Unpacking Colibri Loader: A Russian APT linked
Campaign

@ bitsight.com/blog/unpacking-colibri-loader-russian-apt-linked-campaign

Written by André Tavares November 30, 2022 Share Facebook Twitter LinkedIn

Between July and October 2022 BitSight observed a ColibriLoader malware campaign beiné
distributed by PrivateLoader, which was identified as being utilized by the threat actor UAC-
0113, a group linked to Sandworm by CERT-UA. Sandworm is known to be a Russian
advanced persistent threat (APT) group affiliated with The Main Directorate of the General
Staff of the Armed Forces of the Russian Federation (GRU). In this research, we present
how to manually “unpack” a sample from a recent campaign. Unpacking means reaching the
final stage of the malware, which contains its main functionality. We also share some threat-
hunting signatures and indicators of compromise which can be utilized in defense and
tracking efforts.

About Colibri

ColibriLoader is a Malware-as-a-Service family, first advertised on XSS.is cybercrime forum
in August 2021 to "people who have large volumes of traffic and lack of time to work out the
material" (Fig. 1). For $150/week or $400/month, it offers a small, unpacked, obfuscated
loader written in C and assembly, along with a control panel written in PHP. As its name
suggests, it's meant to deliver and manage payloads onto infected computers. Moreover, the

1/11

https://www.bitsight.com/blog/unpacking-colibri-loader-russian-apt-linked-campaign
https://bazaar.abuse.ch/browse/signature/ColibriLoader/
https://www.bitsight.com/blog/tracking-privateloader-malware-distribution-service
https://go.recordedfuture.com/hubfs/reports/cta-2022-0919.pdf
https://www.wired.com/story/sandworm-russia-ukraine-blackout-gru/
https://cloudsek.com/in-depth-technical-analysis-of-colibri-loader-malware/
https://fr3d.hk/blog/colibri-loader-back-to-basics

malware ignores systems from Commonwealth of Independent States countries (Armenian,
Azerbaijani, Belarusian, Hungarian, Kazakh, Kyrgyz, Romanian, Russian, Tajik, Turkmen,
Uzbek).

n 2 3 Forward » Gotonew Track
| present to your attention my development - Colibri Loader. The software is designed to deliver and run your executable files and dil libraries on infected PCs.
Ideal for people with large volumes of traffic and lack of time to study the material.
The bot is written in C | ASM (crt, stl are not used), works on Windows 7/8/10/11 and server counterparts, without any dependencies . Easy to encrypt (does
Th tha not contain resources, AT, TLS, only relocks and code section). All internal string literals are encrypted, traffic between the bot and the C&C server is also

encrypted. Supplied in two formats:
01.04, 2020
334 .exe - weight ~ 20kb, does not require any additional manipulations with the crypt.

ML dIl - weight ~ 17kb. Not installed on the system! Running through the exported function.
1

0.0086 B X
Bot functionality:

* Run .exe from user or from admin (runas + cmd), support for launch arguments
* Running xB6 .exe / .dil in memory via LoadPE

» Running x86 .dil via rundll32

* Running xB6 .dil via LoadLibrary

* Running xB6 .dll via regsrv32

» Executing cmd commands

» Updating the bot with a fresh crypt or a new version

+ Removing a bot from an infected device

Fig. 1 - Post on XSS.is cybercrime forum by user “c0d3r_0f shr0d13ng3r”

PrivateLoader distributing Packed Colibri

PrivatelLoader is a loader from a pay-per-install malware distribution service that has been
utilized to distribute info stealers, banking trojans, loaders, spambots, rats, miners and
ransomware on Windows machines. While monitoring PrivateLoader malware distribution
activity, we spotted ColibriLoader being distributed between July and October. Many security
products automatically classified these samples and we noticed that all of them have the tag
“Build1”, which may represent the botnet or campaign id. Contradicting the author's
advertisements, we noticed some indicators suggesting that the samples are packed, such
as their size, which should be around 20KB, and the fact that it contains only two sections,
the .text and .reloc, which was not the case.

