EMOTET Dynamic Configuration Extraction

%* elastic.co/security-labs/emotet-dynamic-configuration-extraction

A tool for the dynamic extraction of EMOTET configurations based on emulation.
By

Remco Sprooten

28 October 2022

Key takeaways

o The EMOTET developers have changed the way they encode their configuration in the
64bit version of the malware.

» Using code emulation we can bypass multiple code obfuscation techniques.

e The use of code emulators in config extractors will become more prevalent in the
future.

Additional EMOTET resources

To download the EMOTET configuration extractor, check out our post on the tool:

EMOTET configuration extractor

Preamble

The EMOTET family broke onto the malware scene as a modular banking trojan in 2014,
focused on harvesting and exfiltrating bank account information by inspecting traffic.
EMOTET has been adapted as an early-stage implant used to load other malware families,

1/18

https://www.elastic.co/security-labs/emotet-dynamic-configuration-extraction
https://www.elastic.co/blog/author/remco-sprooten
https://www.elastic.co/security-labs/emotet-configuration-extractor
https://malpedia.caad.fkie.fraunhofer.de/details/win.emotet
https://web.archive.org/web/20140701001622/https://blog.trendmicro.com/trendlabs-security-intelligence/new-banking-malware-uses-network-sniffing-for-data-theft/

such as QAKBOT, TRICKBOT, and RYUK. While multiple EMOTET campaigns have been
dismantled by international law enforcement entities, it has continued to operate as one of
the most prolific cybercrime operations.

For the last several months, Elastic Security has observed the EMOTET developers
transition to a 64-bit version of their malware. While this change does not seem to impact the
core functionality of the samples we have witnessed, we did notice a change in how the
configuration and strings are obfuscated. In earlier versions of EMOTET, the configuration
was stored in an encrypted form in the .data section of the binary. In the newer versions the
configuration is calculated at runtime. The information we need to extract the configuration
from the binary is thus hidden within the actual code.

In the next sections, we’ll discuss the following as it relates to 64-bit EMOTET samples:

e EMOTET encryption mechanisms

» Reviewing the EMOTET C2 list

« Interesting EMOTET strings

o The EMOTET configuration extractor utility

Encryption keys

network communication. While in previous versions, the keys would be stored in an XOR-
encrypted blob, now the content is calculated at runtime.

2/18

https://www.elastic.co/security-labs/exploring-the-qbot-attack-pattern
https://github.com/elastic/protections-artifacts/blob/main/yara/rules/Windows_Trojan_Trickbot.yar
https://github.com/elastic/protections-artifacts/blob/main/yara/rules/Windows_Ransomware_Ryuk.yar
https://twitter.com/Cryptolaemus1/status/1516261512372965383?ref_src=twsrc%5Etfw
https://blog.cloudflare.com/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/

_DWORD * _ fastcall rsp::decodeECKBlob({ inte4 al, _ inte4 a2, DWORD *a3)

i
int va[28]; // [rsp+48h] [rbp+7h] BYREF

va[11] = 399373391;
vA[5] = 8@9122573;
vA[15] = 131@856899;
va[8] = -2111565637;
va[14] = 3164497;
va[16] = -1113820278;
va[1@] = -121994235;
va[@] = 2182350084;
va[2] = -114183758;
va[a] = 1376297997;
vi[4] = 1187595388;
vai[6] = -2015821136;
va[1] = 1275335265;
va[3] = -1204863921;
va[12] = -246763557;
va[13] = -1395941924;
va[7] = -14393871;

vA[17] = 975736258;

*a3

= 72;

return rsp::decedeleyBlob(248088294481i64, 1275335233164, 6BB515i64, 28BR6B2i64, wvi);

¥

Encoded Encryption Key blob in 64-bit version

In comparison the previous versions of EMOTET would store an encrypted version of the key

data in the .text section of the binary.

