
1/33

Niraj Shivtarkar, Avinash Kumar

WarHawk: New APT backdoor from SideWinder
zscaler.com/blogs/security-research/warhawk-new-backdoor-arsenal-sidewinder-apt-group

Zscaler: A Leader in the 2024 Gartner® Magic Quadrant™ for Security Service Edge (SSE)

Get the full report

Zero Trust Fundamentals

https://www.zscaler.com/blogs/security-research/warhawk-new-backdoor-arsenal-sidewinder-apt-group
https://www.zscaler.com/gartner-magic-quadrant-security-service-edge-sse

2/33

Transform with Zero Trust Architecture

Propel your transformation journey

Secure Your Business Goals

Achieve your business and IT initiatives

Learn, connect, and get support.

Explore tools and resources to accelerate your transformation and secure your world

Amplifying the voices of real-world digital and zero trust pioneers

Visit now

https://www.zscaler.com/cxorevolutionaries

3/33

Get research and insights at your fingertips

Security Research & Services

Get research and insights at your fingertips

About Zscaler
Discover how it began and where it’s going

Partners
Meet our partners and explore system integrators and technology alliances

News & Announcements
Stay up to date with the latest news

Leadership Team
Meet our management team

Partner Integrations
Partner Integrations

Investor Relations
See news, stock information, and quarterly reports

Environmental, Social & Governance
Learn about our ESG approach

Careers

https://www.zscaler.com/company/about-zscaler
https://www.zscaler.com/partners
https://www.zscaler.com/company/news-press
https://www.zscaler.com/company/leadership
https://www.zscaler.com/partners/technology
https://ir.zscaler.com/
https://www.zscaler.com/corporate-responsibility
https://www.zscaler.com/careers

4/33

Join our mission

Press Center
Find everything you need to cover Zscaler

Compliance
Understand our adherence to rigorous standards

Zenith Ventures
Understand our adherence to rigorous standards

Zscaler Blog

Get the latest Zscaler blog updates in your inbox

Subscribe
Recently, Zscaler ThreatLabz discovered a new malware being used by the SideWinder APT
threat group in campaigns targeting Pakistan: a backdoor we’ve called “WarHawk.”
SideWinder APT, aka Rattlesnake or T-APT4, is a suspected Indian Threat Actor Group
active since at least 2012, with a history of targeting government, military, and businesses
throughout Asia, particularly Pakistan. The newly discovered WarHawk backdoor contains
various malicious modules that deliver Cobalt Strike, incorporating new TTPs such as
KernelCallBackTable Injection and Pakistan Standard Time zone check in order to ensure a
victorious campaign.

Zscaler’s ThreatLabz research team has performed an in-depth analysis of the WarHawk
backdoor and its use in threat campaigns below.

Key Features of this Attack

SideWinder APT campaign targets Pakistan with a new backdoor named “WarHawk”
The WarHawk Backdoor consists of four modules:

Download & Execute Module
Command Execution Module
File Manager InfoExfil Module
UploadFromC2 Module

WarHawk is commissioned to deliver Cobalt Strike as the final payload which has been
downloaded and executed using the Download & Execute Module.
The custom Cobalt Strike loader used by the SideWinder APT leverages the
KernelCallBackTable Process injection (a technique previously used by FinFisher and
Lazarus APT) to load the Cobalt Strike beacon, along with a Time Zone check that
makes sure that the loader is executed only when under Pakistan Standard Time.

https://www.zscaler.com/company/media-center
https://www.zscaler.com/compliance/overview
https://www.zscaler.com/company/zenithventures

5/33

The SideWinder APT makes use of ISO Files bundled with a LNK file, a decoy PDF
displaying copies of cybersecurity advisories released by the Pakistan Cabinet Division
(used as a lure), and the WarHawk backdoor which is executed by the LNK File.
We discovered the ISO file hosted on the legitimate website of Pakistan's National
Electric Power Regulatory Authority “nepra[.]org[.]pk” which may indicate a
compromise of their web server.
We were able to attribute this campaign to the SideWinder APT based on the reuse of
network infrastructure that has previously been used by SideWinder for various
espionage activities against Pakistan.

Campaign Analysis

In the month of September 2022, we came across an ISO File “32-Advisory-No-32.iso”
hosted on the official website of the Pakistan’s National Electric Power Regulatory Authority
“nepra[.]org[.]pk.” NEPRA is commissioned to provide safe, reliable, efficient and
affordable electric power to the electricity consumers of Pakistan. It is possible that this ISO
file was uploaded to the server due to web server compromise.

