
1/4

reecdeep

reecdeep/HiveV5_file_decryptor
github.com/reecdeep/HiveV5_file_decryptor

HiveV5 file decryptor PoC

Introduction

The work done in the last few months has been necessary to reveal the malicious file
encryption mechanism of Hive v5-5.2. The work was divided into two parts

1. Keystream decryption
2. File decryption using the decrypted keystream

I would like to thank the great @rivitna for the support, dialogue and advices of these months
of work! Please take note of rivitna's github full of useful informations about Hive ransomware
and more.

In this readme you will find some information about the file decryption algorithm, referring
you to the PoC for a more complete picture of how it works. A keystream is an encrypted
cleartext. A cleartext is a set of 0xA00000 bytes to which the first 0x2FFF00 bytes have been
appended, for a total of 0xCFFF00 bytes. These bytes were created with the weak algorithm
already discussed in the first part released in July 2022. Here below is a example of
cleartext:

https://github.com/reecdeep/HiveV5_file_decryptor
https://github.com/reecdeep/HiveV5_keystream_decryptor
https://twitter.com/rivitna2
https://github.com/rivitna


2/4

The Hive sample analyzed and referred to in this document was chosen from this list created
by @rivitna to which my warmest thanks go. To get an idea of the complexity of ransomware,
please take a look at this analysis published by Microsoft Threat Intelligence Center
(MSTIC).

File encryption algorithm

The cleartext (a decrypted keystream) is used by Hive ransomware when encrypting each
file. When encrypting a file, Hive ransomware calculates two integers referring to precise
positions in the cleartext (offsets) to be used to encrypt the file according to the following
formula:

where c = i % 0x2FFF00 e d = i % 0x2FFD00 , with i as a byte counter.

The encrypted file extension

The preliminary operations before writing a file are:

Renaming the file using MoveFileExW and changing its extension;

https://user-images.githubusercontent.com/72123074/204250635-f96b579f-c19b-4c14-be15-157300e1633d.png
https://github.com/rivitna/Malware/blob/main/Hive/Hive_samples.txt
https://twitter.com/rivitna2
https://www.microsoft.com/security/blog/2022/07/05/hive-ransomware-gets-upgrades-in-rust/
https://user-images.githubusercontent.com/72123074/204250645-788c1269-cbf8-4006-b042-b16ee7756cdb.png


3/4

Writing the renamed file with the result of the xor operation shown above.

Also in this case the cleartext plays a fundamental role. In fact it is used for:

1. Determine the keystream ID (first 6 bytes) using a hash function
2. Encrypt the positions (offsets) used to extract bytes from the cleartext However, the first

offset is encrypted using a fixed position of the cleartext and is different for each Hive
5/5.1/5.2 sample. A kind of magical value. In many Hive 5/5.1 artifacts this magic value
is shown explicitly inside a memory reference, like in this case 0x98072A :

Or this case 0x7539D:

But in the next evidence the for loop is slightly different and has been written in such a way
as not to explicit the magic value that we need to identify. This concerns an artifact belonging
to Hive 5.2:

https://user-images.githubusercontent.com/72123074/204250641-2567b7f9-cc42-4516-b378-b357eed4d018.png
https://user-images.githubusercontent.com/72123074/204250648-da2d1514-2e56-4849-8090-79ad25625298.png
https://user-images.githubusercontent.com/72123074/204250651-82ea5c5d-840f-486a-807a-1a7a62f30811.png


4/4

In this case it is possible to use the offset bruteforce function present in the released tool,
using a file with a known extension and the relative decrypted keystream. Using the header
of the encrypted file and the header of the unencrypted file it is possible to understand what
is the offset from which the decryptor must start to decrypt the file.

The file encryption mode can have two values: 0xFB or 0xFF

0xFB means that the ransomware encrypted the entire file without leaving any portion
of the file unencrypted.
0xFF means that the ransomware calculated a NCB (not encrypted block) for each file
and encrypting blocks of 0x100000 bytes. For further information regarding the
calculation of the size of the unencrypted blocks and the cleartext offset, please refer to
the PoC code.

Usage

The program offers two options:

1. Decryption of files using the decrypted keystream. You need to enter the special offset
present in the sample that encrypted the files.

2. Given a file with a known header (PDF, JPG, PNG, Office files) brute the possible value
of the special offset by decrypting the first bytes and looking for a match with the known
signature

References

https://github.com/rivitna/Malware/blob/main/Hive/Hive_samples.txt

https://user-images.githubusercontent.com/72123074/204250653-a747b1bb-e1d7-4061-a21c-d3c72612c93f.png
https://user-images.githubusercontent.com/72123074/204250655-5e8c46e1-f9aa-4718-bcfe-ca60ff34b5b1.png
https://github.com/rivitna/Malware/blob/main/Hive/Hive_samples.txt