Ltext:leaalesC ee db 8

Ltext:18a2a1850 88 db 8

Jtext:1eeelas5E 00 db 8

Jtext:leeelasr ae db 8

.text:10001868 C6 52 B2 18 8E 52 B2 18+ECK_PUBLIC KEY dd 18B252C6h, 1BB2528Eh, 29F91183H, 18B252E6h, BADS87F135h
Ltext:leealese 83 11 F9 29 E6 52 B2 18+ 3 DATA XREF: sub_leseDCi4+73lo
Jtext:legelece 35 F1 87 AD €8 7C 99 EC+ ; maindll+14B4lc

Ltextileaalece F3 ed4 FF 12 BA 7B BC B4+ dd @EC997CC8h, 127F@4F3h, 648C7B8Ah, BD36F4237h, @AB921D7Eh
Cextilegealese 37 42 6F D3 76 1D 92 AB+ dd @D692583Ch, GBEE48Ah, @ACBCC482h, 437BB4CBh, BASFCEFSCh
Jtext:legelece 3C S 92 D6 B8A E4 BE @ct dd @F37DDD5Bh, 54868906h, 1A945644h, @E91EEB15h, GEIECD3IDh
Loextilegelece 82 C4 BC AC C8 B4 7B 43+ dd @Be6B96C3h, BFB3V4EEh, BF7A9C332h, 4F@AEC2Dh

Embedded key data in previous version of the malware
In order to make it harder for security researchers to find the given code the malware uses
Mixed Boolean-Arithmetic (MBA) as one of its obfuscation techniques. It transforms

constants and simple expressions into expressions that contain a mix of Boolean and

arithmetic operations.

3/18

https://www.usenix.org/conference/usenixsecurity21/presentation/liu-binbin

LI LU B AL L o [FRFLe] Loy s

1@apeeea18RR1ESES C1 E9 86 shr ecx, 6

1 B00080013001E9E7 89 4D 77 Mo [rbp+57h+arg_18], ecx
1@papaRa1BRRIESEA 81 75 77 33 4@ ED 4F xor [rbp+57h+arg 18], 4FED4833h
:Beaaea213001E9F1 BB 45 77 Mo eax, [rbp+57h+arg_18]

1 822BEA18RR1EOFS B9 45 43 maw [rbp+57h+var_14], eax
(epppaRElERRLESFY C7 45 77 Bl 3F BE @@ maw [rbp+57h+arg_18], @BEE3FElh
:BOBERRR1EBBLESFE 6B 45 77 5D imul eax, [rbp+57h+arg 18], 5Dh
1Bepaenal3ealEAR2 B9 45 77 Mo [rbp+57h+arg_18], eax
(@apoeealsRR1EARS B1 45 7V B9 27 B8 BB add [rbp+57h+arg_18], 27B%9h
(epppaaaleRRlEARC B1 45 7V 58 V1 BB Bl add [rbp+57h+arg_18], 715&h
r@@ppaealE@R1EALS 81 75 7V ED AC CB C@ xor [rbp+57h+arg_ 18], @CEBCBACEDh
:Beaaea2130081EALA BB 45 77 Mo eax, [rbp+57h+arg_18]
(@aaeaaalsRR1EALID B9 45 27 maw [rbp+57htvar_38], eax
(pppeaaalERR1EAZE CT7 45 77 1C @3 42 @8 maw [rbp+57h+arg_18], 42881C
:BO0EERR1EBB1EAZT C1 6D 77 06 shr [rbp+57h+arg 18], &
reepaaaalBRR1EAZE 81 4D 7V F7 E7 BF FD or [rbp+57h+arg_18], @FDBFE7F7h
(eppaaEElERRLEASZ 81 73 7V AB A6 BF FD or [rbp+57h+arg_18], @FDEFAGAGH
:B00000013001EA3D0 BB 45 77 mow eax, [rbp+57h+arg 18]
reeeaaaalBBR1EASC B2 45 3F maw [rbp+57h+var_18], eax
1@aaBeRaL1ERR1EASE C7 45 77 8C 2D AR BB maw [rbp+57htarg_18], @A220EChH
:AERERER1ERR1EALE 6B 45 77 1A imul eax, [rbp+57h+arg_1@], 1ah
:B00000013001EALA 89 45 77 mow [rbp+57h+arg 18], eax
reeeaaaalBRRIEA4D B1 75 77 EB E1 51 5F wor [rbp+57h+arg_18], S5F51E1EBh
(BaaaeaaloRRlEASE 81 V5 7V 41 E9 BD F2 or [rbp+57h+arg_18], @F2BDE41lh
PAGGAGARRT JGRTEACR 2R AR 77T LT S MNrhrlEThizer 1@