In order to evade antivirus security products and frustrate malware reverse engineering,
malware operators leverage encryption and compression via executable packing to protect
their malicious code. Malware packers are software programs that either encrypt or
compress the original binary, making it unreadable until it's placed in memory. In general,
malware packers consist of two components, a packed buffer, the actual malicious code, and
an unpacking stub responsible for unpacking and executing the packed buffer. Threat Actors
make use of packers when distributing their malware as they remain an effective way to
evade detection and make the malware harder to analyze. Manual analysis can defeat these
protections and help develop tools that aid in this costly task.

Unpacking ColibriLoader

2/11

https://fr3d.hk/blog/colibri-loader-back-to-basics
https://go.recordedfuture.com/hubfs/reports/cta-2022-0919.pdf
https://www.bitsight.com/blog/tracking-privateloader-malware-distribution-service
https://bazaar.abuse.ch/browse/signature/ColibriLoader/
https://tria.ge/s?q=botnet%3Abuild1

Let’s have a look at a sample dropped by PrivateLoader on September 4, 2022. First, we
tried to use unpac.me service to try to unpack it automatically but we were unlucky. So, let’s
dive deep into this sample.

Resolving the Windows API

Opening it on IDA Pro, on the main function (Fig. 3), we can see a pattern that seems to be a
way of dynamically resolving some Windows API functions, which are usually crucial to
understand the code behavior quickly. The malware walks the process environment block
(PEB), looking for the in-memory loaded modules base addresses on the current process,
finds the functions exported by each, hashes them, and compares it with the hash of
LoadLibrary. Then, it calls LoadLibraryA to load kernel32.dll to get a module handle for it, but
does not actually load it since it is already loaded by default, and then searches for the target
export function (a more detailed explanation can be found here). By searching on Google for
the constants in the code that generates the hash, we confirmed the hashing algorithm in
use is Fowler—Noll-Vo.

for (i = MNtCurrentTeb()-»ProcessEnvironmentBlock->Ldr->»InLoad0rderModulelist.Flink; ; 1 = va7->Flink)

i
Flink = i[3].Flink;

(Flink + *(&F1ink[7].Blink[15].F1ink + Flink));

vs != Flink

1

if

1
w6 = v5[3].Flink == @;
w39 = @;
if (lve)

break;

¥
LABEL_11:

>

H
w7 = (&F1link-»*Flink + vS[4].Flink);
while (1)
i
w8 = Flink + *uv7;
9 8x311C9DC5; // Fowler-Noll-Vo offset basis
P

wHl = T

we = v89;

if (w9l }

break;

LABEL_1@:
++0T

vES = vl + 1;

if ((v9 + 1) »= w5[3].Flink)

goto LABEL_11;

}-.
vle = vol;
vil = vo8;
do
i
w1l = éxlesslas * (vil ~ vie); f/f Fowler-Noll-Vo prime
18 = *++vid;
e
while { *v@ J);
v98 = vll;
vl2 = @;
if { w92 1= @8x53B2878F) // LoadLibraryh
i
we = vas9;
goto LABEL_18&;
e
vB9 = ((Flink + *(&vS[3].Blink->Flink + & * *(&5[4].Blink-3Flink + 2 * v30 + Flink)} + Flink))}{"kernel32.d1l");

Fig. 3 - Example of Windows API resolution.

3/11

https://bazaar.abuse.ch/sample/6c179c2b5cda41d940a552f19def20711f7389d3188d7646c45b7963f2049667/
https://www.unpac.me/results/dbc2e107-983e-420e-a2b9-35e16bfd6da0/#/
https://cocomelonc.github.io/tutorial/2022/04/02/malware-injection-18.html
https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function

Encrypted Shellcode and Executable

Looking a bit further through the code, we can spot what seems to be an XOR decryption of
520 bytes of shellcode at 0x454708, where the key is “2760”, and also the change in the
protection of that region (VirtualProtect) to PAGE_EXECUTE_READWRITE (0x40), as well
as four calls of a function within that region (Fig. 4).

for (idx = B; idx < 528; ++idx)
shellcode A454788[idx] “= xor_key 1[idx & 3];// XOR decrypt

VA3 = (v36 + *(*(v36 + 6@) + v36 + 120));

for (ii = (v36 + v43[8]); ; ++ii)

