reecdeep/HiveV5_file _decryptor

O github.com/reecdeep/HiveV5_file_decryptor

reecdeep

reecdeep/ QYD
) A
HiveV5_file_decryptor DQOOC

Hive v5 file decryption algorithm

a1 ® o 7 29 ¥ 3 O

Contributor Issues Stars Forks

HiveV5 file decryptor PoC

Introduction

The work done in the last few months has been necessary to reveal the malicious file
encryption mechanism of Hive v5-5.2. The work was divided into two parts

1. Keystream decryption
2. File decryption using the decrypted keystream

| would like to thank the great @rivitna for the support, dialogue and advices of these months
of work! Please take note of rivitna's github full of useful informations about Hive ransomware
and more.

In this readme you will find some information about the file decryption algorithm, referring
you to the PoC for a more complete picture of how it works. A keystream is an encrypted
cleartext. A cleartext is a set of 0XxA00000 bytes to which the first 0xX2FFFO00 bytes have been
appended, for a total of OXxCFFFOQO bytes. These bytes were created with the weak algorithm
already discussed in the first part released in July 2022. Here below is a example of
cleartext:

1/4

https://github.com/reecdeep/HiveV5_file_decryptor
https://github.com/reecdeep/HiveV5_keystream_decryptor
https://twitter.com/rivitna2
https://github.com/rivitna

00000000 BC E2 4C BO 14 72 DC 40 A4 082 6C DO 98 FC 60 C4 12L°.x0U@m.1D"G A
00000010 28 8C FO 54 B8 1C 80 E4 48 10 74 D8 3C A0 04 62 (EST,.€3H.t@< .h
00000020 CC 30 94 F8 5C 24 88 EC 50 B4 18 7C EO 44 A8 oCc 1o0"e\S$-iP-.|aD".
00000030 70 D4 9C 00 €4 C2 2C 90 F4 58 BC 20 84 E2 4C 14 ple.dE, .5X% .&L.
00000040 78 DC 40 24 08 6C DO 34 98 FC €0 28 8C FO 54 B2 xU@n.1P4~4" (EAT,
00000050 1C 20 E4 48 AC 10 74 D2 AO 04 68 CC 30 94 F8 5C .€&H-.t@ .hio”ae\
00000060 CO 24 88 50 B4 18 7C EO 44 A% OC 70 D4 38 oC 00 AS“P’.|aD".plsc.
00000070 CB 2C 90 F4 58 BC 20 84 E8 4C BO 14 78 40 A4 08 E,.5%X% ,&L°.x@n.
00000080 €C DO 34 98 FC 60 C4 28 8C 54 B8 1C 80 E4 48 AC 1P4~d A (ET, .€&H-
00000090 10 74 D8 3C RO 04 CC 30 94 F8 5C CO 24 88 EC 50 .t@< .107"2\AS*iP
000000AO0 B4 7C EO 44 A8 OC 70 D4 38 9C 00 €4 C8 90 F4 58 |aD” .pOSe.dE.&X
[X X oe®

QOCFFE30 28 2C FO 54 B8 1C 80 E4 48 AC 10 74 D8 3C AO 04 (EST,.€&H-.t@<

OOCFFE40 €8 CC 30 94 F8 CO 24 88 EC 50 B4 18 7C EO 44 22 hio”edAS$-iP-.|aD"
OOCFFES0 0OC 70 D4 38 9C 00 €4 C8 2C 90 F4 58 BC 20 84 E2 .pO8Se.dE, .5Xw &
QOCFFEE0 4C BO 14 72 DC 40 A4 08 6C DO 34 92 60 C4 28 aC L°.x0@w.1D4~"A(E
QOCFFE70 FO 54 B8 1C B0 E4 48 AC 10 74 D8 3C AO 04 68 CC 4T, .€&H-.t@< .hi
QOCFFEB0 30 94 F8 5C CO 24 88 EC 50 B4 18 7C EO 44 A8 0C 0%g\AS"iP-.|aD".
QOCFFE90 70 D4 9C 00 €4 C2 2C 90 F4 58 BC 20 84 E2 4C B0 ple.dE, .5X% ,.&L°
OOCFFEAO 14 78 DC 40 R4 08 6C DO 34 98 FC €0 C4 28 8C Fo .xU@u.1D4"i A (ES
OOCFFEBO 54 B8 1C 20 E4 48 AC 10 74 3C AO 04 €8 CC 30 94 T,.€&H-.t< .hio~
OOCFFECO FB8 SC CO 24 88 EC 50 B4 18 7C EO 44 A8 0OC 70 D4 e@\AS$"iP’.|aD".pd
OOCFFEDO 38 SC 00 €4 C8 2C S0 F4 58 BC 20 24 E8 4C BO 14 Be.dE,.o6XK4w .&L°.
OOCFFEEO 78 40 A4 08 6C DO 34 98 FC 60 C4 28 8C FO 54 B2 x@m.194~i A (EAT,

QOOCFFEFQO 1C 80 E4 48 AC 10 74 D& 3C 04 68 CC 94 F2 .€&H-.tO< .hio"e

=
L)

The Hive sample analyzed and referred to in this document was chosen from this list created
by @rivitna to which my warmest thanks go. To get an idea of the complexity of ransomware,
please take a look at this analysis published by Microsoft Threat Intelligence Center
(MSTIC).