Example of Mixed Boolean-Arithmetic

In this example, an array of constants is instantiated, but looking at the assembly we see that
every constant is calculated at runtime. This method makes it challenging to develop a
signature to target this function.

We noticed that both the Elliptic Curve Diffie-Hellman (ECDH) and Elliptic Curve Digital
Signature Algorithm (ECDSA) keys use the same function to decode the contents.

The ECDH key (which you can recognize by its magic ECK1 bytes) is used for encryption
purposes while the ECDSA key (ECC1) is used for verifying the C2 server's responses.

[+] Key length: 32
bytearray(b'ECK1 \x00\x00\x00\xd85\x93\xd7c\x8bP\xc5\xdf

6\ x00\ x00\ x00\ x00\ x00\ x00\ x00\ x00\ x00\ x00\ x00\ x00\ x00\x0
X000\ x00\ x00\x00\x00\ x00\ x00\ x00\ x00\ x00\ x00\x00\x00\ x00\
O\ X000\ x00\ x00\ x00\ x00\ X000\ x00\ x00\ x00\ x00\ x00\ x00\ x00\x0

ECK1 mégic bytes at the start of the key data

4/18

https://cryptobook.nakov.com/asymmetric-key-ciphers/ecdh-key-exchange
https://cryptobook.nakov.com/digital-signatures/ecdsa-sign-verify-messages

| DWORD *_ fastcall rsp::decodekeyBlob{ int&4 al, inted4 32, int64 a3, _ intsd4 a4, unsignec
1
int ws; //f edi
_DWORD *result; // rax
unsigned _ inte4 w7 /S r9
_DWORD *v&; [/ r8
unsigned _ inte&4 wa; // rdx

vh = alj;
result = es::HeapAllocInProcessHeap(18i64, a2, 72i64);
w7 = @Bisd;:
if { lresult)
return result;
result;
18i64;
a5 » a5 + 72)
= Bisd;
va)

P
=h O

=
e T

e

¥
vd "= vi * *[vB + a5 - result);

while { v7 < w3 };

}

return result;
} I
Decoding algorithm for the key material
By leveraging a YARA signature to find the location of this decode function within the
EMOTET binary we can observe the following process:

1. Find the decoding algorithm within the binary.

2. Locate any Cross References (Xrefs) to the decoding function.
3. Emulate the function that calls the decoding function.

4. Read the resulting data from memory.

As we mentioned, we first find the function in the binary by using YARA. The signature is
provided at the end of this article. It is worth pointing out that these yara signatures are used
to identify locations in the binary but are, in their current form, not usable to identify EMOTET
samples.

In order to automatically retrieve the data from multiple samples, we created a configuration
extractor. In the snippets below, we will demonstrate, in a high level fashion, how we collect
the configuration information from the malware samples.

5/18

https://hex-rays.com/blog/igor-tip-of-the-week-16-cross-references/
https://www.elastic.co/security-labs/emotet-dynamic-configuration-extraction#yara

__find_function(file_path: rule_file:)} -> SmdaFunction:

common. f
common. d
pe.imagebase
+ pe.offset_to_virtual_add Ik 1[6][

Python code to find the start of a function
In the above code snippet:

1. First load the YARA signature.
2. Try to find a match, and if a signature is found in the file.
3. Calculate the function offset based on the offset in the file.

In order to locate the Xrefs to this function, we use the excellent SMDA decompiler. After
locating the Xrefs, we can start the emulation process using the CPU emulator, Unicorn.

