005.md

3/28

Immediately following, we see that on June 13, 2022 the campaign changed to using HTML
smuggling with an embedded ZIP+.LNK file. Adversaries change their tradecraft frequently
when attempting to see what sticks as far as evasion goes, and this is a great view into that.

Jumping forward three months, we can see the more widespread use of HTML smuggling
with ZIP and ISO attachments. In this particular sample, the .LNK will execute a javascript
file that loads the .cmd (batch script) to continue on.

While reviewing the QakBot samples outlined above, we found a particularly distinct sample
that was being utilized. Once we began digging into the HTML we noticed that it had
evasive techniques built in that piqued our interest. We found that ProxyLife had shared this
sample on Twitter, along with the other campaigns that utilized HTML smuggling, along with
a password-protected zip that contained the ISO.

Reference tweet

 Reference tweet

https://twitter.com/pr0xylife/status/1585364758836150272?s=20&t=qi-rUq0r5uLI9QhEXCNPWQ
https://twitter.com/pr0xylife/status/1536386977863442432?s=20&t=fSjHaanAd6CHJhqB3g2mFw
https://twitter.com/pr0xylife/status/1575165550254526465?s=20&t=fSjHaanAd6CHJhqB3g2mFw

4/28

5/28

What we don’t see here is the functionality being used to evade controls. It’s easy to say
“HTML smuggling” or “ISO containers”, but what is the core behavior underneath it all that is
making each of these different?

Reverse Base64 html file (2nd stage)
2nd stage contained embedded password protected zip file
ISO file contained within Zip, including LNK and QakBot loader

 We will explore this sample and showcase everything in more detail.

HTML smuggling

This has become the de facto standard for the delivery of malicious payloads as of late.
What is HTML smuggling? As defined by MITRE ATT&CK T1027.006, “HTML documents
can store large binary objects known as JavaScript blobs (immutable data that represents
raw bytes) that can later be constructed into file-like objects. Data may also be stored in
Data URLs, which enable embedding media type or MIME files inline of HTML documents.”

Below we showcase two ways to view these campaigns, one from the victim perspective
and the other from within the code.

Victim Perspective

 Reference tweet

https://attack.mitre.org/techniques/T1027/006/
https://twitter.com/pr0xylife/status/1585364758836150272?s=20&t=qi-rUq0r5uLI9QhEXCNPWQ

6/28

For the end user, this particular sample requires the downloading and opening of the HTML
file. Once opened, the attachment.zip saves to disk, and the end user must now enter the
password to decrypt the contents. Once decrypted, mount the ISO (by double-clicking) and
finally click the A.LNK file.

View Within Code

7/28

Stage 1 HTML

This HTML file contains a reversed base64 encoded string initialized in div id =
“MS860aTc” which contains the stage 2 javascript. To be able to execute this stage 2
javascript, it creates an HTML element with the tag “embed” that will be appended to the
code body of this HTML using “document.body.appendChild(element)”. The width and
height frame properties of the “embed” element are also hidden (value = 1) to hide the
stage 2 javascript execution from the user.

Figure 1 is the screenshot of the main code of the stage 1 HTML file with annotations

(For a larger resolution of this diagram visit this link)

https://imgur.com/a/Bl7esEB

8/28

Stage2 HTML File

The stage 2 HTML contains javascript that will decode a base64 encoded (password
protected) zip file initialized in variable “gdhpoIyu”. After decoding, it will try to convert the
decoded base64 data into an unsigned integer byte array that will be used to create a blob
file object as a ZIP file. Then it will use a javascript static method URL.CreateObjectURL
with the new blob file object as a parameter that will be loaded using the
windows.location.assign() method.

Figure 2 shows the stage 2 HTML javascript code and the portion of the base64 encoded
zip file that contains the malicious ISO file.

Figure 1

https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/Location/assign

9/28

Figure 3 shows the effect of the stage 2 HTML file as you run the main HTML (stage 1).
Notice that it automatically dropped the zip file in the compromised host.

ISO File

Figure 2

Figure 3

10/28

Once the ZIP is extracted and decrypted using the password “PG1”, we will be able to get
the “A7490.iso” that contains an A.LNK file and a hidden tools folder.

