
1/18

EMOTET Dynamic Configuration Extraction
elastic.co/security-labs/emotet-dynamic-configuration-extraction

A tool for the dynamic extraction of EMOTET configurations based on emulation.

By

Remco Sprooten

28 October 2022

Key takeaways

The EMOTET developers have changed the way they encode their configuration in the
64bit version of the malware.
Using code emulation we can bypass multiple code obfuscation techniques.
The use of code emulators in config extractors will become more prevalent in the
future.

Additional EMOTET resources

To download the EMOTET configuration extractor, check out our post on the tool:

EMOTET configuration extractor

Preamble

The EMOTET family broke onto the malware scene as a modular banking trojan in 2014,
focused on harvesting and exfiltrating bank account information by inspecting traffic.
EMOTET has been adapted as an early-stage implant used to load other malware families,

https://www.elastic.co/security-labs/emotet-dynamic-configuration-extraction
https://www.elastic.co/blog/author/remco-sprooten
https://www.elastic.co/security-labs/emotet-configuration-extractor
https://malpedia.caad.fkie.fraunhofer.de/details/win.emotet
https://web.archive.org/web/20140701001622/https://blog.trendmicro.com/trendlabs-security-intelligence/new-banking-malware-uses-network-sniffing-for-data-theft/

2/18

such as QAKBOT, TRICKBOT, and RYUK. While multiple EMOTET campaigns have been
dismantled by international law enforcement entities, it has continued to operate as one of
the most prolific cybercrime operations.

For the last several months, Elastic Security has observed the EMOTET developers
transition to a 64-bit version of their malware. While this change does not seem to impact the
core functionality of the samples we have witnessed, we did notice a change in how the
configuration and strings are obfuscated. In earlier versions of EMOTET, the configuration
was stored in an encrypted form in the .data section of the binary. In the newer versions the
configuration is calculated at runtime. The information we need to extract the configuration
from the binary is thus hidden within the actual code.

In the next sections, we’ll discuss the following as it relates to 64-bit EMOTET samples:

EMOTET encryption mechanisms
Reviewing the EMOTET C2 list
Interesting EMOTET strings
The EMOTET configuration extractor utility

Encryption keys

EMOTET uses embedded Elliptic Curve Cryptography (ECC) public keys to encrypt their
network communication. While in previous versions, the keys would be stored in an XOR-
encrypted blob, now the content is calculated at runtime.

https://www.elastic.co/security-labs/exploring-the-qbot-attack-pattern
https://github.com/elastic/protections-artifacts/blob/main/yara/rules/Windows_Trojan_Trickbot.yar
https://github.com/elastic/protections-artifacts/blob/main/yara/rules/Windows_Ransomware_Ryuk.yar
https://twitter.com/Cryptolaemus1/status/1516261512372965383?ref_src=twsrc%5Etfw
https://blog.cloudflare.com/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/

3/18

Encoded Encryption Key blob in 64-bit version
In comparison the previous versions of EMOTET would store an encrypted version of the key
data in the .text section of the binary.

Embedded key data in previous version of the malware
In order to make it harder for security researchers to find the given code the malware uses
Mixed Boolean-Arithmetic (MBA) as one of its obfuscation techniques. It transforms
constants and simple expressions into expressions that contain a mix of Boolean and
arithmetic operations.

https://www.usenix.org/conference/usenixsecurity21/presentation/liu-binbin

4/18

Example of Mixed Boolean-Arithmetic
In this example, an array of constants is instantiated, but looking at the assembly we see that
every constant is calculated at runtime. This method makes it challenging to develop a
signature to target this function.

We noticed that both the Elliptic Curve Diffie-Hellman (ECDH) and Elliptic Curve Digital
Signature Algorithm (ECDSA) keys use the same function to decode the contents.

The ECDH key (which you can recognize by its magic ECK1 bytes) is used for encryption
purposes while the ECDSA key (ECC1) is used for verifying the C2 server's responses.

ECK1 magic bytes at the start of the key data

https://cryptobook.nakov.com/asymmetric-key-ciphers/ecdh-key-exchange
https://cryptobook.nakov.com/digital-signatures/ecdsa-sign-verify-messages

5/18

Decoding algorithm for the key material
By leveraging a YARA signature to find the location of this decode function within the
EMOTET binary we can observe the following process:

1. Find the decoding algorithm within the binary.
2. Locate any Cross References (Xrefs) to the decoding function.
3. Emulate the function that calls the decoding function.
4. Read the resulting data from memory.

As we mentioned, we first find the function in the binary by using YARA. The signature is
provided at the end of this article. It is worth pointing out that these yara signatures are used
to identify locations in the binary but are, in their current form, not usable to identify EMOTET
samples.

In order to automatically retrieve the data from multiple samples, we created a configuration
extractor. In the snippets below, we will demonstrate, in a high level fashion, how we collect
the configuration information from the malware samples.

https://hex-rays.com/blog/igor-tip-of-the-week-16-cross-references/
https://www.elastic.co/security-labs/emotet-dynamic-configuration-extraction#yara

6/18

Python code to find the start of a function
In the above code snippet:

1. First load the YARA signature.
2. Try to find a match, and if a signature is found in the file.
3. Calculate the function offset based on the offset in the file.