6/18

https://github.com/danielplohmann/smda
https://www.unicorn-engine.org/

emulate_key_decoding(pe: lief.PE.Binary, target: CodeXref, heap_alloc_address
cap = capstone.Cs(capstone.CS_ARCH_X86, capstone.CS_MODE_b64)
cap.detail =
emu = common.new_emulator()
emu.mem_nap (pe.imagebase, common.EMU_MEM_SIZE)
heap = HEAF()
code = (pe.get_section() .content)
offset = pe.get_section(}.virtual_address + pe.imagebase
function_code = (pe.get_content_from_virtual_address(target.from_function.offset
emu.mem_write(offset, code)
ret =
X cap.disasm(function_code, target.from_function.offset):
X.group(capstone.CS_GRP_RET):
ret = x.address

((ret)
emu.hook_add(unicorn.UC_HOOK_CODE, hook_heap_alloc, heap =heap_alloc_address =heap_alloc_address)

()
emu.emu_start(target.from_function.offset, ret)
unicorn.unicorn.UcError e:
(e)
rip = emu.reg_read(unicorn.x86_const.UC_X8&_REG_RIP)
((rip)}*)

blob_address = emu.reg_read(unicorn.x8é_const.UC_X86_REG_RAX)
((blob_address)}")|
key_data = emu.mem_read(blob_address)
key_magic = key_data[:4]
(key_magic.decode(
key_len = .from_bytes(key_data[4:8]
(key_len}")
i ((key_data), 4):
temp = struct.pack(struct.unpack(key_data[i:i+4a])[B])
j temp:
sys.stdout.write((3)[2:1F")
)
(ECC.construct(
= .from_bytes(key_data[&: + key_len])
=int.from_bytes(key_data[8 + key_len:& + key_len + key_len]
) .export_key(=))

Python code used to emulate decoding functions
1. Initialize the Unicorn emulator.

2. Load the executable code from the PE file into memory.

3. Disassemble the function to find the return and the end of the execution.

4. The binary will try to use the windows HeapAlloc API to allocate space for the decoded
data. Since we don't want to emulate any windows APl's, as this would add
unnecessary complexity, we hook to code so that we can allocate space ourselves.

. After the emulation has run the 64-bit “long size” register (RAX), it will contain a pointer
to the key data in memory.
. To present the key in a more readable way, we convert it to the standard PEM format.

https://learn.microsoft.com/en-us/windows/win32/api/heapapi/nf-heapapi-heapalloc
https://www.cs.uaf.edu/2017/fall/cs301/lecture/09_11_registers.html#:~:text=rax%20is%20the%2064%2Dbit,processors%20with%20the%2080386%20CPU.

By emulating the parts of the binary that we are interested in, we no longer have to statically
defeat the obfuscation in order to retrieve the hidden contents. This approach adds a level of
complexity to the creation of config extractors. However, since malware authors are adding

ever more obfuscation, there is a need for a generic approach to defeating these techniques.

Parsing file: bbb.dll
Key decryption function at: B8x188808d92c

HeapAlloc function at: Bx18B8B88c290
Processing Xref at: Bx18B8080834e08
Found return address for function: 8x188883a%a
Starting emulation
Key BLDB address:
Key type: ECK1
Key length: 32
BEGIN PUBLIC KEY
MFKWEWYHKDZIzjBCAQYIKoZIzjBDANCDOQAEZDWT120LUMXFzeFp+bE2ZAJubVDsSW
NgJdRCo6yDDDYRzYwuNLB12rIZEx6RUQaBvgPOL7a+wCWnI0szh42gCROlg==
END PUBLIC KEY
Processing Xref at: Bx1880822638
Found return address for function: 8x188822%ef
Starting emulation
Key BLDB address:
Key type: ECS51
Key length: 32
BEGIN PUBLIC

TAZWANDgSIrEKHEWCQ+8CHUAIXgmKHAWRbnDwlwmdM,/YvqKFH36ngC2VNA==
END PUBLIC KEY
Example of the extractor used to find key material

C2 server list

An important part of tracking malware families is to get new insights by identifying and
discovering which C2 servers they use to operate their network.