{

w45
v92
V46
if (*v45)

{

(v36 + *ii);
Bx811C9DC5;

*45;

Va7 = v82;

Bx1880193 = (v47 ~ vi6);
Fppuds;

(*va5)3
va7;
A7 == Bx828621F3;

// VirtualProtect

((hkernel32 + =(v4A3[7] + &4 * *(v43[9] + 2 * w4l + hKernel32) + hKernel22)))(shellcode 454788, 528, Ox48, vi2);

v36 = hKernel32;
if (vE)
break;
¥
++udl;
¥
vidd = (shellcode 4547A8) (&unk_4C2588,
v81l = vd8;
vB8 = (shellcode 4547A8) (&unk_454918,
v98 = (shellcode 4547A8) (&unk_4C2958,
vB7 = (shellcode 4547A8) (&unk_4540828,

Fig. 4 - Shellcode decryption.
We can confirm it by disassembling the shellcode function at 0x4547A8 after running it on
x32dbg (Fig. 5)

1898, 5, &v36, &ntdll d11, &RtlAllocateHeap);

449528, 10, &/53, &ntdll_dl1l, &RtlAllocateHeap);
153608, 18, &85, &ntdll_dll, &RtlAllocateHeap);
1761, 5, &vE4, &ntdll d11, &RtlAllocateHeap);

4/11

55 push ebp
00454749 BEEC mov ebp,esp
00454748 B3EC 10 sub esp,10
00454 7AE 53 push ebx
00454 7AF 56 push e=si
00454760 57 push edi
00454761 68 271B585E push S5ES91B27
00454766 E8 4DFFFFFF call colibri_04_09_2022.454708
004547BB &8 03DD4098 push 9840DD03
00454 7C0 BEFD mov esi,8ax
004547C2 E8 41FFFFFF call colibri_04_09_2022.454708
004547C7 68 D3IACACID push 1DACACD3
00454 7CC BEF3 mov edi,eax
00454 7CE EB 35FFFFFF €all colibri_04_09_202Z2.454708
00454703 83C4 oC add e=zp,C
00454706 FFDO gall eax
00454708 FF75 18 push dword ptr ss:ffebp+1&]
00454708 BEDS mov ehx,eax
00454700 895D FC mov dword ptr ss:llebp-41,ebx
004547ED FFD& call e=z1
004547E2 FF75 1C push dword ptr ss:|febp+1C]
00454 7ES 50 push eax
004547EG FFD7 call =di
004547ES BB7D 0OC mov edi,dword ptr ss:ebp+Cl
00454 7ER 57 push edi
004547EC a4 08 push &
00454 7EE 53 push ebx
00454 7EF 8945 F3 mov dword ptr ss:lebp-8],eax
004547F2 FFDO €all e=ax

Fig. 5 - Decrypted shellcode #1 function at 0x4547A8.

This function allocates memory on the heap and copies some data to it. The size of the
region to be allocated is on the second argument. Going back to the main code, there’s XOR
decryption done on each piece of data, and subsequently a call to VirtualProtect to enable
execution of the newly decrypted shellcode (Fig. 6). Their arguments are what seems to be a
file path, a pointer to an executable, what seems to be an XOR key, and probably the size of
the executable (0x72C00 bytes, or 76.8KB)

004515E6 6A 40 push 40’

.
®| 004515E8 FF75 E4 push dword ptr =s:febp-1C])
. 8D0448 lea eax,dword ptr ds:[eax+ecx”2]
e OFB7OC38 mowvzx ecx,word ptr ds:[eax+edi]
e 8B42 1C mov eax,dword ptr ds:[edx+1C]
®| 004515F5 56 push es1
®| 004515F6 800458 Tea eax,dword ptr ds:[eax+ecx”4]
®| 004515F9 8B0438 mov eax,dword ptr ds:[eax+edi]
o| 004515FC 03C7 add eax,edi edi:"mMzE"
. FFDO Eall eax VirtualProtect
. FF75 EO push dword ptr ==:[febp-20]J
. 8D&6 AD0DDOOO Tea eax,dword ptr ds:[esi+a0]
. &8 FB304500 push colibri_04_09_2022.4530F8 4530F8:"18167"
. FF75 F4 push dword ptr ==s:[ebp-C] Febo-c1:"mzE"
] 68 DOB44E0D push colibri_04_09_2022.4E84D0 4E84D0:L"C:\\ProgramData'\,conhost. exe"
ag—>e FFDO &l =ax shellcode #2
]
dword otr ss:lebp-C1=r02D5FDB4 &"MZE"1=078ECAs0 "MzE™
Ltext:0045160E colibri_04_09_2022.exe:$160E #AOE

