
1/17

Malwarology LLC

Malicious Packer pkr_ce1a
malwarology.substack.com/p/malicious-packer-pkr_ce1a

First Stage

Summary

This packer has been observed delivering a wide variety of malware families including
SmokeLoader and Vidar among many others. It has been observed in the wild going back a
number of years potentially to 2017. The particular variant of the packer analyzed here
contains two sets of bytes with no apparent use which occur on either side of values that are
integral to the decoding and unpacking process. These two byte strings are stable across
many months of observed samples of this packer. What follows is a detailed analysis of the
first stage of one sample of this packer which delivers a SmokeLoader payload. Until a
widely recognized name or identifier can be determined for this packer, it has the designation
pkr_ce1a .

Identification

This sample has two known filenames. The first, 6523.exe , is observed in the wild in the
path component of the URL used to distribute the file.1 The second, povgwaoci.iwe , is
located in the RT_VERSION resource within the VS_VERSIONINFO structure in a field
named InternationalName . This field along with others in the same StringTable structure
are not parsed by Exiftool or Cerbero Suite. This indicates that the structure is malformed or
non-standard.

Malwarology Research is a reader-supported publication. To receive new posts and support
my work, consider becoming a free or paid subscriber.

According to AV detection results, the correct identification of the unpacked file,
SmokeLoader, does appear. There is also one detection based on dynamic analysis:
Zenpack.

The import hash of this sample is shared by a group of other files.2 However, the large
majority of imported functions are called in dead code located after opaque predicates.
Therefore, the usefulness of this import hash is almost nothing. Closer analysis of the
opaque predicates in this sample can be found below.

Behavioral and Code Analysis Findings

https://malwarology.substack.com/p/malicious-packer-pkr_ce1a?r=1lslzd
https://github.com/MBCProject/mbc-markdown/blob/master/anti-static-analysis/software-packing.md
https://malpedia.caad.fkie.fraunhofer.de/details/win.smokeloader
https://malpedia.caad.fkie.fraunhofer.de/details/win.vidar
https://exiftool.org/
https://cerbero.io/ea/

2/17

Build Analysis

According to the File Header, the timestamp of compilation is 2022-02-16T10:14:32Z. The
linker version found in the PE32 Optional Header is 9.0.

Linker Version 9.0
The compiler is identified as Visual Studio 2008 Release according to function signatures in
Ghidra that match a number of library functions in the sample. One example of this detection
for the ___security_init_cookie function is shown in the figure below.

Compiler Detection: Visual Studio 2008 Release
The majority of the library functions found in the sample are from Microsoft Visual C++
9.0.21022. This is identified in the sample’s rich signature.

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fbucketeer-e05bbc84-baa3-437e-9518-adb32be77984.s3.amazonaws.com%2Fpublic%2Fimages%2Fc0688009-9c87-4d72-95de-6e40b6e0b8bf_987x400.png
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fbucketeer-e05bbc84-baa3-437e-9518-adb32be77984.s3.amazonaws.com%2Fpublic%2Fimages%2Fa9981c4e-80b7-42b1-8d7d-70b221343a8e_1526x658.png

3/17

Rich Signature: VC++ 9.0.21022

Main Function

Main Function
The instructions highlighted in yellow in the figure above are examples of junk code insertion.
These are dummy instructions that are placed between relevant instructions with the goal of
making signature development more difficult. The instructions at the end of the function
highlighted in white are not executed. These highlight colorings are used throughout the
screenshots of this analysis.

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fbucketeer-e05bbc84-baa3-437e-9518-adb32be77984.s3.amazonaws.com%2Fpublic%2Fimages%2F3e395003-8628-423b-b240-6c6095ae01ff_1150x452.png
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fbucketeer-e05bbc84-baa3-437e-9518-adb32be77984.s3.amazonaws.com%2Fpublic%2Fimages%2F168206b9-c47c-4ea0-969d-0a4ed5eb4616_1212x1055.png
https://github.com/MBCProject/mbc-markdown/blob/master/anti-static-analysis/executable-code-obfuscation.md#:~:text=analysis%20visually%20harder.-,Junk%20Code%20Insertion,-B0032.007

4/17

The first instructions in the main function calculate the size of the encoded data that contains
the shellcode which is the next stage of the packer. The first part is read from a constant in
the .data section at address 0x41cc3c . The second part is hardcoded in the main
function at address 0x406573 . The size is calculated in the next instruction by adding the
two parts together. The resulting size is written to a variable in the .data section.
Highlighted in the figure below are the bytes before and after the first constant. These two
sets of bytes are not read during the execution of the packer, and their purpose is unknown.
However, they are stable across builds of this packer going back for months at least.

