
1/42

A technical analysis of Pegasus for Android – Part 3
cybergeeks.tech/a-technical-analysis-of-pegasus-for-android-part-3/

Summary

Pegasus is a spyware developed by the NSO group that was repeatedly analyzed
by Amnesty International and CitizenLab. In this article, we dissect the Android version that
was initially analyzed by Lookout in this paper, and we recommend reading it along with this
post. During our research about Pegasus for Android, we’ve found out that vendors wrongly
attributed some undocumented APK files to Pegasus, as highlighted by a researcher here.
We’ve splitted the analysis into 3 parts because of the code’s complexity and length. We’ve
also tried to keep the sections name proposed by Lookout whenever it was possible so that
anybody could follow the two approaches more easily. In this last part, we’re presenting the
WAP Push messages that could be used to autoload content on the phone without user
interaction, the C2 communication over the MQTT protocol, the exploitation of a vulnerability
in MediaPlayer that was not disclosed before, and the ability of the spyware to track phone’s
locations. You can consult the second part of the Pegasus analysis here.

Analyst: @GeeksCyber

Technical analysis

SHA256: ade8bef0ac29fa363fc9afd958af0074478aef650adeb0318517b48bd996d5d5

Pegasus initialization

The agent extracts the Android version, a string that uniquely identifies the build, and tries to
retrieve a configuration value called “isItFirstRunEver” that indicates if this is the first run of
the malware:

Figure 1
The process verifies whether the “/data/data/com.network.android” directory exists on the
device; otherwise, it is created. The existence of the directory means that this is not the first
execution of the malware, and the “isItFirstRunEver” value is set to false using the
putBoolean function:

https://cybergeeks.tech/a-technical-analysis-of-pegasus-for-android-part-3/
https://www.amnesty.org/en/latest/research/2021/07/forensic-methodology-report-how-to-catch-nso-groups-pegasus/
https://citizenlab.ca/2020/12/the-great-ipwn-journalists-hacked-with-suspected-nso-group-imessage-zero-click-exploit/
https://info.lookout.com/rs/051-ESQ-475/images/lookout-pegasus-android-technical-analysis.pdf
https://twitter.com/maldr0id/status/1492520053702602755
https://cybergeeks.tech/a-technical-analysis-of-pegasus-for-android-part-2/
https://twitter.com/GeeksCyber


2/42

Figure 2

It checks the existence of the malicious APK file on the phone and will use the superuser
binary called “/system/csk” to run commands with root privileges:

Figure 3
A check for an antidote file called “/sdcard/MemosForNotes” is performed, and the spyware
removes itself if this file is found (see figure 4).



3/42

Figure 4

The agent calls multiple functions that steal information from the targeted applications, as
shown in the figure below.

Figure 5

A value called “screen_off_timeout”, which represents the number of milliseconds before the
device goes to sleep or begins to dream after inactivity, is extracted by the process and is
compared with 15 seconds. Other configuration values such as
“wasPhoneWasUnmutedAfterTapNicly” [sic], “originalVibrateValue”, and
“originalRingerValue” are also extracted from configuration:

https://cybergeeks.tech/a-technical-analysis-of-pegasus-for-android-part-1/


4/42

Figure 6
WAP Push Messages

The process logs a message that indicates a change in the WAP settings:

Figure 7

It retrieves the file permissions of
“/data/data/com.android.mms/shared_prefs/com.android.mms_preferences.xml” and
changes them using the chmod command:

Figure 8

Figure 9



5/42

Figure 10
The LD_LIBRARY_PATH environment variable is modified, and the above file’s permissions
are set to read & write (0666):

Figure 11
The agent changes the WAP settings to enable push messages, as highlighted in the figure
below.

Figure 12
The malware verifies if the Build.FINGERPRINT value contains “JPKJ2”, and it stops the
Messages app:

Figure 13
The superuser binary called “/system/csk” is expected to be found on the phone (see figure
14).

Figure 14



6/42

The malicious process checks for the existence of the SMS/MMS database at
“/data/data/com.android.providers.telephony/databases/mmssms.db”:

Figure 15
The permissions of the “mmssms.db”, “mmssms.db-shm”, and “mmssms.db-wal” databases
are changed to 0777 (read, write, & execute for owner, group and others):



7/42

Figure 16

Figure 17



8/42

Figure 18
The agent opens one of the above databases and runs the following SQL query via a
function call to rawQuery:

Figure 19
The index of the “href”, “_id”, “read”, “seen”, and “thread_id” columns is extracted:



9/42

Figure 20
The spyware tries to delete some WAP push messages that could be used to automatically
open a link in a browser on the phone without user interaction:



10/42

Figure 21



11/42

Figure 22
The WAP messages are deleted by calling the SQLiteDatabase.delete method:



12/42

Figure 23



13/42

Figure 24
Message Queue Telemetry Transport (MQTT)

Another way to communicate with the command and control infrastructure is using the MQTT
protocol.