Hidden Folder Contents

Within the hidden tools folder is protracted.cmd (bat file) and the malicious bucketfuls.dat
(.dll) that will be loaded.

LNK and Batch Script

To the victim, the .LNK will be the only thing inside the ISO as the tools directory is hidden.

Below is the breakdown of the two files which showcases how the adversary attempts to
evade detection.

LNK

Within the LNK it gives away the .cmd file that will run from within the hidden tools directory
-

C:\Windows\System32\cmd.exe /c tools\protracted.cmd re
gs v

11/28

Note the re gs and v arguments, at first glance it doesn’t make sense and seems out of
place until we look at the .cmd file.

The .cmd file uses a few tricks to evade controls. First, lines 4-7 are using set, which will
set environment variables for the different strings. On line 6 we see the % symbols, which
are passed in from the LNK file (re gs v) to complete the regsvr32.exe process name.

Line 9 will set “copy” as a variable. The final call on line 16 will now look like this:

copy %systemroot%\system32\regsvr32.exe
%temp%\envelopingConcussion.com

This will copy regsvr32.exe from system32 to the \appdata\local\temp directory and rename
regsvr32.exe to envelopingConcussion.com.

Now, envelopingConcussion.com will run tools\bucketfuls.dat.

In Splunk:

Now we will switch gears and dive into the different QakBot capabilities found within the
DLL that gets loaded.

Figure 4

Figure 5

12/28

System Owner/User Discovery

Figure 6 is a screenshot of QakBot code that will execute several Windows commands to
collect system and network information that will be sent to the remote C2 server.

The table below is the complete list of the Windows commands that it will execute on the
compromised host.

Table 1

Command Description

ipconfig /all List all TCP/IP network configuration

nslookup -querytype=ALL -
timeout=12
_ldap._tcp.dc._msdcs.%s

Query SRV records of the domain from the main DNS
record of the compromised host (%s is the domain
name)

Figure 6

13/28

nltest /domain_trusts /all_trusts Enumerate domain trusts

net localgroup Get local groups information

qwinsta Displays information about sessions on a Remote
Desktop Session Host server.

route print Get route information

arp -a Get ARP information

cmd /c set Get environment variables

whoami /all Get user, group, and privilege information of the
compromised host

netstat -nao Get the active network connections in the compromised
host

net view Displays a list of domains, computers, or resources that
are being shared by the specified computer.

net share Displays information about all of the resources that are
shared on the local computer

This event can be seen using the Sysmon event logs in Splunk. Figure 7 shows how the
QakBot malware injected in the wermgr.exe process executes the following Windows
native commands that we’ve listed in the above table.

14/28

As part of this Tactic, it will also execute several WMI query commands to gain more system
information about the compromised host. Table 2 shows the list of WMI classes it uses in its
WMI query to collect more information.

Table 2

WMI Class Description

Win32_ComputerSystem System Information (AdminPasswordStatus, Model, Name,
Manufacturer and many more)

Win32_Bios BIOS information (e.g BIOSVersion, PrimaryBIOS,
serialNumber)

Win32_Product Product and software information

Figure 7

15/28

Win32_PhysicalMemory Physical RAM information

Win32_DiskDrive Hard disk information like the partition, free size, model.

Win32_Processor CPU processor information

Win32_OperatingSystem OS information

SELECT * FROM
antivirusProduct

List all antivirus Products Installed in Windows OS.

Additionally, it will also make Windows API calls to get the computer name, system metrics,
Active Directory domain status, system info, all processes and its modules, windows
architecture (x32/x64), and OS version.

Figure 8 shows a code snippet of how it gets the computer name and the volume
information of the compromised host.

Figure 8

16/28

Figure 9 shows the short code snippet of how it sets up and executes the WMI command
listed in the table above to perform system discovery on the compromised host.

Persistence

QakBot will also create a registry run key entry or Scheduled Task to execute itself upon the
reboot of the compromised host. Figure 10 shows the code snippet of this sample that
creates scheduled tasks or creates registry run keys.

Figure 9

17/28

We also saw a function in its code capable of creating services for its malicious code to gain
privileges or persist on the target host machine. Unfortunately, this TTP was not triggered
during our testing. Figure 11 is a screenshot of how it registers a service control handler for
its file.