ISO URL: https[:]//nepra[.]org[.]pk/css/32-Advisory-No-32[.]iso

Fig 1. National Electric Power Regulatory Authority Website

6/33

We then downloaded the ISO File from the above mentioned URL which consisted of the
following bundled files.

32-Advisory-No-32-2022.lnk - Malicious LNK File
32-Advisory-No-32-2022.pdf - Decoy PDF
RtlAudioDriver.exe - Malicious Binary

 Fig 2. Contents of the Malicious ISO File

The .LNK File had a PDF icon to lure the victim into execution. Once the .LNK File is
executed, it runs the malicious binary “RtlAudioDriver.exe” along with the decoy PDF “32-
Advisory-No-32-2022.pdf” to distract the victims. It does so with the help of the command
shown in the following screenshot.

Fig 3. Execution of Malicious Binary & Decoy PDF via the LNK File

Following is the Decoy PDF executed by the LNK File with the Subject: Phishing Site -
Masqueraded Links (Advisory No. 32) in the screenshot below

7/33

 Fig 4. Decoy PDF

The content for the PDF was copied from an actual advisory previously released by the
Cabinet Division of Pakistan Government regarding the “Masqueraded Links used by the
Malicious Actors in Phishing Campaigns” on their official website cabinet[.]gov[.]pk

Link:
 https[:]//cabinet[.]gov[.]pk/SiteImage/Misc/files/NTISB%20Advisories/2022/32-Advisory-No-

32-2022[.]pdf

Fig 5. Original Advisory on Pakistan Government Cabinet Division Website

Alongside the Decoy PDF, the Malicious binary “RtlAudioDriver.exe'' is also executed by the
LNK File.

A few days after this initial discovery, ThreatLabz came across another related ISO File
named “33-Advisory-No-33-2022.pdf.iso” which similarly copied a real “Advisory No. 33”
from the Pakistan Cabinet Website as a lure. This ISO similarly consisted of three files,
including aWindows Shortcut file commissioned to execute the binary “MSbuild.exe” and a
decoy PDF “33-Advisory-No-33-2022.pdf” to fool the victims as shown in the screenshot
below.

8/33

Fig 6. 33-Advisory-No-33-2022 Campaign

Upon analyzing both the binaries “RtlAudioDriver.exe” and “MsBuild.exe,” we discovered that
this was a new backdoor added to the arsenal of the SideWinder APT Group. We termed it
“WarHawk” Backdoor based on the CnC panel title, as shown in the below screenshot. In this
case, the “MsBuild” binary is the newer version of the backdoor, with a few additional
features compared to “RtlAudioDriver” (the older one). Below, we will share our in-depth
analysis to understand the inner workings of the WarHawk Backdoor.

 Fig 7. WarHawk CnC Panel

Analysis - WarHawk Backdoor

9/33

The “WarHawk Backdoor” disguises itself as legit applications to lure unsuspecting victims
into execution, as shown in the screenshot below.

Fig 8. WarHawk Backdoor disguises as legit applications

Once executed, the WarHawk first enumerates the base address of the Kernel32.dll by
iterating the InMemoryOrderModuleList linked list present in the Process Environment Block
(PEB). The instructions it uses are shown in the screenshot below.

10/33

Fig 9. Enumerate Base Address of Kernel32.dll via PEB

Once the base address of Kernel32.dll is enumerated, WarHawk then decrypts a set of API &
DLL names using a String Decryption Routine which takes the Encrypted Hex Bytes as an
input and then subtracts each byte with the Key: "0x42" in order to decrypt the string.

11/33

Fig 10. String Decryption Routine - WarHawk

Leveraging the decryption logic, we wrote a string decryptor for the WarHawk backdoor
through which we were able to decrypt the following Strings from the Encrypted Hex Blobs:

LoadLibraryA GetUserNameA GetCurrentHwProfileA

Advapi32 GetProcAddress GetComputerNameA

 Fig 11. Decrypted Strings from the WarHawk String Decryptor

12/33

Initially the WarHawk decrypts the LoadLibraryA and GetProcAddress API Names, then
loops through all the exported functions from the Export Table and compares them with the
decrypted function names. If the comparison matches, it fetches the address of the
corresponding function name—in this case, LoadLibraryA() and GetProcAddress().

