
1/17

Or Chechik October 31, 2022

Banking Trojan Techniques: How Financially Motivated
Malware Became Infrastructure

unit42.paloaltonetworks.com/banking-trojan-techniques/

By Or Chechik

October 31, 2022 at 6:00 AM

Category: Malware

Tags: Banking Trojan, Cortex, Cortex XDR, Dridex, Emotet, IcedID, kronos, process
injection, Trickbot, Webinjects, WildFire, Zeus

This post is also available in: 日本語 (Japanese)

Executive Summary

While advanced persistent threats get the most breathless coverage in the news, many
threat actors have money on their mind rather than espionage. You can learn a lot about the
innovations used by these financially motivated groups by watching banking Trojans.

Because attackers constantly create new techniques to evade detection and perform
malicious acts, studying monetarily motivated malware can help defenders understand threat
actor tactics and protect organizations more effectively. Some of the banking Trojans

https://unit42.paloaltonetworks.com/banking-trojan-techniques/
https://unit42.paloaltonetworks.com/author/or-chechik/
https://unit42.paloaltonetworks.com/category/malware-2/
https://unit42.paloaltonetworks.com/tag/banking-trojan/
https://unit42.paloaltonetworks.com/tag/cortex/
https://unit42.paloaltonetworks.com/tag/cortex-xdr/
https://unit42.paloaltonetworks.com/tag/dridex/
https://unit42.paloaltonetworks.com/tag/emotet/
https://unit42.paloaltonetworks.com/tag/icedid/
https://unit42.paloaltonetworks.com/tag/kronos/
https://unit42.paloaltonetworks.com/tag/process-injection/
https://unit42.paloaltonetworks.com/tag/trickbot/
https://unit42.paloaltonetworks.com/tag/webinjects/
https://unit42.paloaltonetworks.com/tag/wildfire/
https://unit42.paloaltonetworks.com/tag/zeus/
https://unit42.paloaltonetworks.jp/banking-trojan-techniques/


2/17

described here are historically known for being financial malware, but now they’re primarily
used as infrastructure to deliver other malware. Which is to say, by preventing techniques
used by banking Trojans, you can also stop other types of threats.

We’ll survey techniques used by notorious banking Trojan families to evade detection, steal
sensitive data and manipulate data. We’ll also describe how those techniques can be
blocked. These families include Zeus, Kronos, Trickbot, IcedID, Emotet and Dridex.

Palo Alto Networks customers are protected from such attacks using Cortex XDR and
WildFire.

Banking Trojan families' techniques
discussed

Zeus, Kronos, Trickbot, IcedID, Emotet,
Dridex

Table of Contents

What Are Webinjects?

How to Detect Webinjects


Infecting Web Browsers During Process Creation

How to Prevent Attempts to Infect Web Browsers During Process Creation


Named Pipe Communication Between Injected Processes

How to Prevent Named Pipe Communication Between Injected Processes


Heaven’s Gate Injection Technique

How to Prevent Heaven's Gate


Evasive Process Hollowing by Entrypoint Patching

How to Prevent Evasive Process Hollowing by Entrypoint Patching


PE Injection

How to Prevent PE Injection


Process Injection via Hooking

How to Prevent Injection via Hooking


AtomBombing Injection Technique

How to Prevent AtomBombing and its Variants


Conclusion

Indicators of Compromise

What Are Webinjects?

Webinjects are modules that can inject HTML or JavaScript before a web page is rendered,
and are often used to trick users. They are known to be abused by banking Trojans, as well
as being employed to steal credentials and manipulate form data inside web pages. In most
banking Trojan families, there is at least one webinjects module.

https://www.paloaltonetworks.com/cortex/cortex-xdr
https://www.paloaltonetworks.com/products/secure-the-network/wildfire
https://unit42.paloaltonetworks.com/tag/zeus/
https://unit42.paloaltonetworks.com/tag/kronos/
https://unit42.paloaltonetworks.com/tag/trickbot/
https://unit42.paloaltonetworks.com/tag/icedid/
https://unit42.paloaltonetworks.com/tag/emotet/
https://unit42.paloaltonetworks.com/tag/dridex/


3/17

An early stager of the banking Trojan usually injects the banking Trojan’s main bot into a
Windows process, and that process injects the webinjects module into the machine’s
available web browser processes as shown in Figure 1.

Figure 1. Trickbot goes through processes one by one to find browsers to inject with its
webinjects module, using a stealthy technique known as reflective injection.
The webinjects module hooks the API calls responsible for sending, receiving or encrypting
data sent to a web server. By intercepting the data before it is encrypted, the malware can
read HTTP-POST headers and manipulate them on the fly.