In order to locate the Xrefs to this function, we use the excellent SMDA decompiler. After
locating the Xrefs, we can start the emulation process using the CPU emulator, Unicorn.

https://github.com/danielplohmann/smda
https://www.unicorn-engine.org/

7/18

Python code used to emulate decoding functions
1. Initialize the Unicorn emulator.
2. Load the executable code from the PE file into memory.
3. Disassemble the function to find the return and the end of the execution.
4. The binary will try to use the windows HeapAlloc API to allocate space for the decoded

data. Since we don't want to emulate any windows API's, as this would add
unnecessary complexity, we hook to code so that we can allocate space ourselves.

5. After the emulation has run the 64-bit “long size” register (RAX), it will contain a pointer
to the key data in memory.

6. To present the key in a more readable way, we convert it to the standard PEM format.

https://learn.microsoft.com/en-us/windows/win32/api/heapapi/nf-heapapi-heapalloc
https://www.cs.uaf.edu/2017/fall/cs301/lecture/09_11_registers.html#:~:text=rax%20is%20the%2064%2Dbit,processors%20with%20the%2080386%20CPU.

8/18

By emulating the parts of the binary that we are interested in, we no longer have to statically
defeat the obfuscation in order to retrieve the hidden contents. This approach adds a level of
complexity to the creation of config extractors. However, since malware authors are adding
ever more obfuscation, there is a need for a generic approach to defeating these techniques.

Example of the extractor used to find key material

C2 server list

An important part of tracking malware families is to get new insights by identifying and
discovering which C2 servers they use to operate their network.

In the 64-bit versions of EMOTET, we see that the IP and port information of the C2 servers
are also dynamically calculated at runtime. Every C2 server is represented by a function that
calculates and returns a value for the IP address and the port number.

9/18

Examples of encoded IP/port combination
These functions don’t have a direct cross reference available for searching. However, a
procedure references all the C2 functions and creates the p_c2_list array of pointers.

C2 server list
After that, we can emulate every C2-server function individually to retrieve the IP and port
combination as seen below.

10/18

Example of the extractor used to find C2 server list

Strings

The same method is applied to the use of strings in memory. Every string has its own
function. In the following example, the function would return a pointer to the string
%s\regsvr32.exe "%s".

Encoded string
All of the EMOTET strings share a common function to decode or resolve the string at
runtime. In the sample that we are analyzing here, the string resolver function is referenced
29 times.

11/18

String decoding algorithm
This allows us to follow the same approach as noted earlier in order to decode all of the
EMOTET strings. We pinpoint the string decoding function using YARA, find the cross-
references, and emulate the resulting functions.

12/18

Example of the extractor used to find strings

Configuration extractor

Automating the payload extraction from EMOTET is a crucial aspect of threat hunting as it
gives visibility of the campaign and the malware deployed by the threat actors, enabling
practitioners to discover new unknown samples in a timely manner.

% emotet-config-extractor --help

usage: Emotet Configuration Extractor [-h] (-f FILE | -d DIRECTORY) [-k] [-c] [-s] [-
a]

options:

 -h, --help show this help message and exit

 -f FILE, --file FILE Emotet sample path

 -d DIRECTORY, --directory DIRECTORY

 Emotet samples folder

 -k Extract Encryption keys

 -c Extract C2 information

 -s Extract strings

 -a Extract strings (ascii)Read more

Our extractor takes either a directory of samples with -d option or -f for a single sample and
then can output parts of the configuration of note, specifically:

13/18

-k: extract the encryption keys
-c: extract the C2 information
-s: extract the wide-character strings
-a: extract the ASCII character stings

EMOTET uses a different routine for decoding wide and ASCII strings. That is why the
extractor provides flags to extract them separately.

The C2 information displays a list of IP addresses found in the sample. It is worth noting that
EMOTET downloads submodules to perform specific tasks. These submodules can contain
their own list of C2 servers. The extractor is also able to process these submodules.

The submodules that we observed do not contain encryption keys. While processing
submodules you can omit the -k flag.

[...]

[+] Key type: ECK1

[+] Key length: 32

-----BEGIN PUBLIC KEY-----

MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE2DWT12OLUMXfzeFp+bE2AJubVDsW

NqJdRC6yODDYRzYuuNL0i2rI2Ex6RUQaBvqPOL7a+wCWnIQszh42gCRQlg==

-----END PUBLIC KEY-----

[...]

[+] Key type: ECS1

[+] Key length: 32

-----BEGIN PUBLIC KEY-----

MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE9C8agzYaJ1GMJPLKqOyFrlJZUXVI

lAZwAnOq6JrEKHtWCQ+8CHuAIXqmKH6WRbnDw1wmdM/YvqKFH36nqC2VNA==

-----END PUBLIC KEY-----

[...]

[+] Found 64 c2 subs

174.138.33.49:7080

188.165.79.151:443

196.44.98.190:8080

[...]