Stable Surrounding Bytes
The address where the encoded data is located goes through a similar process. The first part
is read from the .data section then written to a variable in the same section. The addition
to the second part does not occur until later in the unpack_shellcode function. The bytes
surrounding this part are shown in the figure below.

Stable Surrounding Bytes
The next set of instructions handles loading kernel32.dll and resolving the address of
LocalAlloc .3 These instructions taken together are unique to this packer and shared

across hundreds of variants. The stray instruction at address 0x406588 is part of the
previous logical grouping of instructions. This is an example of interleaving code that is
meant to make signature development more difficult.

Resolve LocalAlloc

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fbucketeer-e05bbc84-baa3-437e-9518-adb32be77984.s3.amazonaws.com%2Fpublic%2Fimages%2Fbe61ed5a-e890-4f81-8b22-003cdb96b0f8_1090x290.png
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fbucketeer-e05bbc84-baa3-437e-9518-adb32be77984.s3.amazonaws.com%2Fpublic%2Fimages%2F02024936-1f68-4e97-a267-33b14f702000_1093x288.png
https://github.com/MBCProject/mbc-markdown/blob/master/anti-static-analysis/executable-code-obfuscation.md#:~:text=to%20confuse%20disassembler.-,Interleaving%20Code,-B0032.014
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fbucketeer-e05bbc84-baa3-437e-9518-adb32be77984.s3.amazonaws.com%2Fpublic%2Fimages%2Fac742791-6fc4-424c-b79e-2538e69faebe_1389x257.png

5/17

The call to LocalAlloc is obfuscated by calling it from the eax register. This is a type of
function call obfuscation. The uBytes parameter to the function is 63072 bytes which is the
result of the calculation described above.

Obfuscated Call to LocalAlloc
The final instructions in the main function are calls to other malicious functions and finally a
call to the entry point of the decoded shellcode. The next stage of the packer starts after that
call.

Change Protection Function

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fbucketeer-e05bbc84-baa3-437e-9518-adb32be77984.s3.amazonaws.com%2Fpublic%2Fimages%2F3c5832a3-a278-4491-9111-27bc29b8d822_1238x163.png

6/17

Change Protection Function
This function is a wrapper around an obfuscated call to VirtualProtect . Starting at
address 0x4058e3 and continuing until the call to GetProcAddress , the name of the
function VirtualProtect is written character-by-character, out of order, to a variable in the
.data section. Building the function name in this way is an example of variable

recomposition. The address of this string is then used as the lpProcName parameter to
GetProcAddress . Finally, a call is made to VirtualProtect to change the protection

from PAGE_READWRITE (0x4) to PAGE_EXECUTE_READWRITE (0x40) thus enabling
execution in the newly allocated memory.

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fbucketeer-e05bbc84-baa3-437e-9518-adb32be77984.s3.amazonaws.com%2Fpublic%2Fimages%2Fabf65e66-e753-4257-9483-3156944cdc14_1278x1639.png
https://github.com/MBCProject/mbc-markdown/blob/master/anti-static-analysis/disassembler-evasion.md#:~:text=Variable%20Recomposition

7/17

The flNewProtect parameter to the VirtualProtect function is also obfuscated by
adding together 0x20 and 0x20 . This hides the PAGE_EXECUTE_READWRITE flag of
0x40 from being located near the call to VirtualProtect . This is a form of argument

obfuscation.

Obfuscated New Protect Value

Unpack Shellcode Function

This function performs three actions that are interspersed with anti-analysis code. The first
action is moving the encoded data from its starting location in the .data section to the
newly allocated memory.

Move Encoded Data

https://github.com/MBCProject/mbc-markdown/blob/master/anti-static-analysis/disassembler-evasion.md#:~:text=Argument%20Obfuscation
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fbucketeer-e05bbc84-baa3-437e-9518-adb32be77984.s3.amazonaws.com%2Fpublic%2Fimages%2Fa5b5e201-e7f0-4939-9a34-c2ab7d687616_1521x66.png
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fbucketeer-e05bbc84-baa3-437e-9518-adb32be77984.s3.amazonaws.com%2Fpublic%2Fimages%2F72a2f4df-84b0-49ad-a659-fca776c25d5e_1637x1513.png

8/17

Note the instructions at addresses 0x405aa7 and 0x405acd . These are both opaque
predicates. An opaque predicate appears to be a conditional jump, but the conditions can
only be met in one way making the jump effectively unconditional. The one at the top is
basically a fake: it never jumps. The one in the middle always jumps. This one additionally
encloses a block of dead code. This packer very frequently couples dead code insertion with
opaque predicates that always jump over the dead code. The function calls in the dead code
are included in the import table making identification via import hash of little utility.