Execution

This QakBot sample can execute the dropped .DLL copy of itself or a .DLL plugin
downloaded from its Command and Control (C2) server using several techniques available
in Windows Operating System such as Living on The Land Application (LOLBIN) or

Figure 10

Figure 11

18/28

through scripts.

Figure 12 shows how it uses the WMI command in .VBScript to copy files.

Below is a short table of commands we saw during our analysis for its Execution Tactics

Table 3

Command Description

Regsvr32.exe <dll_file_path> Execute dropped randomly
generated DLL file name using
regsvr32.exe.

Rundll32.exe <dll_file_path> Execute dropped randomly
generated DLL file name using
rundll32.exe.

Figure 12

19/28

Set objWMIService = GetObject("winmgmts:" & "
{impersonationLevel=impersonate}!\\.\%coot\cimv2")

Set objProcess =
GetObject("winmgmts:root\cimv2:Win32_Process")

errReturn = objProcess.Create("%s", null, nul, nul)

Execute a process using a WMI
object in VBScript.

“runas” Shellexecute a command line with
“runas “ parameter to gain admin
privileges in its execution

Powershell.exe -encodedCommand Execute a base64 encoded
PowerShell script

Wmic process call create expand <lolbin>
<dll_file_path>

Execute its dropped DLL copy of
itself or .dll component using
WMIC in a batch script.

 E.g Wmic process call creates
expand regsvr32.exe
<dll_file_path>

Defense Evasion, Privilege Escalation - Process Injection

When The .DLL stager or the .DLL loader is executed by the .batch script inside the .ISO
file using regsvr32.exe, It will inject its malicious code to a legitimate Windows OS process
to perform defense evasion.

Figure 13 shows the code and how it creates a suspended process (the wermgr.exe) as the
first step of the process hollowing technique.

After creating a suspended process, it will create a new section on that process that can fit
its QakBot .DLL code. Then, it will map and allocate memory pages on that section and
write its malicious code on that mapped section using WriteProcessMemory() API. Figure

Figure 13

https://attack.mitre.org/techniques/T1055/012/

20/28

13.1 is the code snippet of this process.

Below is the list of possible processes where it can inject the QakBot core .DLL during its
executions:

%SystemRoot%\SysWOW64\OneDriveSetup.exe
%SystemRoot%\SysWOW64\dxdiag.exe
%SystemRoot%\SysWOW64\explorer.exe
%SystemRoot%\SysWOW64\mobsync.exe
%SystemRoot%\SysWOW64\msra.exe
%SystemRoot%\SysWOW64\wermgr.exe
%SystemRoot%\SysWOW64\xwizard.exe
%SystemRoot%\System32\OneDriveSetup.exe
%SystemRoot%\System32\dxdiag.exe
%SystemRoot%\System32\mobsync.exe
%SystemRoot%\System32\msra.exe
%SystemRoot%\System32\wermgr.exe
%SystemRoot%\System32\xwizard.exe
%SystemRoot%\explorer.exe

Figure 13.1

21/28

Anti-Analysis and Anti-Debugging

Aside from Process Injections, it also has several functions that check if it is being
debugged, being run in a sandbox, or being analyzed in a research lab.

This QakBot variant has 2 conditions that serve as a killswitch for its execution.

1. It checks if the file “C:\INTERNAL__empty” exists. This file can be used to check the
existence of Windows Defender emulation. If this file exists it will right away return 0
that will exit its code execution.

2. The second one is checking the environment variable “SELF_TEST_1”. If this
environment variable exists it will exit the process.

Figure 14 shows the screenshots of its code that checks the following killswitch

Figure 15 shows its code snippet and how it checks if its code is being debugged using the
Process Environment Block Structure. If the BeingDebugged flag is True, it will xor encrypt
the 2 decryption key tables in addresses 0x1001E16B0 and 0x1001E050 then exit its
process.

It also enumerates all the running processes on the compromised host and checks if one of
those processes is on the list below (Table 4) which is related to security, malware analysis
tools, and sandbox.

Figure 14

Figure 15

https://en.wikipedia.org/wiki/Process_Environment_Block#:~:text=In%20computing%20the%20Process%20Environment,other%20than%20the%20operating%20system.