The “should_use_mqtt” configuration value establishes whether the agent is allowed to
communicate with the C2 servers via MQTT, as shown below:

Figure 25



14/42

Another config value called “mqttAllowedConnectionType” indicates if the phone is allowed to
communicate via MQTT while it’s connected to Wi-Fi (value = 1), mobile data (value = 4), or
when the device is roaming (value = 8):

Figure 26

The malware retrieves connection status information about all network types via a function
call to getAllNetworkInfo and compares the type of the network with “WIFI” and “MOBILE”:

Figure 27



15/42

The isNetworkRoaming function is utilized to verify whether the phone is roaming:

Figure 28

Figure 29
The application extracts the current date and ensures that the token id found in the
configuration is not null:

Figure 30

The following values are obtained from the configuration:

mqttIdPref – identify a client in combination with the username

mqttQos – quality of service for MQTT connections

mqttHost – attacker’s MQTT host

mqttPort – MQTT port number

Figure 31



16/42

The “mqttUsername” config value represents the username used during the authentication
with the MQTT server, and the “mqttPassword” value is the password used during the
authentication process:

Figure 32
The malware logs a message containing the MQTT URL, username, and password and then
calls a function that will start the communication:

Figure 33
The MQTT broker URL is constructed by the malicious process:

Figure 34
The “mqttKaTimer” configuration value represents the MQTT keep alive timer (see figure 35).



17/42

Figure 35

Finally, the process makes network connections with the attacker’s infrastructure over MQTT
and compares the broker URL with “tcp://”, “ssl://”, and “local://”:

Figure 36



18/42

Figure 37
The maximum number of reconnection attempts is stored in a configuration value called
“mqttRecCount”:



19/42

Figure 38
The agent tries to subscribe to an MQTT topic specified in the configuration, as highlighted in
figure 39.



20/42

Figure 39
The application logs multiple messages that indicate the successful connection and the
subscription to the topic:



21/42

Figure 40
The NetworkInfo.isConnected method is used to verify whether there is an active internet
connection on the device:



22/42

Figure 41
The binary receives the messages from within the topic on the broker that contain
commands to be executed:

Figure 42
All commands are added to a queue as we already described in part 2:

https://cybergeeks.tech/a-technical-analysis-of-pegasus-for-android-part-2/


23/42

Figure 43
The parameter “s=” contains a checksum that will be checked against another computed
value in order to confirm that the command was transmitted by the threat actor:



24/42

Figure 44
The command transmitted via MQTT contains a token value that identifies the infected
device, as displayed in the figure below.



25/42

Figure 45
The command will not be executed if the checksums don’t match:



26/42

Figure 46
The commands received via SMS that we already described here can be also transmitted
using the MQTT protocol:

https://cybergeeks.tech/a-technical-analysis-of-pegasus-for-android-part-2/


27/42

Figure 47
Email attachments

The emailAttCmdcommand can be used to retrieve emails and attachments from the
EmailProviderBody.db database:



28/42

Figure 48



29/42

Figure 49
Download files

The malware has the ability to download additional files/packages from a remote URL (see
figure 50).



30/42

Figure 50
The process opens a connection to a specific URL using the openConnection function and
sets the read timeout to 120s and the connect timeout to 1800s:



31/42

Figure 51
The response body is read by calling the URLConnection.getInputStream and
BufferedInputStream.read functions:



32/42

Figure 52
A file is populated with the buffer downloaded from the remote URL via a call to
FileOutputStream.write:



33/42

Figure 53
Vulnerability exploitation in MediaPlayer

To the best of our knowledge, this is the first mention that Pegasus for Android exploited a
vulnerability in MediaPlayer. Unfortunately, the file responsible for exploitation called
“/data/data/com.network.android/output.mp3” is empty, and we couldn’t retrieve its content:



34/42

Figure 54
The MP3 file is populated at runtime using the FileOutputStream.write function. The file’s
permissions are set to 511 by the malware:

Figure

55

Figure 56
The setDataSource method is utilized to set the data source for MediaPlayer. The application
prepares and starts the playback, which we believe would result in exploiting a vulnerability:

Figure 57

Track phone’s location

Pegasus spyware has the ability to monitor the device’s location. It verifies if the GPS
provider is active by calling the isProviderEnabled function and then obtains location
information using the requestLocationUpdates function:



35/42

Figure 58
The location is stored in an XMLSerializer object containing the latitude, the longitude, the
altitude of the location, the estimated horizontal accuracy radius, and the speed at the time of
the location:

Figure 59



36/42

Figure 60
The process retrieves the current location of the device via a call to getCellLocation and the
numeric name (MCC+MNC) of the current registered operator using getNetworkOperator.
The GSM cell id and the GSM location area code are also stored in the XMLSerializer object:

Figure 61

Figure 62



37/42

Figure 63
Other relevant activities

The agent compares the Android version with 2.3 and then the phone model with a list, as
shown below:



38/42

Figure 64

Figure 65



39/42

As we already described in part 1, the malware has the capability to upgrade itself:

Figure 66
The application obtains the serial number of the SIM and extracts the “local” configuration
value:

https://cybergeeks.tech/a-technical-analysis-of-pegasus-for-android-part-1/


40/42

Figure 67
The “NetworkWindowSim” config value is extracted and compared with the value described
above. If these two values don’t match, it means that the SIM was changed, and the config
value is changed accordingly (see figure 68).



41/42

Figure 68
The spyware verifies if the “/data/reinslock” file exists on the device, which indicates that the
application was reinstalled:



42/42

Figure 69
As we’ve seen during the entire analysis, the threat actor didn’t make any efforts to hide the
true purpose of the APK. Figure 70 reveals the message stating that Pegasus was
successfully initialized:

Figure 70
This concludes our 3-part analysis of Pegasus for Android. We believe that some of the
functionalities presented here are also used by recent malware families, and our analysis
might represent the first step in detecting them.