4/17

Figure 2. Trickbot webinjects module placing hooks based on the browser.




5/17

Figure 3. Trickbot placing hooks on wininet.dll functions.
By fully controlling the HTTP headers just before the webpage is rendered, the malware can
completely modify the forms and fool the user. The malware may inject HTML or JavaScript
code to trick the user into inserting sensitive information, such as a PIN code or credit card
number, enabling the malware to collect it. The malware can extract this information and
send it to its command and control (C2) server without actually sending the forged headers
to the targeted web page server.

Chrome (chrome.dll) Firefox (nspr3.dll / nspr4.dll) Internet Explorer / Edge (Wininet.dll)

ssl_read PR_Read HttpSendRequest

ssl_write PR_Connect InternetCloseHandle

PR_Close InternetReadFile

PR_Write InternetQueryDataAvailable

HttpQueryInfo



6/17

InternetWriteFile

HttpEndRequest

InternetQueryOption

InternetSetOption

HttpOpenRequest

InternetConnect

Table 1. Frequently hooked API functions.

How to Detect Webinjects

This technique can be prevented by detecting an injection into a web browser process. The
injected thread calls the NtProtectVirtualMemory function where the NewAccessProtection
argument is PAGE_EXECUTE_READWRITE and the BaseAddress argument is an address
to a library function targeted by banking Trojans.

For example, Trickbot uses both VirtualProtect and VirtualProtectEx in its various versions.
Inspecting NtProtectVirtualMemory calls covers both.

Some banking Trojans opt to avoid code injection. Instead, they suspend the remote process
threads and install the hooks remotely. Inspecting remote NtProtectVirtualMemory calls can
detect this variant technique.

Figure

4. NtProtectVirtualMemory prototype.



7/17

Infecting Web Browsers During Process Creation

Some banking Trojans aim to infect a target process as soon as it is launched, by injecting
code into a predicted parent process of the real target. Once the banking Trojan executes in
the context of the parent process, it hooks process creation library functions and waits until
the real target is created.

Inside the hook, the banking Trojan manipulates the process creation flow. Then, for
example, it initializes the webinjects module inside the remote process. The explorer.exe and
runtimebroker.exe parent processes are frequently abused for this goal, as they usually
launch the real targets.

For instance, the Karius banking Trojan used this technique by injecting code into
explorer.exe and hooking CreateProcessInternalW. The Trojan’s hook handler looked for a
spawned web browser process and injected the malicious webinjects module into it.

How to Prevent Attempts to Infect Web Browsers During Process Creation

This technique can be prevented by looking for an injection into explorer.exe or
runtimebroker.exe, where the injected thread hooks process creation functions like
NtCreateUserProcess, NtCreateProcessEx, CreateProcessInternalW, CreateProcessA or
CreateProcessW.

Named Pipe Communication Between Injected Processes

Many banking Trojans use named pipes to communicate with various processes under the
threat actor’s control. To do this, they inject their main bot into a Windows process, and then
inject their other modules into different processes according to the module’s purpose. They
then establish communication between the different processes using named pipes.

For example, Trickbot injects the main bot into svchost.exe. It creates a named pipe server
and reflectively injects the webinjects module into web browsers. This injected module
connects to the same named pipe as a client to communicate to the main bot and deliver the
fetched credentials to the C2 server.

https://attack.mitre.org/techniques/T1620/


8/17

Figure 5. Trickbot named pipe server.

How to Prevent Named Pipe Communication Between Injected Processes

This technique can be prevented by inspecting named-pipe events. An injected thread
creates a named pipe inside a Windows process, and then another injected thread that lives
inside a web browser attempts to connect to that same named pipe.

Heaven’s Gate Injection Technique

Heaven's Gate is a technique used by malware, which enables a 32-bit (WoW64) process to
execute 64-bit code by performing a far jump/call using segment selector 0x33. Modern
malware uses Heaven's Gate to inject into both 64-bit and 32-bit processes from a single 32-
bit process on x64 systems. This bypasses WoW64 API hooks, it hinders analysis on some
debuggers, and it fails emulation on some sandboxes.

Even though this method is old, it is still effective and frequently used.

Trickbot and Emotet loaders use Heaven's Gate for process hollowing from a WoW64
process into a 64-bit svchost.exe (For more about process hollowing, see the section on
Evasive Process Hollowing By Entrypoint Patching below). The architecture of these two

https://attack.mitre.org/techniques/T1055/012/


9/17

banking Trojans dictates that their main bot persists inside svchost.exe while the web content
manipulation and credential stealing modules live inside the browser processes.