e Dump 1 g4 Dump 2 ¥ Dump 3 §9 Dump 4 @4 Dump 5 & watch 1 Ix=] Locals # Struct B2 pisassembly
[Address [Hex | ASCIT |
|078ECA80|4D 54 90 00|03 00 00 00|04 00 00 00|FF FF 00 00|MZ yy|

Fig. 6 - Decrypted executable at Ox78ECAS80.

After saving to file that executable and sending it to VirusTotal, we can see that it was
already uploaded. Again, no luck on unpacking it with unpac.me. Entering the last decrypted
shellcode, it seems to dynamically resolve some Windows API functions by passing a hash

5/11

https://www.virustotal.com/gui/file/2b00d8c2bcc6b48e90524cdd41a07735dc94548ed41925baff86e43a61a4c37f
https://www.unpac.me/results/05254b93-2b1d-4350-b9f2-907f9eaae911

and then it creates a file at C:\ProgramData\conhost.exe (Fig. 7).

1

55

BBEC

83EC 60

56

57

68 65506736
E8 4EFFFFFF
68 03DD4098
8BF8

E8 42FFFFFF
68 271B595E
E8 3BFFFFFF
68 A948B1FE
E& ZEFFFFFF
68 DDBLFADS
8945 FC

E8 21FFFFFF
68 3197AZDA
8BFO

E8 15FFFFFF
83C4 18
8345 F8
B5FF

75 OF

68 69347736
E8 OLFFFFFF
83C4 04
BBF8

6A 00

6A 06

BA 02

6A 00

B6A 00

68 00000040
FF75 08
FF55 FC

push ebp

mov ebp,esp

sub esp,&0

push esi

push edi

push 36675065

call <resolve api>

push 9840DD03

mov edi,eax

call <resolve_api>

push 5E591B27

call <resolve_api>

push FEB148A9

call <resolve_apix

push D5FAS1DD

mov dword ptr ss=:[ebp-4],eax
call <resolve_api>

push DAAZ9731

mov esi,eax

call <resolve api>

add esp,18

mov dword ptr ssi:llebp-8],eax
test edi,edi

jne 76626E4

push 36773469

call <resolve_api>

add esp,4

mov edi,eax

push
push
push
push
push
push 40000000

push dword ptr ss:lebp-2]
call dword ptr ss:[ebp-4]

(== .]

CreateProcesswW

GetProcAddress

LoadLibraryA
CreateFilew

WriteFile

[ebp+8] :L"C:\\ProgramData‘‘\conhost. exe"

Fig. 7 - Decrypted shellcode #2.

dword ptr ss:[ebp-4]=[029CF610 <&CreateFilewW:]=<kernelbase.CreateFilen>

After running it, a file was indeed dropped at the expected location, which turns out to be the
same file we manually dumped. VirusTotal shows 173 executables dropping_this file, most
with compilation and first-seen timestamps from September 2022.

Let's have a look at the dropped file. Opening again on IDA Pro, looking at the main function,
it seems very similar to the previous stage, almost a copy, with some minor changes. In the
end, we can quickly spot the same pattern of resolving VirtualProtect, calling it, and then
calling the decrypted shellcode, just as seen before. After running on x32dbg with a
breakpoint at that last call, we can see as before that the pointer to the newly decrypted
executable is the second argument (Fig. 8). However, this time the size is not being passed
as an argument, but we can get it from other places, such as the call to a function that
decrypts the executable, where the size to be decrypted is passed on the first argument.