Fig 12. Fetches the Address of the Decrypted Function Names

Next, it decrypts the string “Advapi32'' and loads the Advapi32.dll into the virtual memory
with the help of LoadLibraryA(). It then retrieves the address of the GetCurrentHWProfileA()
function via the GetProcAddress() from the Advapi32.dll. Here, the GetCurrentHWProfileA
string is decrypted via a similar string decryption routine. After decryption, it executes the
GetCurrentHWProfileA() to retrieve the GUID (Globally Unique Identifier) for the hardware
profile.

Fig 13. Retrieves the GUID for the hardware profile using GetCurrentHWProfileA

13/33

The retrieved GUID is then concatenated with the _hwid parameter in the following JSON
format:

{ "_hwid": "{GUID}" }

As shown in the screenshot below:

 Fig 14. GUID concatenated with the _hwid parameter

Further, the WarHawk Backdoor sends across an initial beacon POST request to the
hardcoded Command & Control Server “146[.]190[.]235[.]137” using the
HTTPSendRequestW() with the GUID in the JSON format as its parameters and the request
URL “/wh/glass.php,” as shown and explained in the screenshot below:

Fig 15. Initial Beacon Request to the CnC Server with the GUID

Now it reads the response via InternetReadFile(). If the response is “0” in the newer sample
and “1” in the older sample, it gathers the following System Information as mentioned below
and then sleeps for 2 seconds:

Retrieves the Computer/NetBios Name via GetComputerNameA()
Retrieves the UserName via GetUserNameA()
Retrieves the Windows Product Name from the “SOFTWARE\Microsoft\Windows
NT\CurrentVersion\ProductName” Registry Key via the RegQueryValueExA()

Once all of the above mentioned system information has been gathered it is arranged in the
following JSON format using the similar wsprintf() method explained previously:

{ "_hwid": "{GUID}", "_computer": "Computer_Name", "_username": "User_Name",
"_os": "Windows_Product_Name" }

14/33

It then sends across the System information in the JSON format to the Command & Control
server using the HTTPSendRequestW(), as shown and explained in the screenshot below:

Fig 16. Gathered System Information sent across to the CnC server

After sending the System Information, it sends a JSON ping request to the Command and
Control server as shown in the screenshot below, using the similar WinINet functions:

Fig 17. JSON Ping Request to the CnC Server

If the response to the JSON ping request is “del” as shown in the screenshot below,
WarHawk skips the main malicious functions and sends across a “_del”: “true” request to
the Command and Control and then exits the process as shown in Fig 19.

Fig 18. JSON Ping Request to the CnC Server

15/33

Fig 19. Sends DEL Request and Exits the Process

If the response to the JSON ping request is not “del”, the WarHawk Backdoor executes the
backdoor modules integrated in WarHawk:

Download & Execute Module

This module is responsible for downloading and executing additional payloads from the
remote URL provided by the CnC server. At first, the WarHawk sends across a task initiation
request to the Command and Control as shown in the screenshot below. This request is in
the JSON format using a similar Send_Req function incorporating the WinINet functions.

Fig 20. WarHawk Task Initiation Request

The CnC responds to this request in the following JSON format with the id, type, and remote
URL:

{ "_task": "true", "_id": "id_no", "_type": "type_no", "_url": "Remote_URL" }

In the below screenshot, we can see the response from the CnC. It contains a remote URL
that leads to the Stage-2 payload, which would be downloaded and executed further by the
backdoor.

Fig 21. Response to Task Initiation Request consisting of the Remote URL

16/33

Once the JSON response is received, the WarHawk then parses the parameters _id, _type
and _url using an ultralight weight JSON parser library “cJSON,” as shown below.

Fig 22. Parse JSON Response parameters using cJSON

Further it checks the parsed _type parameter. If _type value is “1” the backdoor downloads
the additional payload from the parsed _url parameter containing the Remote URL, with the
help of the URLDownloadToFileA function, into the Temp directory where the filename is
randomly generated and concatenated with the extension provided in the remote URL. Once
the payload is downloaded the backdoor executes the downloaded payload with the help of
the ShellExecuteA() function.

If the _type is “2” then the payload must be a “Dynamic Link Library,” as in this case the
payload is downloaded via URLDownloadToFileA and then loaded into the virtual memory
using LoadLibrary().
Finally, if the _type is “3,” then the process is similar to the _type value “1”. The only
difference is that the process exits at the end through the ExitProcess() function.