Later on in this function is the call to the decode function. After that is a call to a function
which shifts the pointer to the decoded shellcode. The shift changes the offset from the start
of this data to the location of the shellcode original execution point (OEP). Because the
shellcode is position independent, this OEP is also offset zero of the shellcode. Both of these
functions are analyzed in more detail below.

The shift_shellcode_oep function is additionally wrapped in an anti-emulator loop which
has a very high number of iterations. This slows processing in an emulator which can
potentially cause a timeout and an analysis failure.

Decode and Shift Shellcode OEP Functions
Note the comparison instruction at address 0x406486 . During the anti-emulation loop, the
call to shift_shellcode_oep is made once when the counter reaches 0x770e . This is a
type of anti-emulation circumvention countermeasure. A basic method for circumventing
extremely long loops that target emulators is to patch out the loop. Another is to detect the
loop in the emulator and then modify the counter to leave the loop. Because the shift function
is called once at a point in the loop, either of these circumventions could end up not
executing this function and would leave the emulator unable to execute the shellcode
correctly.

https://github.com/MBCProject/mbc-markdown/blob/master/anti-static-analysis/executable-code-obfuscation.md
https://github.com/MBCProject/mbc-markdown/blob/master/anti-static-analysis/executable-code-obfuscation.md#:~:text=.%20%5BNEEDS%20REVIEW%5D-,Dead%20Code%20Insertion,-B0032.003
https://github.com/MBCProject/mbc-markdown/blob/master/anti-behavioral-analysis/emulator-evasion.md#:~:text=to%20block%20emulators.-,Extra%20Loops,-/Time%20Locks
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fbucketeer-e05bbc84-baa3-437e-9518-adb32be77984.s3.amazonaws.com%2Fpublic%2Fimages%2F866ae73e-b5eb-401e-b158-b7530d7f909b_1450x673.png

9/17

The unpack_shellcode function overall contains ten opaque predicates primarily of the
same type shown above. One of them is slightly different in that it creates a dead end filled
with dead code. The last instruction in the dead end is a call to terminate . Therefore, this
appears to be a location where the execution of the packer ends.

Opaque Predicate with Dead End
There are a total of four anti-emulation loops similar to the one analyzed above. Two of these
wrap opaque predicates which in turn wrap inserted dead code. One, however, in addition to
wrapping two opaque predicates, also contains two additional anti-emulator behaviors. Both
of these are calls to unusual APIs: GetGeoInfoA and GetSystemDefaultLangID . During
analysis, Qiling emulator halted with an exception because neither of these API calls have
been implemented.

Anti-Emulation: Unusual API Calls
In the very first code block of the unpack_shellcode function, a new and subsequently
unused exception handler is registered. Chances are about even that this is an anti-
emulation behavior or it is just junk code. If it is anti-emulation, it is targeting older emulators
based on specific versions of Unicorn Engine which do not implement access to the

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fbucketeer-e05bbc84-baa3-437e-9518-adb32be77984.s3.amazonaws.com%2Fpublic%2Fimages%2F5357e40a-81ff-4af9-b8a2-721de45ba45f_1956x1173.png
https://github.com/MBCProject/mbc-markdown/blob/master/anti-behavioral-analysis/emulator-evasion.md#:~:text=non%2Dexhaustive%20emulators.-,Unusual,-/Undocumented%20API%20Calls
https://github.com/qilingframework/qiling
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fbucketeer-e05bbc84-baa3-437e-9518-adb32be77984.s3.amazonaws.com%2Fpublic%2Fimages%2Fc611ee6a-667b-46de-af2f-23e79541614e_1082x394.png
https://github.com/unicorn-engine/unicorn
https://github.com/unipacker/unicorn#:~:text=not%20available%20in%20the%20current%20version

10/17

Windows Thread Information Block (TIB). Moving the contents of fs:0x0 as happens at
address 0x405983 would fail in that particular environment. This type of anti-emulation is
an unimplemented opcode.