In the 64-bit versions of EMOTET, we see that the IP and port information of the C2 servers
are also dynamically calculated at runtime. Every C2 server is represented by a function that
calculates and returns a value for the IP address and the port number.

8/18

| _inte4 _ fastcall sub_1881210C(DWORD *ipAddr, DWORD *porthr)

1
*ipaddr = @x9AFBEBALC;
*porthr = 8x1Foe888l;
return 948518164 ;

t

Examples of encoded IP/port combination
These functions don’t have a direct cross reference available for searching. However, a
procedure references all the C2 functions and creates the p_c2_list array of pointers.

| inte4 fastcall rsp::c2list(inté4 al, _ inted a2)
1
_QWORD *p c2 list; // rex
int v3; // eax
unsigned int wd; // ebx

p_c2 list = C2_LIST;
vi = 894154,

vd = @85
while { v3 != 324456)
i

C2_LIST = es::HeapAllocInProcessHeap(p c2 list, =2, S568iR4);
if (€2 LIST)
return v4;
p_c2 list = C2_LIST;
®C2_LIST = a;
w3 = 324456;
¥
p c2 1ist[32] = sub 1888121D0C;
p_c2 list[69] = sub_1888151A4;
p c2 1ist[45] = sub_130@BATIC;
p_c2 list[16] = sub_18881C6AC;
p_c2 list[B6l] = sub_188819B7C;
p c2 1ist[31] = sub_18BBBET7S;
p c2 1ist[22] = sub_130084D065;
p_c2 ll:+[34] = sub_1538016C68;
] = sub_1868@24DB4;
] = sub_130028A58;
] = sub_138@14E14;
3] = sub_1800228D0;
p_c2_ ll:f[39] = sub_158814B18;
] = sub_18@@1529C;
] = sub_18e@8BoeC;
6]
]
65]
7]
]
]
]

p_c2_ lis [= sub_15380818614;
p_c2_ lis t[44] = sub_1380216D58;
p_c2_ 1list[65] = sub_18B@1B5ES;
p_c2 list[67] = sub_1BBBBEBTS;

p_c2 1ist[13] = sub_18B@1EBTC;
p c2 list[24] = sub_18BBLAELAR;
p c2 list[28] = sub_1888816E8;

p c2 1ist[8] = sub_l5008A658;
C2 server list

After that, we can emulate every C2-server function individually to retrieve the IP and port

combination as seen below.

9/18

on at: Bx1808271fc

turn add 0 unction: Bx1808276a2

tion

4,138.33.49:7

88.165.79.15

54.37.228.122:443
128.199.217.2
6.176.79:

48.225.22

185.85.95.4:8080

Example of the extractor used to find C2 server list

Strings

The same method is applied to the use of strings in memory. Every string has its own
function. In the following example, the function would return a pointer to the string
%s\regsvr32.exe "%s".

__inte4 rspristring::regsvr32()

{

int vi[&]; // [rsp+58h] [rbp-18h] BYREF

vi[@] = -1133319262;

vi[4] = -3294P8923;

vi[5] = -1935458972;

vi[3] = -297@17118;

vi[1] = -1281799198;

vi[2] = -534991883;

return es::ResolveString(-835887097, 427344164, @xl4u, 651033ie64, 282236, v1, 6u);
}

Encoded string

All of the EMOTET strings share a common function to decode or resolve the string at
runtime. In the sample that we are analyzing here, the string resolver function is referenced
29 times.