17/33

Fig 23. Download and Execute Additional Payloads from the Remote URL

Once the Stage-2 payload is downloaded and executed on the infected machine and the
task is completed, the WarHawk sends across a Task Completion request to the Command
and Control server in the following manner:

Fig 24. WarHawk Task Completion Request

18/33

Thus, in the following manner the additional payloads are downloaded and executed from
the Remote URL served from the CnC server. In this case there are multiple payloads which
are downloaded and executed by the WarHawk backdoor which are analyzed later in the
blog.

Command Execution Module

The command execution module is responsible for execution of system commands on the
infected machine received from the Command & Control. WarHawk starts by sending across
the Command Execution Initiation request with the GUID of the system as shown in the
screenshot below.

Fig 25. WarHawk Command Execution Initiation Request

The response to this Initiation request consists of the command to be executed. Let’s
analyze the routine assuming that the received command is “whoami”. The received
command is passed as an argument to the CMD.exe process which has been spawned
using ShellExecuteA. The command arguments passed to the CMD.exe process can be
seen in the screenshot below.

Fig 26. WarHawk Command Execution

19/33

In this case, the output of the command received from the CnC “whoami” is stored in a
“.bin” file in the Temp directory where the file name is generated using a random name
generator function, as shown above.

Further, this “.bin” file in the Temp Directory is read using ReadFile() and then deleted to
clear its tracks. The command output content is then base64 encoded, arranged in the
following JSON format, and then sent across to the Control Control server
146[.]190[.]235[.]137 using HttpSendRequestW():

{ "_hwid": "GUID", "_cmd_done": "true", “_response”:”base64enc_cmd_output”}

Fig 27. Sending Command Output response to CnC Server

If there is no output of the command executed on the machine, it sets the _response
parameter as “0” in the JSON response.

Thus, in the following manner the WarHawk performs the command execution routine where
it receives the commands from the Command and Control and the backdoor executes them
and sends the output to the CnC in an base64 encoded platform. Here the routine executes
in a loop until the response to the JSON Ping request is not “del,” allowing the Threat actors
to execute multiple commands on the infected machine.

File Manager InfoExfil Module

The following module is responsible for gathering and sending across the File Manager
information by initially sending across an Module initiation request to the CnC server as
shown below:

20/33

Fig 28. File Manager Initiation Request

Now if the response to the initiation request is “drive” the WarHawk determines the drive
type by looping through the drive letters from A-Z. Itfirst checks whether the drive exists with
the help of PathFileExistsA(); if it exists, it then fetches the drive type using GetDriveTypeA()
such as DRIVE_FIXED or DRIVE_REMOVABLE as shown and explained in the below
screenshot:

Fig 29. Determine Drive Type

After this, the gathered information consisting of the existing drives and their types is sent
across to the CnC in the following JSON format:

Fig 30. Drive Information sent across to CnC in JSON Format

Further if the response to the initiation request is a Directory Path such as “C:\Dump\,” then
the backdoor searches in the following directory for files and folders recursively using
FindFirstFileA() and FindNextFileA(). Whilst performing the recursion it fetches the File
Name, File size, Modification date, File Type, and then towards the end sends across all the
information to the CnC Server in the JSON format:

Fig 31. WarHawk sends across File/Folder information to CnC in JSON Format

UploadFromC2 Module

21/33

The following module is a new feature added in the latest WarHawk Backdoor
(MsBuild.exe), allowing the threat actor to upload files on the infected machine from the
Command and Control Server. Initially the UploadFromC2 Module sends across a routine
initiation request to the CnC server in the following JSON format:

Fig 32. UploadFromC2 Module initiation request

The response to this request should be a JSON response received from the CnC server
consisting of following two parameters:

1. _upload - File name of the target file to be uploaded on the infected machine from the
CnC server

2. _path - Path where the target uploaded file is to be saved on the infected machine

Further the JSON response is parsed using the previously used cJSON Library, and then the
_upload value is concatenated with the hardcoded CnC URL:
http[:]\\146[.]190[.]235[.]137\wh. For example, if _upload = “stage2.exe,” the final URL
becomes http[:]\\146[.]190[.]235[.]137\wh\stage2.exe. The WarHawk then downloads the file
from the final CnC URL: http[:]\\146[.]190[.]235[.]137\wh\stage2.exe using
URLDownloadToFileA() and writes it to the current directory using the same file name
“stage2.exe” (or, if the _path value exists, it writes the downloaded file to that path as shown
in the routine below):

22/33

Fig 33. UploadFromC2 Module Routine

As can be seen from the screenshot, if the file has been downloaded successfully the
WarHawk backdoor then sends a JSON request to the CnC Server with
“_uploadstatus”:“true” and if not sends across “_uploadstatus”:”false”.