Figure

6. Emotet using Heaven's Gate in its Microsoft Outlook Messaging API (MAPI) module.

How to Prevent Heaven's Gate

A WoW64 process usually goes through the wow64cpu.dll to perform the transition to x64
CPU mode. Heaven's Gate does this transition manually.

Prevention methods can find Heaven's Gate by inspecting whether a WoW64 process
system call didn’t go through the wow64cpu.dll. This can be done by placing hooks on critical
APIs, generating a stack trace and inspecting the stack trace for wow64cpu.dll.



10/17

Figure 7. WoW64’s normal syscall flow.

Evasive Process Hollowing by Entrypoint Patching

Process hollowing is a process injection technique that creates a new legitimate process in a
suspended mode, unmaps its main image and replaces it with malicious code. The malicious
code is written into the newly created process and the suspended thread context instruction
pointer is changed using NtGetContextThread/NtSetContextThread.

Security product vendors check for main image unmapping combined with the usage of
NtGetContextThread/NtSetContextThread to detect process hollowing.

A known technique for evading detection is to patch the process entry point with a small
jump that redirects execution to the payload without actually using
NtGetContextThread/NtSetContextThread functions or unmapping the main image. For
example, Trickbot and Kronos have both used this technique.

Kronos mapped a suspended svchost.exe into its own process and patched it in its own
memory address space. Similar to other banking Trojans, Kronos' main module ran within
svchost.exe and orchestrated the whole operation from the remote svchost.exe process.

Trickbot implemented process hollowing by first using VirtualProtectEx on the process
entrypoint, and then writing the hook stub using WriteProcessMemory.



11/17

Figure 8. Kronos mapping svchost.exe and patching its entrypoint.


Figure

9. Kronos hook stub template – x86 opcodes for push and ret.



12/17

How to Prevent Evasive Process Hollowing by Entrypoint Patching

This technique can be prevented either by inspecting whether the address argument
provided to the calls of NtWriteVirtualMemory or NtProtectVirtualMemory is a remote process
entry point or by detecting suspicious remote mapping and reading of svchost.exe memory.

PE Injection

Common injection methods used by banking Trojans involve writing a mapped PE into a
remote process using WriteProcessMemory. Some malware families try to obscure the call
by wiping artifacts from the buffer, such as wiping the PE header.

For example, Zeus variants use this technique to inject themselves into other processes,
allowing them to stay hidden, as well as to perform webinjects and to perpetrate financial
data theft.

Figure 10. Zeus injection code from its leaked source code.

How to Prevent PE Injection



13/17

This technique can be prevented by inspecting the buffer sent to NtWriteVirtualMemory for
executable artifacts.

Process Injection via Hooking

Hooking can be used as an injection technique. Injecting a banking Trojan’s main payload
into a legitimate-looking process maintains stealth and helps avoid endpoint protection
detection.

This technique utilizes hooking to get code execution, usually by hooking a frequently called
API function with a jump to a payload/shellcode. This avoids calling any suspicious APIs
often used in code injection techniques like CreateRemoteThread or NtSetContextThread.

For instance, IcedID injects its main bot into a hollowed instance of svchost.exe using API
hooking. This is also known as the ZwClose technique (ZwClose was the hooked API in
Zberp, the first to employ this injection technique in the wild).

The injection flow of IcedID is slightly different than that of Zberp. It first hooks
NtCreateUserProcess and then calls CreateProcessA to create svchost.exe without any
special parameters or argument. In a regular flow, the newly created svchost.exe should
terminate right away.

Figure 11. IcedID initiates svchost.exe hooking.


https://securityintelligence.com/diving-into-zberps-unconventional-process-injection-technique/


14/17

Figure 12. IcedID hooks NtCreateUserProcess.
However, because IcedID hooked NtCreateUserProcess, the hook handler is called right
after the call to CreateProcessA. In the handler, it performs the following activities:

Unhooks NtCreateUserProcess
Calls NtCreateUserProcess (which creates svchost.exe)
Decompresses a local buffer that contains the payload to inject using
RtlDecompressBuffer
Allocates memory for the payload at the remote svchost.exe process
Writes the payload into the remote svchost.exe using NtAllocateVirtualMemory and
ZwWriteVirtualMemory

For the execution, IcedID hooks RtlExitUserProcess in the newly created svchost.exe with a
jump stub to the payload. As mentioned, svchost.exe was created without any parameters
and it will try to exit. However, due to the IcedID hook, it will jump to the payload.