22/28

Table 4

frida-winjector-helper-32.exe
frida-winjector-helper-64.exe
tcpdump.exe
windump.exe
ethereal.exe
wireshark.exe
ettercap.exe
rtsniff.exe
packetcapture.exe
capturenet.exe
ResourceHacker.exe
sniff_hit.exe

qak_proxy
dumpcap.exe
CFF Explorer.exe
not_rundll32.exe
ProcessHacker.exe
tcpview.exe
filemon.exe
procmon.exe
idaq64.exe
loaddll32.exe

PETools.exe
ImportREC.exe
LordPE.exe
SysInspector.exe
proc_analyzer.exe
sysAnalyzer.exe
sniff_hit.exe
joeboxcontrol.exe
joeboxserver.exe
x64dbg.exe
Fiddler.exe
sysAnalyzer.exe

It also has a list of processes it checks (Table 5) related to antivirus products such as AVG,
Dr. Web, Fortinet, TrendMicro, F-Secure, ByteFence Anti-Malware, BitDefender, Avast,
Windows Defender, Comodo Internet Security and ESET.

Table 5

avgcsrvx.exe
avgsvcx.exe
avgcsrva.exe
dwengine.exe
dwarkdaemon.exe
dwwatcher.exe
fmon.exe
coreServiceShell.exe
PccNTMon.exe
NTRTScan.exe
bdagent.exe

vsserv.exe
vsservppl.exe
AvastSvc.exe
mcshield.exe
MsMpEng.exe
vkise.exe
isesrv.exe
cmdagent.exe
egui.exe
ekrn.exe
fshoster32.exe
ByteFence.exe

It also checks antivirus .DLL’s component if it is loaded on the compromised host. Figure 16
shows the function that checks if the Avast module (awshooka.dll and aswhookx.dll) is
installed or running on the compromised host.

23/28

Command and Control (C2)

This malware is capable of communicating to its C2 server to send the collected data in the
compromised Windows OS and also to download configuration files, plugins, or other
malware.

Figure 17 shows the code snippet that contains a function renamed as
“mw_internet_crack_send_request” that will send a request to its C2 using
HttpSendRequestA() API. Then it will be followed by another function that will read the reply
from the HTTP Request and save it to a file that could be either a configuration file or other
malware to be executed in the target or compromised host.

Figure 16

https://learn.microsoft.com/en-us/windows/win32/api/wininet/nf-wininet-httpsendrequesta

24/28

This malware also uses a named pipe to communicate to its other process running on the
compromised host. Figure 18 is a code snippet showing how it creates named pipes and
reads data or files sent or transferred on that randomly generated named pipe.

Figure 19 shows how Sysmon Event=17, 18 (CreateNamedPipe And ConnectNamedPipe)
captured the creation and connection of the injected QakBot in legitimate wermgr.exe
process to its randomly generated named pipe.

Figure 17

Figure 18

25/28

`sysmon` EventCode IN (17, 18) Image= "*\\wermgr.exe" EventType IN ("CreatePipe",
"ConnectPipe")
| stats min(_time) as firstTime max(_time) as lastTime count by Image EventType
ProcessGuid ProcessId PipeName SecurityID EventCode Computer UserID
| `security_content_ctime(firstTime)`
| `security_content_ctime(lastTime)`

In addition to all this, we are also sharing the decrypted data section of this QakBot variant
that contains more TTPs.

https://gist.github.com/tccontre/360dbda059562b67b983d58ae70ac371

As defenders, it doesn’t end here. QakBot and other frameworks will continue to improve,
evading next-generation controls in place. We must continue to dissolve these loaders into
their smallest form and share with the greater security community their tradecraft to help
everyone defend their organization.

Automate with Splunk SOAR Playbooks

All of the previously listed detections create entries in the risk index by default, and can be
used seamlessly with risk notables and the Risk Notable Playbook Pack. The community
Splunk SOAR playbooks below can be used in conjunction with some of the previously
described analytics:

Playbook Description

Internal
Host
WinRM
Investigate

This playbook performs a general investigation on key aspects of a windows
device using windows remote management. Important files related to the
endpoint are generated, bundled into a zip, and copied to the container
vault.