In the following way the WarHawk Backdoor performs its espionage activities by
incorporating various modules.

Stage 2 Analysis

Based on the analysis of the WarHawk backdoor, we are aware that the backdoor has the
capability to download and execute additional payloads. While tracking the SideWinder’s
espionage campaign we came across WarHawk downloading three additional Stage-2
Payloads from the Command and Control at the time of writing this blog. Below, we analyze
the Stage-2 Payloads downloaded by WarHawk.

Snitch.exe - Cobalt Strike Loader using KernelCallbackTable Process Injection

23/33

The WarHawk downloads and executes the Cobalt Strike Loader using the Download &
Execution Module from CnC URL: http[:]//146[.]190[.]235[.]137/Snitch.exe. Once executed
the Loader performs the following Anti-Analysis checks:

Anti-Sandbox:

- Checks whether the Numbers of Processors are at least two using GetSystemInfo()

- Checks Minimum RAM using GlobalMemoryStatusEx()

- Checks whether the Hard Disk drive size is greater than 40GB via sending a
IOCTL_DISK_GET_DRIVE_GEOMETRY control code to the PhysicalDrive0 via
DeviceIoControl

Time-Zone Check: The Loader performs the Time Zone Check using
GetDynamicTimeZoneInformation(), It inspects whether the time zone under which the
code executed is “Pakistan Standard Time;” if not, the loader does not perform any
malicious actions and exits the process. From this check we can deduce that the
malware is specifically targeted towards Pakistan by the SideWinder APT Group:

Fig 34. Anti-Analysis Checks

24/33

Once all the Anti-Analysis Checks are satisfied, the loader then unhooks the NTDLL.dll
(hooked) by mapping another fresh copy of NTDLL using MapViewOfFile() in memory and
then replaces the .text section of the hooked NTDLL with the .text section of the fresh
NTDLL. This technique allows the Loader to evade Userland API hooks placed on the Native
API’s by EDRs.

Fig 35. NTDLL UnHooking

Further the loader performs the KernelCallbackTable Process Injection in order to inject
shellcode into a remote process. This technique was previously used by FinFisher and
Lazarus APT Group, but now is also used by SideWinder APT. The process injection code in
this case has been reused from the following blog as can be seen in the screenshot below:

https://captmeelo.com/redteam/maldev/2022/04/21/kernelcallbacktable-injection.html

25/33

Fig 36. Reused KernelCallbackTable Process Injection Routine

Now once initiated the Loader injects the shellcode in the remote process “notepad.exe” and
then executes the payload when the SendMessageW function is called with
WM_COPYDATA, which in turn invokes fnCOPYDATA which points to the address of the
payload. The following sample was crashing once executed but upon patching a few
instructions related to WaitForInputIdle() function we were able to execute it seamlessly and
then debug the shellcode which then decrypted and loaded the embedded binary in the
virtual memory. We further dumped the loaded binary which was a Cobalt Strike Beacon as
seen in the screenshot below:

26/33

Fig 37. Cobalt Strike Beacon Injected into the Remote Process via KernelCallbackTable
Process Injection

Further we found multiple similar CS Loaders and extracted the configuration for the Cobalt
Strike Beacons:

Beacon Type: Hybrid HTTP DNS

Cobalt Strike C2: fia-gov[.]org

Fig 38. Cobalt Strike Configuration - 1

OneDrive.exe and DDRA.exe - Cobalt Strike Beacons

Along with the CS Loader, both of these payloads were also downloaded and executed from
the CnC Server URL: http[:]//146[.]190[.]235[.]137/OneDrive.exe and
http[:]//146[.]190[.]235[.]137/DDRA.exe. We extracted the configuration for both the Cobalt
Strike beacons with similar CnC servers as seen in the screenshot below:

DDRA.exe -

Beacon Type: Hybrid HTTP DNS

Cobalt Strike C2: fia-gov[.]org

27/33

Fig 39. Cobalt Strike Configuration - 2

OneDrive.exe
 Beacon Type: Hybrid HTTP DNS

Cobalt Strike C2: fia-gov[.]org

28/33

Fig 40. Cobalt Strike Configuration - 3

The CnC server domain: fia-gov[.]org used by the SideWinder APT mimics the domain
name of Pakistan’s Federal Investigation Agency fia[.]gov[.]pk which is the premier agency
of Pakistan at national level to investigate federal crimes.