6/11

https://www.virustotal.com/gui/file/2b00d8c2bcc6b48e90524cdd41a07735dc94548ed41925baff86e43a61a4c37f/relations

L—_y@| DOFF1565 8045 D4 lea eax,dword ptr ss=:[febp-2C]

(| DOFF1568 50 push eax
e (| 0OFF BB47 24 mov eax,dword ptr ds:[edi+24] edi+24 : " 04\ x0E"
|| DOFF156C BA 40 push 40
@ (| D0OFF156E FF75 DC push dword ptr ss:|lebp-24])
e 00FF1571 FF75 E4 push dword ptr ss:[febp-1Cj)
o D0OFF1574 8D0458 lea eax,dword ptr ds:[eax+ebx*2]
(| 00FF1577 OFBY0C30 movzx ecx,word ptr ds:[eax+esi]
o (| OOFF1578 8B47 1C mov eax,dword ptr ds:[edi+1C]
e || DOFF157E BDO4 88 lea eax,dword ptr ds:[eax+ecx*4]
(| D0FF1581 8BO430 mov eax,dword ptr ds:[eax+esi]
o (| 00OFF1554 03C6 add eax,esi asi:"mzE"
®|| DOFF1586 FFDO gall eax VirtualProtect
& DOFF1588 68 C4480001 push conhost.10048C4 10048C4 : "NtUnmapViewdf Sction™
@ | DOFF158D 68 20490001 push conhost.1004920 1004920:"ntd11.d11"
= || DOFF1592 FF75 F8 push dword ptr ss:[ebp-&]
@ (| 00FF1595 8085 C4FEFFFF lea eax,dword ptr ss:|febp-13C]
@ || DOFF1598 50 push eax
@ 00FF159C 8B45 E4 mov eax,dword ptr ss:[febp-1C])
o DOFF159F 05 ADOOOOODO add eax,AD

EIP = FFDO gall eax shellcode
.

dword ptr ss:[ebp-8]=[00EEF988]=07DCC838

.text:00FF1592 conhost.exe:$1592 #3992

% Dump 2 @4 Dump 1 e Dump 3 @4 Dump 4 % Dump 5 & watch 1 lx=] Locals &' Struct

Address | Hex ASCII

07DCC838 | 4D 5A0000|01000000|02 000000|FF FF 00 0O|MZ.......... V..

Fig. 8 - Decrypted executable at 0x7DCC838.

Going back, by putting a breakpoint on the call to decrypt the executable, we can see that
the size is 0x5000 bytes (or 20KB). We can now extract the executable from memory and
have a look at it. The file seems to be a valid executable with only two sections, .text and
.reloc. There’s sufficient evidence to conclude that we have successfully unpacked the
ColibriLoader.

At the time of this research, this last stage was not yet on VirusTotal. Later, we found a
quicker way of unpacking the malware. We used this script to extract executables from
memory dumps (from a sandbox run for example) and then the YARA rule we share below
was used to find the Colibri sample.

Deobfuscating ColibriLoader

Finally, let’'s have a very quick look at the actual malware. The first anti-analysis trick we
encounter is called opaque predicates (Fig. 9); It's a commonly used technique in program
obfuscation, intended to add complexity to the control flow. There are many patterns of this
technique but in this case, the malware author simply takes an absolute jump (JMP) and
transforms it into two conditional jumps, jump if zero (JZ) and jump if not zero (JNZ).
Depending on the value of the Zero flag (ZF), the execution will follow the first or second
branch. However, disassemblers are tricked into thinking that there is a fall-through branch if
the second jump is not taken (which is impossible as one of them must be taken) and try to
disassemble the unreachable instructions (often invalid) resulting in garbage code.

7/11

https://r136a1.info/2022/05/25/introduction-of-a-pe-file-extractor-for-various-situations/

Ltext:
Ltext:
:BB485623

Ltext

Ltext:
Ltext:
Ltext:
Ltext:
Ltext:
LText:
Ltext:
100485624 loc_ 48562A:
Ltext:
Ltext:
Ltext:
Ltext:
Ldext:
Ltext:

Ltext

88485623
88485623

28485623 start:
Aa4A%623
pa4A5E24
Ba4A%625
Ba4AALE26
BEAARE2E
Ba4B5624

80485624
80485624
Be48562F
B8e485632
Be485633
Bede5634 ;

public start

push ebx

push esi

push edi

jz short near ptr loc 485624+1

jnz short near ptr loc_485624+1
; CODE XREF: .text:084856261]
; -text:084856281]

mov eax, GFFFF4DESHh

call fword ptr [edi+5Eh]

pop ebx

retn

Fig. 9 - Example of ColibriLoader opaque predicates anti-analysis technique.