Register New SEH
In the last block of the unpack_shellcode function, before the return, the SEH is reset
back to the previous handler. This occurs right after a junk call to LoadLibraryW from
which no functions are subsequently resolved.

Last Block of unpack_shellcode

Decode Function

https://github.com/MBCProject/mbc-markdown/blob/master/anti-behavioral-analysis/emulator-evasion.md#:~:text=emulators%20give%20up.-,Undocumented%20Opcodes,-B0005.002
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fbucketeer-e05bbc84-baa3-437e-9518-adb32be77984.s3.amazonaws.com%2Fpublic%2Fimages%2Fe93c840b-b386-45b8-97d5-083b6df35bff_1257x567.png
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fbucketeer-e05bbc84-baa3-437e-9518-adb32be77984.s3.amazonaws.com%2Fpublic%2Fimages%2F687c0682-ef02-4251-8aba-b60016f085de_1182x415.png

11/17

Decode Function (Truncated)
The data is decoded in chunks. So this function has three basic purposes: convert the
encoded shellcode size to a chunk count by dividing by 8, wrapping a loop around the call to
the decode_chunk function, and then calling that function. In the middle of this function is a
very large insertion of dead code wrapped by an opaque predicate. This is highlighted in
white in the figure above. It has also been truncated for the screenshot. There are two
locations in this function with junk code insertion which impedes signature development: at
addresses 0x4057c1 and 0x4057cc .

The chunks are 8 bytes long, therefore at the end of the loop after the call to
decode_chunk , 8 is added to the chunk pointer then the chunk count is decremented by

one.

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fbucketeer-e05bbc84-baa3-437e-9518-adb32be77984.s3.amazonaws.com%2Fpublic%2Fimages%2F815bc94f-494e-473b-95df-9d6b84992ac4_1578x1811.png
https://github.com/MBCProject/mbc-markdown/blob/master/anti-static-analysis/executable-code-obfuscation.md#:~:text=analysis%20visually%20harder.-,Junk%20Code%20Insertion,-B0032.007

12/17

Chunk Decode Loop Control

Decode Chunk Function

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fbucketeer-e05bbc84-baa3-437e-9518-adb32be77984.s3.amazonaws.com%2Fpublic%2Fimages%2F4d353779-4295-445a-b4c5-4f29724bf8fa_1075x267.png

13/17

Decompiled Decode Chunk Function
The decode_chunk function has four opaque predicates that each wrap dead code, and
there are two locations with junk code insertion. In addition to these, the logic of the function
is quite convoluted. However, after patching out all of the opaque predicates, dead code, and
junk code, a cleaner decompilation graph can be analyzed. The figure above is that graph,
fully annotated and cleaned up.

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fbucketeer-e05bbc84-baa3-437e-9518-adb32be77984.s3.amazonaws.com%2Fpublic%2Fimages%2F1af58b00-5530-4369-9a66-fc90ad0debc5_1081x1547.png

14/17

There are three tiny functions called during the decoding algorithm: load_data_keyB ,
add_key4 , and, xor_mix . These simply isolate small pieces of the algorithm to impede

analysis and make signature development more difficult.

Algorithm Isolates

Shift Shellcode OEP Function

Shift Shellcode OEP Function
The shift_shellcode_oep function is very simple. It adds 0x3bf1 to the address of the
start of the decoded shellcode in allocated memory. This shifts the pointer from the start of
the decoded data to the offset of the OEP. This is the address that is called in the main
function.

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fbucketeer-e05bbc84-baa3-437e-9518-adb32be77984.s3.amazonaws.com%2Fpublic%2Fimages%2F1d2e540c-d4c4-4163-bb9b-d85d529a4b86_1132x890.png
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fbucketeer-e05bbc84-baa3-437e-9518-adb32be77984.s3.amazonaws.com%2Fpublic%2Fimages%2Fba1a1065-4d5e-499c-a529-9417c7dcd8cf_1064x434.png

15/17

Recommendations

This packer is polymorphic. Variants and builds share many of the same functionality,
behavior, and code features. However, they are in different order with randomization of
opaque predicates, junk code, and dead code. In spite of this, detection can be achieved by
focusing on the two stretches of stable bytes which were identified above. The following two
YARA rules match these bytes.