Figure 19

https://gist.github.com/tccontre/360dbda059562b67b983d58ae70ac371
https://docs.splunk.com/Documentation/ESSOC/3.52.0/user/Useplaybookpack
https://research.splunk.com/playbooks/internal_host_winrm_investigate/

26/28

Block
Indicators

This playbook retrieves IP addresses, domains, and file hashes, blocks
them on various services, and adds them to specific blocklists as custom
lists.

Internal
Host
WinRM
Response

This playbook accepts a list of hosts and filenames to remediate on the
endpoint. If filenames are provided, the endpoints will be searched and then
the user can approve deletion. Then the user is prompted to quarantine the
endpoint.

Detection

Splunk Threat Research Team has curated new and old analytics and tagged them to the
QakBot Analytic Story to help security analysts detect adversaries leveraging the QakBot
malware. This analytic story introduces 43 detections across MITRE ATT&CK techniques.

For this release, we used and considered the relevant data endpoint telemetry sources
such as:

Process Execution & Command Line Logging
Windows Security Event Id 4688, Sysmon, or any Common Information Model
compliant EDR technology.
Windows Security Event Log
Windows System Event Log

Why Should You Care?

With this article the Splunk Threat Research Team (STRT) enables security analysts, blue
teamers and Splunk customers to identify one of the CISA TOP malware strains . This
article helps the community discover QakBot tactics, techniques and procedures. By
understanding QakBot behaviors, we were able to generate telemetry and datasets to
develop and test Splunk detection analytics designed to defend and respond against this
threat.

Learn More

You can find the latest content about security analytic stories on GitHub and in Splunkbase.
Splunk Security Essentials also has all of these detections available now.

For a full list of security content, check out the release notes on Splunk Docs.

Feedback

https://research.splunk.com/playbooks/block_indicators/
https://research.splunk.com/playbooks/internal_host_winrm_response/
https://research.splunk.com/stories/qakbot/
https://www.cisa.gov/uscert/ncas/alerts/aa22-216a
https://github.com/splunk/security-content/releases/tag/v3.12.0
https://splunkbase.splunk.com/app/3449/
https://splunkbase.splunk.com/app/3435/
https://docs.splunk.com/Documentation/ESSOC/3.21.0/RN/Enhancements
https://docs.splunk.com/Documentation/ESSOC

27/28

Any feedback or requests? Feel free to put in an issue on GitHub and we’ll follow up.
Alternatively, join us on the Slack channel #security-research. Follow these instructions if
you need an invitation to our Splunk user groups on Slack.

Contributors

We would like to thank the authors Teoderick Contreras, Michael Haag and collaborators
Lou Stella, Mauricio Velazco, Rod Soto, Jose Hernandez, Patrick Bareiss, Bhavin Patel,
and Eric McGinnis for their contributions to this post.

We would like to extend a huge thank you to @proxylife for sharing his research and this
malware sample that helped the STRT produce this analysis.

Posted by

Splunk Threat Research Team

The Splunk Threat Research Team is an active part of a customer’s overall defense
strategy by enhancing Splunk security offerings with verified research and security content
such as use cases, detection searches, and playbooks. We help security teams around the
globe strengthen operations by providing tactical guidance and insights to detect,
investigate and respond against the latest threats. The Splunk Threat Research Team
focuses on understanding how threats, actors, and vulnerabilities work, and the team
replicates attacks which are stored as datasets in the Attack Data repository.

Our goal is to provide security teams with research they can leverage in their day to day
operations and to become the industry standard for SIEM detections. We are a team of

https://splunk-usergroups.slack.com/
https://docs.splunk.com/Documentation/Community/1.0/community/Chat
https://twitter.com/tccontre18
https://twitter.com/M_haggis
https://twitter.com/pr0xylife
https://www.splunk.com/en_us/blog/author/secmrkt-research.html
https://github.com/splunk/attack_data/

28/28

industry-recognized experts who are encouraged to improve the security industry by
sharing our work with the community via conference talks, open-sourcing projects, and
writing white papers or blogs. You will also find us presenting our research at conferences
such as Defcon, Blackhat, RSA, and many more.

Read more Splunk Security Content.

https://github.com/splunk/security_content