In order for IDA Pro to load it properly, we need to patch the first conditional jump to an
absolute jump and NOP out the second jump (Fig. 10). We’ve automated this task using
myrtusOx0’s code since SmokeLoader also uses this technique.

Ltext:
Ltext:
Jtext:
Ctext:
Ctext:
Ltext:
“Ltext:
Ctext:
188485625

Ltext

Ltext:
Jtext:
Ctext:
Ctext:
Ltext:
Jtext:
Ctext:
Ctext:
:@ed4e5631

Lfext

LText:
Ltext:
Ltext:

00405623
80405623
00405623
80485623 ; int start()
80405623

80405623 start
00405623

00485624

88485626
ped4es5626
88485623
88485628
88485628
0485628 loc_48562B:
88485628

88485638

Be4e5632
88485633
88485633 start

Fig. 10 - Patched ColibriLoader.
The last analysis we did was trying to extract the strings the malware uses, which will contain
indicators of compromise, such as command and control servers. After looking a bit through
the code, it wasn’t hard to find the string decryption function at 0x40594B since there are 71
cross-references for it, so it's probably the most used function (Fig. 11 and 12).

public start

proc near
push ebx
push esi
push edi
jmp short loc 485628
db 3 dup(96h)
; CODE XREF: start+31]
call sub_ 485570
pop edi
pop esi
pop ebx
retn
endp

8/11

https://github.com/myrtus0x0/smoke_conf_extract/blob/8629f13b083242e59279dc9c2d15e869ab84615e/main.py#L121

sub_40594B(off 401130, *(&off 401130 + 1), *(&off 401130 + 2), *(&off 401130 + 3));,

Fig. 11 - Example call to the string decryption function.

void _ cdecl sub_48594B(WORD *str_enc, unsigned int str_len, WORD *key, unsigned int key len)
r *“* WORD *out; [/ ecx
[l) 5= unsigned int 1; // ebx
WORD =v1; // edi
loc_48596A: WORD str_dec; // ax
xor edx, edx vl = (str_enc - out);
mov eax, ebx do
div [ebp+key len] {
mov ax, [esi+edx*2] str_dec = *(out + vl) * key[i ¥ key len];
xor ax, [edi+ecx] ++1;
inc ebx *out++ = str_dec;
mow [ecx], ax ¥
lea ecx, [ecx+2] while (i < str_len);
cmp ebx, [ebp+str len]
jb short loc_48596A

Fig. 12 - String decryption loop from function at 0x40594B.

This code seems straightforward enough. Strings are encrypted with an XOR key passed as
an argument to the function. Yet, we didn’t need to script this out because we’ve found a
working IDA script from Casperinous. Here are the results:

0x401faf %s\\%s

0x401fd4 \\Microsoft\WindowsApps
0x401ffa Get-Variable.exe
0x402020 powershell.exe -windowstyle hidden
0x402046 %s:Zone.ldentifier
0x40229c¢ %s\\%s

0x4022¢1 \\WindowsPowerShell
0x4022e7 dllhost.exe

0x40230d %s:Zone.ldentifier
0x402579 %s\\%s

0x40259e \\Microsoft\WindowsApps
0x4025c4 Get-Variable.exe
0x402706 %s\\%s

0x40272b \\WindowsPowerShell
0x402751 dllhost.exe

0x4028e5 %s:Zone.ldentifier
0x402999 runas

0x4029bf cmd.exe

0x4029e5 /c %s%s%s %s

9/11

https://github.com/Casperinous/colibri_loader/blob/main/colibri_decrypt_str.py

0x402b49 %s\\rundll32.exe %s,%s

0x402c4e %s /s

0x402c74 runas

0x402ca8 %s\\System32\\regsrv32.exe

0x402cff %s\\SysWOWG64\\regsrv32.exe

0x402e48 /c %s%s%s %s

0x402e6e cmd.exe

0x402e94 open

0x403041 %s%s

0x403612 6rmUi1hRdfbVOQyXqAoT

0x4037c0 /c chcp 65001 && ping 127.0.0.1 && DEL /F /S /1Q /A %s%s%s
0x4037e5 cmd.exe