10/18

__inte4 _ fastcall es::ﬂesolvestring(int al, _ int64 a2, unsigned int a3, _ int&4 a4, int a5, int *a6, unsigned int a7}

{
int *v7; // rbx
__inte4 va; // rdi
__int64 v1@; // rax
__inte4 wll; // ri@
_WORD *wl12; // r8
unsigned _ inté4 v13; // rll
unsigned __int64 vi4; // ro
int w15; // ecx
unsigned int v16; // ecx
unsigned _ intl6 v17; // ax

vy ab;
VB a3;
LODWORD(a2) = 1416492;
w18 = es::HeapAllocInProcessHeap(9@65472i64, a2, 8 * a’);
vil = vie;
if { lwvie)
return v1l;
vl2 L H
vl3 2ied;
vid = (4 * a7 + 3) ¥> 2;
if (a6 » &as[a?])
vid = BiGd;

HIBYTE(v17);
16;

*(viz - 1) = BYTEL(v1G);

*(viz - 2) -

}
*(vll + 2 * vB) = @;
return v1l;

String decoding algorithm

This allows us to follow the same approach as noted earlier in order to decode all of the
EMOTET strings. We pinpoint the string decoding function using YARA, find the cross-

references, and emulate the resulting functions.

11/18

Parsing file:
Stri

on: Bx18680027df

Content-Type: multipar

Example of the extractor used to find strings

Configuration extractor

Automating the payload extraction from EMOTET is a crucial aspect of threat hunting as it
gives visibility of the campaign and the malware deployed by the threat actors, enabling
practitioners to discover new unknown samples in a timely manner.

% emotet-config-extractor --help
usage: Emotet Configuration Extractor [-h] (-f FILE | -d DIRECTORY) [-k] [-c] [-s] [-
aj

options:
-h, --help show this help message and exit
-f FILE, --file FILE Emotet sample path
-d DIRECTORY, --directory DIRECTORY
Emotet samples folder

-k Extract Encryption keys

-C Extract C2 information

-S Extract strings

-a Extract strings (ascii)Read more

Our extractor takes either a directory of samples with -d option or -f for a single sample and
then can output parts of the configuration of note, specifically:

12/18

¢ -k: extract the encryption keys

e -c: extract the C2 information

e -s: extract the wide-character strings
» -a: extract the ASCII character stings

EMOTET uses a different routine for decoding wide and ASCII strings. That is why the
extractor provides flags to extract them separately.

The C2 information displays a list of IP addresses found in the sample. It is worth noting that
EMOTET downloads submodules to perform specific tasks. These submodules can contain
their own list of C2 servers. The extractor is also able to process these submodules.

The submodules that we observed do not contain encryption keys. While processing
submodules you can omit the -k flag.

[...]
[+] Key type: ECK1
[+] Key length: 32

MFKwWEWYHK0ZIzjOCAQYIK0ZIzjODAQCDQQAE2DWT120LUMXfzeFp+bE2AJubVDsW
NgJdRC6YODDYRzYuUuNL®i2r I2Ex6RUQaBvqPOL7a+wCWnIQszh42gCRQlg==

[...]
[+] Key type: ECS1
[+] Key length: 32

MFKwEWYHK0ZIZzjOCAQYIK0ZIzjODAQCcDQUAE9C8agzYaJ1GMIPLKqOyFrl1lJZUXVI
1AZWAN0Q6Jr EKHtWCQ+8CHUAIXgmMKH6WRbnDwlwmdM/YvgKFH36NnqC2VNA==

[...]

[+] Found 64 c2 subs
174.138.33.49:7080
188.165.79.151:443
196.44.98.190:8080

[...]

[+] Starting emulation

[+] String BLOB address: 0x4000000
KeyDataBlob

[...]

[+] String BLOB address: 0x4000000
bcrypt.dll

[...]

[+] String BLOB address: 0x4000000
RNGRead more

To enable the community to further defend themselves against existing and new variants of
EMOTET, we are making the payload extractor open source under the Apache 2 License.
Access the payload extractor documentation and binary download.

13/18

https://www.elastic.co/security-labs/emotet-configuration-extractor

The future of EMOTET

The EMOTET developers are implementing new techniques to hide their configurations from
security researchers. These techniques will slow down initial analysis, however, EMOTET
will eventually have to execute to achieve its purpose, and that means that we can collect
information that we can use to uncover more about the campaign and infrastructure. Using
code emulators, we can still find and extract the information from the binary without having to
deal with any obfuscation techniques. EMOTET is a great example where multiple
obfuscation techniques make static analysis harder. But of course, we expect more malware
authors to follow the same example. That is why we expect to see more emulation-based
configuration extract in the future.

sssssssssssssss

EMOTET running and gathering system information

Detection

YARA

Elastic Security has created YARA rules to identify this activity. The YARA rules shown here
are not meant to be used to solely detect EMOTET binaries, they are created to support the
configuration extractor. The YARA rules for detecting EMOTET can be found in the
protections-artifacts repository.