rule Packer_pkr_ce1a_ShellcodeSizePart
{
 meta:
 author = "Malwarology LLC"
 date = "2022-10-14"
 description = "Detects bytes surrounding the first part of the data size of
the second stage shellcode in Packer pkr_ce1a."
 reference = "https://malwarology.substack.com/p/malicious-packer-pkr_ce1a"
 sharing = "TLP:CLEAR"
 exemplar = "fc04e80d343f5929aea4aac77fb12485c7b07b3a3d2fc383d68912c9ad0666da"
 address = "0x41cc3c"
 packer = "pkr_ce1a"
 strings:
 $a = { 00699AF974[4]96AACB4600 }
 condition:
 $a and
 uint16(0) == 0x5A4D and
 uint32(uint32(0x3C)) == 0x00004550
}

rule Packer_pkr_ce1a_ShellcodeAddrPart
{
 meta:
 author = "Malwarology LLC"
 date = "2022-10-17"
 description = "Detects bytes surrounding the first part of the address of the
second stage shellcode in Packer pkr_ce1a."
 reference = "https://malwarology.substack.com/p/malicious-packer-pkr_ce1a"
 sharing = "TLP:CLEAR"
 exemplar = "fc04e80d343f5929aea4aac77fb12485c7b07b3a3d2fc383d68912c9ad0666da"
 address = "0x41bc9c"
 packer = "pkr_ce1a"
 strings:
 $a = { 0094488D6A[4]F2160B6800 }
 condition:
 $a and
 uint16(0) == 0x5A4D and
 uint32(uint32(0x3C)) == 0x00004550
}

Supporting Data and IOCs

16/17

File

Filename: 6523.exe

Filename: povgwaoci.iwe

MD5: 5663a767ac9d9b9efde3244125509cf3

SHA1: 84f383a3ddb9f073655e1f6383b9c1d015e26524

SHA25:
fc04e80d343f5929aea4aac77fb12485c7b07b3a3d2fc383d68912c9ad0666da

Imphash: bc57832ec1fddf960b28fd6e06cc17ba

Timestamp: 2022-02-16T10:14:32Z

File Type: Win32 EXE

Magic: PE32 executable (GUI) Intel 80386, for MS Windows

Size: 238080

First Seen: 2022-10-14T18:37:13Z 4

Distribution URL

hxxp[://]guluiiiimnstrannaer[.]net/dl/6523.exe

Malware Behavior Catalog

DEFENSE EVASION::Software Packing [F0001]

ANTI-BEHAVIORAL ANALYSIS::Emulator Evasion::Undocumented Opcodes
[B0005.002]

ANTI-BEHAVIORAL ANALYSIS::Emulator Evasion::Unusual/Undocumented API Calls
[B0005.003]

ANTI-BEHAVIORAL ANALYSIS::Emulator Evasion::Extra Loops/Time Locks
[B0005.004]

ANTI-STATIC ANALYSIS::Disassembler Evasion::Argument Obfuscation [B0012.001]

ANTI-STATIC ANALYSIS::Disassembler Evasion::Variable Recomposition [B0012.004]

17/17

ANTI-STATIC ANALYSIS::Executable Code Obfuscation::Dead Code Insertion
[B0032.003]

ANTI-STATIC ANALYSIS::Executable Code Obfuscation::Junk Code Insertion
[B0032.007]

ANTI-STATIC ANALYSIS::Executable Code Obfuscation::Interleaving Code
[B0032.014]

Malware Behavior Catalog Proposed Methods

ANTI-BEHAVIORAL ANALYSIS::Emulator Evasion::Unimplemented Opcodes [B0005]

ANTI-STATIC ANALYSIS::Executable Code Obfuscation::Opaque Predicate [B0032]

ANTI-STATIC ANALYSIS::Executable Code Obfuscation::Function Call Obfuscation
[B0032]

Analyses

Intezer

UnpacMe

1
Sample downloaded from hxxp[://]guluiiiimnstrannaer[.]net/dl/6523.exe

2
Imphash: bc57832ec1fddf960b28fd6e06cc17ba

3
LocalAlloc function (winbase.h)

4
VirusTotal

https://analyze.intezer.com/analyses/4ae9acb6-01f0-4ff5-89bf-c967349e08f9
https://www.unpac.me/results/a6d0217d-02c0-4db8-9186-fc0d99137789/
https://bazaar.abuse.ch/sample/fc04e80d343f5929aea4aac77fb12485c7b07b3a3d2fc383d68912c9ad0666da#:~:text=Sample%20downloaded%20from
https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-localalloc