0x4038db Software\\Microsoft\Windows NT\\CurrentVersion
0x403903 ProductName

0x4039cc Unknown

0x403c07 %08IX%041X%lu

0x403c81 /create /tn COMSurrogate /st 00:00 /du 9999:59 /sc once /ri 1 /f /tr
0x403ca7 %s\\schtasks.exe

0x403e4b %s\\schtasks.exe

0x403e71 /delete /tn COMSurrogate /f

0x404058 Content-Type: application/x-www-form-urlencoded
0x404488 zpltcmgodhvvedxtfcygvbgjkvgvcguygytfigj.cc
0x4044ad yugyuvyugguitgyuigtfyutdtoghghbbgyv.cx
0x404582 /gate.php

0x4045a8 hf9gkeO66MP7WJXkg9rp

0x4045ce 20rnJZG6Wtbzd4bKJoS0

0x4045f4 %s?type=%s&uid=%s

0x40461a check

0x404640 GET

0x404666 HTTP/1.1

0x40489d 1.2.0

0x4048c3 Build1

0x4048€e9 /gate.php

0x40490f hfogkeO66MP7WJXkg9rp

0x404934 20rnJZG6Wtbzd4bKJoS0

0x40495a Y%s?type=%s&uid=%s

0x404980 update

0x4049a6 POST

0x4049cc HTTP/1.1

0x40492 %s|%S|%sS|%s|%Ss|%s|%s

0x404a18 32bit

0x404a3e 64bit

10/11

0x404d9c Build1

0x404dc3 /gate.php

0x404dec hfagkeO66MP7WJXkg9rp

0x404e13 20rnJZG6Wtbzd4bKJoSO

0x404e3a %s?type=%s&uid=%s

0x404e61 ping

0x404e88 POST

0x404eaf HTTP/1.1

0x404ed6 %s|%s|%s|%s|%s|%s|%s

0x4054d3 0123456789ABCDEFGHIJKLMNOPQRSTUVWXY Zabcdefghijklmnopqgrstuvwxyz

These decrypted strings also allow us to further reverse the malware more quickly if we need
to.

Wrap-up

We presented a way to manually unpack the ColibriLoader samples from a campaign linked
to the threat actor UAC-0113. Later, we found a quicker way of unpacking the malware using
the pe_extract.py script combined with a YARA rule which detects unpacked samples of
ColibriLoader, which we share below. All indicators of compromise and threat-hunting rules
can be found at https://github.com/bitsight-research/threat_research

Threat Hunting Signatures

Here’s a YARA rule to detect packed ColibriLoader samples based on a typo:

The following YARA rule detects unpacked ColibriLoader samples based on the string
decryption function. This rule was tested on VirusTotal and it returned few results with first-
seen timestamps between September 2021 and November 2022.

Here’s a Suricata rule to detect the ColibriLoader network traffic, specifically its C2 check-in
request, tested with a PCAP generated from a sandbox run of the malware:

Indicators of Compromise

Unpacked ColibriLoader sample - 59f5€517dc05a83d35f11¢c6682934497

173 Packed ColibriLoader samples:
https://github.com/bitsight-
research/threat_research/blob/main/colibriloader/packed_colibri_samples.txt

More at https://github.com/bitsight-research/threat_research

11/11

https://go.recordedfuture.com/hubfs/reports/cta-2022-0919.pdf
https://github.com/TheEnergyStory/malware_analysis_tools/tree/main/pe_extract
https://github.com/bitsight-research/threat_research
https://tria.ge/220904-m3dvdsefgl
https://github.com/bitsight-research/threat_research/blob/main/colibriloader/packed_colibri_samples.txt
https://github.com/bitsight-research/threat_research