EMOTET key decryption function

14/18

https://github.com/elastic/protections-artifacts/blob/main/yara/rules/Windows_Trojan_Emotet.yar

rule resolve_keys
{
meta:
author = "Elastic Security"
description = "EMOTET - find the key decoding algorithm in the PE"
creation_date "'2022-08-02"
last_modified = "2022-08-11"
0s = "Windows"
family = "EMOTET"
threat_name = "Windows.Trojan.EMOTET"
reference_sample =
"debad0131060d5dd9c4642bd6aed186c4a57b46b0f4c69f1lafi6b1ffoc0a77b1"
strings:
$chunk_1 = {
45 33 C9
4C 8B DO
48 85 CO
74 ?7?
48 8D ?? ?7?
4C 8B ??
48 8B ??
48 2B ??
48 83 ?? ?7
48 C1 2?2 ?7
48 3B ??
49 OF 47 7?7
48 85 ??
74 ?7?
48 2B D8
42 8B 04 03

}

condition:
any of them
}Read more

EMOTET C2 aggregation

15/18

rule c2_list
{
author = "Elastic Security"
description = "EMOTET - find the C2 collection in the PE"
creation_date = "2022-08-02"
last_modified = "2022-08-11"
0s = "Windows"
family = "EMOTET"
threat_name = "Windows.Trojan.EMOTET"
reference_sample =
"debad0131060d5dd9c4642bd6aed186c4a57b46b0f4c69flaf16b1ffoc0a77b1"
strings:
$chunk_1
48 8D 05 ?? ?? ?? 7?7
48 89 81 ?? ?? ?? 7?7
48 8D 05 ?? ?2? ?? ?7
48 89 81 ?? 7?7 ?? ?7?
48 8D 05 ?? ?? ?? 7?7
48 89 81 ?? ?? ?? 7?7
48 8D 05 ?? ?? ?? ?7
48 89 81 ?7? ?2? ?? 7?7
48 8D 05 ?? ?? ?? 7?7
48 89 81 ?? ?? ?? 7?7
48 8D 05 ?? ?? ?? ?7
48 89 81 ?7? ?2? ?? 7?7
48 8D 05 ?? ?? ?? 7?7
48 89 81 ?? ?? ?? 7?7

1
-~

}

condition:
any of them
}Read more

EMOTET string decoder

16/18

rule string_decode
{
meta:
author = "Elastic Security"
description = "EMOTET - find the string decoding algorithm in the PE"
creation_date "'2022-08-02"
last_modified = "2022-08-11"
0s = "Windows"
family = "EMOTET"
threat_name = "Windows.Trojan.EMOTET"
reference_sample =
"debad0131060d5dd9c4642bd6aed186c4a57b46b0f4c69f1lafi6b1ffoc0a77b1"
strings:
$chunk_1
8B 0B
49 FF C3
48 8D 5B ??
33 CD
OF B6 C1
66 41 89 00
OF B7 C1
Cl1 E9 10
66 C1 E8 08
4D 8D 40 ??
66 41 89 40 ??
OF B6 C1
66 C1 E9 08
66 41 89 40 ??
66 41 89 48 ??
4D 3B D9
72 ??

1
~

}
$chunk_2 = {
8B 0B
49 FF C3
48 8D 5B ??
33 CD
OF B6 C1
66 41 89 00
OF B7 C1
Cl E9 ??
66 C1 E8 ?7?
4D 8D 40 ??
66 41 89 40 ??
OF B6 C1
66 C1 E9 ?7?
66 41 89 40 ?7?
66 41 89 48 7?7
4D 3B D9
72 ?7?
}

condition:

17/18

any of them
}Read more

18/18