Figure 13. IcedID hooks RtlExitUserProcess.

How to Prevent Injection via Hooking



15/17

This technique can be prevented by inspecting calls to NtProtectVirtualMemory and
NtWriteVirtualMemory. The provided address argument for NtProtectVirtualMemory is an
exported function from one of the Windows libraries, and the NtWriteVirtualMemory written
buffer is a hooking stub. In both cases, the remote process has to be a known injection
target.

AtomBombing Injection Technique

AtomBombing is a technique that allows malware to inject code while avoiding calling
suspicious APIs that security vendors are watching. Dridex uses a slightly modified
AtomBombing technique that injects one of its stages into a Windows process (usually
explorer.exe) and employs various steps to cause financial data theft.

Malware using the AtomBombing technique first writes the payload into the global atom
table, which can be accessed by all processes. They then dispatch an asynchronous
procedure call (APC) to the APC queue of a target process thread using
NtQueueApcThread, forcing the target process to call GlobalGetAtomA.

The target thread then retrieves the payload from the global atom table and inserts it into a
read/write (RW) region inside the target process memory space (a code cave inside the
kernelbase.dll data section). The payload has to be split into NULL-terminated strings and an
atom is created for each string.

For the execution, the injector process dispatches another APC using NtQueueApcThread to
force the remote process to execute NtSetContextThread. The injected process then calls
NtSetContextThread, which invokes a return-oriented programming (ROP) chain that
allocates execute/read/write (RWX) memory. The ROP chain then copies the payload from
the RW region into the newly allocated RWX region, and lastly, executes it.

The unique idea behind AtomBombing is the write-primitive, which allows writing to the
remote process using atom tables and APC.

Dridex uses a variation of AtomBombing that queues an APC to call memset to clean an RW
region in ntdll.dll. Then, it copies the payload and its import table into the target process
using the same write technique into the ntdll.dll RW region.

For the execution, Dridex modifies the copied payload memory into executable memory
using NtProtectVirtualMemory. Then it hooks GlobalGetAtomA by calling
NtProtectVirtualMemory and by using the same write primitive. Finally, it queues an APC into
the patched GlobalGetAtomA to get the payload running.



16/17

Figure 14. AtomBombing proof of concept code.

How to Prevent AtomBombing and its Variants

These techniques can be prevented by inspecting whether the arguments provided to
NtQueueApcThread/NtSetContextThread calls point to a suspicious API – the APC routine
argument in the case of NtQueueApcThread, or the new instruction pointer in the context
argument in the case of NtSetContextThread. Both API calls have to be called into a remote
process.

Conclusion

Threat actors who are in it for the money use a wide range of malware techniques for
injection and financial fraud, and they are always looking for new ways to develop evasive
techniques. We have explored some of the more interesting banking Trojan techniques and



17/17

how they’re used to steal victims’ sensitive data. And finally, we describe how these
techniques can be used to detect malicious behavior, so it can be prevented.

Palo Alto Networks customers using Cortex XDR receive protections from such attacks in
different layers, including the following:

Local Analysis Machine Learning module
Behavioral Threat Protection
Behavioral indicators of compromise (BIOC) and Analytics BIOCs rules

These layers identify the tactics and techniques that banking Trojans use at different stages
of their execution.

Palo Alto Networks customers also receive protections against the attacks discussed here
through the WildFire cloud-delivered security subscription for the Next-Generation Firewall.

Indicators of Compromise

Trickbot
testnewinj32Dll.dll:
4becc0d518a97cc31427cd08348958cda4e00487c7ec0ac38fdcd53bbe36b5cc
Webinjects:
ef6603a7ef46177ecba194148f72d396d0ddae47e3d6e86cf43085e34b3a64d4

Emotet: dd20506b3c65472d58ccc0a018cb67c65fab6718023fd4b16e148e64e69e5740
Kronos: aad98f57ce0d2d2bb1494d82157d07e1f80fb6ee02dd5f95cd6a1a2dc40141bc
Zeus: 0f409bc42d5cd8d28abf6d950066e991bf9f4c7bd0e234d6af9754af7ad52aa6
IcedID: 358af26358a436a38d75ac5de22ae07c4d59a8d50241f4fff02c489aa69e462f
Dridex: ffbd79ba40502a1373b8991909739a60a95e745829d2e15c4d312176bbfb5b3e

Get updates from 

Palo Alto


Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy
Statement.

https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