[+] Starting emulation

[+] String BLOB address: 0x4000000

KeyDataBlob

[...]

[+] String BLOB address: 0x4000000

bcrypt.dll

[...]

[+] String BLOB address: 0x4000000

RNGRead more

To enable the community to further defend themselves against existing and new variants of
EMOTET, we are making the payload extractor open source under the Apache 2 License.
Access the payload extractor documentation and binary download.

https://www.elastic.co/security-labs/emotet-configuration-extractor

14/18

The future of EMOTET

The EMOTET developers are implementing new techniques to hide their configurations from
security researchers. These techniques will slow down initial analysis, however, EMOTET
will eventually have to execute to achieve its purpose, and that means that we can collect
information that we can use to uncover more about the campaign and infrastructure. Using
code emulators, we can still find and extract the information from the binary without having to
deal with any obfuscation techniques. EMOTET is a great example where multiple
obfuscation techniques make static analysis harder. But of course, we expect more malware
authors to follow the same example. That is why we expect to see more emulation-based
configuration extract in the future.

EMOTET running and gathering system information

Detection

YARA

Elastic Security has created YARA rules to identify this activity. The YARA rules shown here
are not meant to be used to solely detect EMOTET binaries, they are created to support the
configuration extractor. The YARA rules for detecting EMOTET can be found in the
protections-artifacts repository.

EMOTET key decryption function

https://github.com/elastic/protections-artifacts/blob/main/yara/rules/Windows_Trojan_Emotet.yar

15/18

rule resolve_keys

{

meta:

 author = "Elastic Security"

 description = "EMOTET - find the key decoding algorithm in the PE"

 creation_date = "2022-08-02"

 last_modified = "2022-08-11"

 os = "Windows"

 family = "EMOTET"

 threat_name = "Windows.Trojan.EMOTET"

 reference_sample =
"debad0131060d5dd9c4642bd6aed186c4a57b46b0f4c69f1af16b1ff9c0a77b1"

 strings:

 $chunk_1 = {

 45 33 C9

 4C 8B D0

 48 85 C0

 74 ??

 48 8D ?? ??

 4C 8B ??

 48 8B ??

 48 2B ??

 48 83 ?? ??

 48 C1 ?? ??

 48 3B ??

 49 0F 47 ??

 48 85 ??

 74 ??

 48 2B D8

 42 8B 04 03

 }

 condition:

 any of them

}Read more

EMOTET C2 aggregation

16/18

rule c2_list

{

 author = "Elastic Security"

 description = "EMOTET - find the C2 collection in the PE"

 creation_date = "2022-08-02"

 last_modified = "2022-08-11"

 os = "Windows"

 family = "EMOTET"

 threat_name = "Windows.Trojan.EMOTET"

 reference_sample =
"debad0131060d5dd9c4642bd6aed186c4a57b46b0f4c69f1af16b1ff9c0a77b1"

 strings:

 $chunk_1 = {

 48 8D 05 ?? ?? ?? ??

 48 89 81 ?? ?? ?? ??

 48 8D 05 ?? ?? ?? ??

 48 89 81 ?? ?? ?? ??

 48 8D 05 ?? ?? ?? ??

 48 89 81 ?? ?? ?? ??

 48 8D 05 ?? ?? ?? ??

 48 89 81 ?? ?? ?? ??

 48 8D 05 ?? ?? ?? ??

 48 89 81 ?? ?? ?? ??

 48 8D 05 ?? ?? ?? ??

 48 89 81 ?? ?? ?? ??

 48 8D 05 ?? ?? ?? ??

 48 89 81 ?? ?? ?? ??

 }

 condition:

 any of them

}Read more

EMOTET string decoder

17/18

rule string_decode

{

 meta:

 author = "Elastic Security"

 description = "EMOTET - find the string decoding algorithm in the PE"

 creation_date = "2022-08-02"

 last_modified = "2022-08-11"

 os = "Windows"

 family = "EMOTET"

 threat_name = "Windows.Trojan.EMOTET"

 reference_sample =
"debad0131060d5dd9c4642bd6aed186c4a57b46b0f4c69f1af16b1ff9c0a77b1"

 strings:

 $chunk_1 = {

 8B 0B

 49 FF C3

 48 8D 5B ??

 33 CD

 0F B6 C1

 66 41 89 00

 0F B7 C1

 C1 E9 10

 66 C1 E8 08

 4D 8D 40 ??

 66 41 89 40 ??

 0F B6 C1

 66 C1 E9 08

 66 41 89 40 ??

 66 41 89 48 ??

 4D 3B D9

 72 ??

 }

 $chunk_2 = {

 8B 0B

 49 FF C3

 48 8D 5B ??

 33 CD

 0F B6 C1

 66 41 89 00

 0F B7 C1

 C1 E9 ??

 66 C1 E8 ??

 4D 8D 40 ??

 66 41 89 40 ??

 0F B6 C1

 66 C1 E9 ??

 66 41 89 40 ??

 66 41 89 48 ??

 4D 3B D9

 72 ??

 }

 condition:

18/18

 any of them

}Read more