File encryption algorithm

The cleartext (a decrypted keystream) is used by Hive ransomware when encrypting each
file. When encrypting a file, Hive ransomware calculates two integers referring to precise
positions in the cleartext (offsets) to be used to encrypt the file according to the following
formula:

fileencrypteali] = cleartext|offset; + c| @ cleartext|[offset, + d| D fileceqrlil

where ¢ =i % Ox2FFF00 e d =i % Ox2FFDOO , with i as a byte counter.

The encrypted file extension

The preliminary operations before writing a file are:

» Renaming the file using MoveFileExW and changing its extension;

2/4

https://user-images.githubusercontent.com/72123074/204250635-f96b579f-c19b-4c14-be15-157300e1633d.png
https://github.com/rivitna/Malware/blob/main/Hive/Hive_samples.txt
https://twitter.com/rivitna2
https://www.microsoft.com/security/blog/2022/07/05/hive-ransomware-gets-upgrades-in-rust/
https://user-images.githubusercontent.com/72123074/204250645-788c1269-cbf8-4006-b042-b16ee7756cdb.png

» Writing the renamed file with the result of the xor operation shown above.

I90gN3qg2--zs71w4QCQU

8B | D3

AA | 37 | 7A

B6

FB | EC | EC | EC | 8C | 38 |40 |24 | 14

N/

Keystream_ID

e\ e/

1st_offset 2nd_offset
xored xored

WV

file encryption
mode

Also in this case the cleartext plays a fundamental role. In fact it is used for:

1. Determine the keystream ID (first 6 bytes) using a hash function

2. Encrypt the positions (offsets) used to extract bytes from the cleartext However, the first
offset is encrypted using a fixed position of the cleartext and is different for each Hive
5/5.1/5.2 sample. A kind of magical value. In many Hive 5/5.1 artifacts this magic value
is shown explicitly inside a memory reference, like in this case 0x98072A :

80OCE FB

BABC 16 ZADT3IEDD

304C14 2C
42

75 F2
BB4C 24 2B

Or this case 0x7539D:

BB4C24 0OC
BABC1T 39D530700
304C14 44

42

5 F2

or bl,FB

mov cl,byte ptr J_:Ic;' edx+38072A] I
xor byte pte =2 :|[esiremse——]—

ine edx

jne x.423E06

mov ecx,dword ptr s=:|fesp-2:]

mov byte ptr ss:fesgalll g

mov cl,byte ptr ds:[edi+edx+7533071
xor byte ptr ss5:fespredux+Idf,C

inc edx
jne aoh2uih3idz.S81A04

But in the next evidence the for loop is slightly different and has been written in such a way
as not to explicit the magic value that we need to identify. This concerns an artifact belonging

to Hive 5.2:

3/4

https://user-images.githubusercontent.com/72123074/204250641-2567b7f9-cc42-4516-b378-b357eed4d018.png
https://user-images.githubusercontent.com/72123074/204250648-da2d1514-2e56-4849-8090-79ad25625298.png
https://user-images.githubusercontent.com/72123074/204250651-82ea5c5d-840f-486a-807a-1a7a62f30811.png

L COEZ 02 5n1 ol,2

. BOCEB FB or bl,FB

L] BA3COD2 mov bih,byte ptr ds: [edx+eax]

L] 40 inc eax

. 30BCOC 04010000 xor byte ptr ss:|Jesprecx+104], bt
L] 41 inc ecx

. 78 F2 jne g4s.AAZBEE

. BE4424 18 mov eax,dword ptr ss:fesp+15]

. BE9424 00010000 mov edx,dword ptr ss:fesp+1l00]
. BD7C24 28 lea edi,dword ptr ss:fesp+25]

L] B98424 00010000 mov dword ptr ss:Qesp+i00f,eax
. BDOS 4FB340AA Tea eax,dword ptr ds:[Aaa4 iF]
. 894424 28 mov dword ptr ss:[les 1.eax

. BE4424 28 mov eax,dword ptr tBesp=:

L] BEBB BIFCT256 mov ecx,dword ptr ds:[eax

- RIC1 FC add scw .

In this case it is possible to use the offset bruteforce function present in the released tool,
using a file with a known extension and the relative decrypted keystream. Using the header
of the encrypted file and the header of the unencrypted file it is possible to understand what
is the offset from which the decryptor must start to decrypt the file.

The file encryption mode can have two values: OxFB or OxFF

* OxFB means that the ransomware encrypted the entire file without leaving any portion
of the file unencrypted.

¢ OxFF means that the ransomware calculated a NCB (not encrypted block) for each file
and encrypting blocks of 0x100000 bytes. For further information regarding the
calculation of the size of the unencrypted blocks and the cleartext offset, please refer to
the PoC code.

Usage

The program offers two options:

Hive ransomware V5 - file decryptor PoC

1. Decrypt a file using decrypted keystream
2. Offset bruteforce

your move:

1. Decryption of files using the decrypted keystream. You need to enter the special offset
present in the sample that encrypted the files.

2. Given a file with a known header (PDF, JPG, PNG, Office files) brute the possible value
of the special offset by decrypting the first bytes and looking for a match with the known
signature

References

https://github.com/rivitna/Malware/blob/main/Hive/Hive_samples.txt

4/4

https://user-images.githubusercontent.com/72123074/204250653-a747b1bb-e1d7-4061-a21c-d3c72612c93f.png
https://user-images.githubusercontent.com/72123074/204250655-5e8c46e1-f9aa-4718-bcfe-ca60ff34b5b1.png
https://github.com/rivitna/Malware/blob/main/Hive/Hive_samples.txt