 Also we found another similar CS Loader sample with the CnC server as: customs-lk[.]org,
in this case it mimics the domain name of Sri Lanka Customs customs[.]gov[.]lk, possibly a
SideWinder campaign targeting Sri Lanka. The “campaign_id” in this case is similar to the
CS Loader analyzed previously as can be seen in the screenshot below.

29/33

Fig 41. Cobalt Strike Configuration - 4

Attribution to SideWinder APT

SideWinder APT is reckoned as a Indian Threat Actor Group predominantly targeting
Pakistan. We were able to attribute the following campaign to the SideWinder APT based on
the network infrastructure as shown below in the graph.

30/33

Fig 42. SideWinder Network Infrastructure

As can be seen in the above screenshot, the IP: 3[.]239[.]29[.]103 hosts the domains “fia-
gov[.]org” and “customs-lk[.]org” which were the CnC servers for the Cobalt Strike
beacons in the following campaign as shown earlier. Now if we take a look at the following
other domains hosted on the same IP:

nationalhelpdesk[.]pk
mofa-pk[.]org
sngpl[.]org[.]pk

These domains were previously reported and were actively used by the SideWinder APT
Group for espionage campaigns. Based on the reuse of the network infrastructure we can
deduce that this WarHawk campaign is also performed by the SideWinder APT Group
targeting Pakistan.

The indicators listed below also assist us in determining that the campaign is targeted at
Pakistan:

 ISO files hosted on the Pakistan’s National Electric Power Regulatory Authority
website
Advisories released by the Pakistan’s Cabinet Division used as a lure
Time Zone check for “Pakistan Standard Time” which makes sure that the malware is
only executed under Pakistan Standard Time.

Zscaler Sandbox Coverage:

31/33

Fig. 43 The Zscaler Cloud Sandbox successfully detected the WarHawk backdoor

Win32.Backdoor.WarHawk

Conclusion

The SideWinder APT Group is continuously evolving their tactics and adding new malware to
their arsenal in order to carry out successful espionage attack campaigns against their
targets. The Zscaler ThreatLabz team will continue to monitor these attacks to help keep our
customers safe

MITRE ATT&CK TTP MAPPING

ID TACTIC TECHNIQUE

T1566 Initial Access Phishing

T1190 Initial Access Exploit Public Facing Application

T1204 Execution User Execution

T1059 Execution Command and Scripting Interpreter

T1140 Defense Evasion Deobfuscate/Decode Files or Information

https://threatlibrary.zscaler.com/threats/ba452190-bc26-4e88-a7d3-3631adf82aa1

32/33

T1564 Defense Evasion Hide Artifacts

T1055 Defense Evasion Process Injection

T1071.001 Command and Control Application Layer Protocols - Web Protocols

T1041 Exfiltration Exfiltration over C2 Channel

IoCs:

ISO:

32-Advisory-No-32.iso: d510808a743e6afc705fc648ca7f896a

URL: nepra[.]org[.]pk/css/32-Advisory-No-32[.]iso

33-Advisory-No-33-2022.pdf.iso: 63d6d8213d9cc070b2a3dfd3c5866564

WarHawk Backdoor:

WarHawk_v1: 8f9cf5c828cb02c83f8df52ccae03e2a
 WarHawk_v1.1: 5cff6896e0505e8d6d98bff35d10c43a

CnC: 146[.]190[.]235[.]137/wh/glass[.]php

Cobalt Strike:

Snitch.exe CS Loader: ec33c5e1773b510e323bea8f70dcddb0

URL: 146[.]190[.]235[.]137/Snitch[.]exe

OneDrive.exe CS Beacon: d0acccab52778b77c96346194e38b244
 URL: 146[.]190[.]235[.]137/OneDrive[.]exe

DDRA.exe CS Beacon: 40f86b56ab79e94893e4c6f1a0a099a1

URL: 146[.]190[.]235[.]137/DDRA[.]exe

Cobalt Strike CnC:fia-gov[.]org &customs-lk[.]org

33/33

Thank you for reading

Was this post useful?

Yes, very!Not really

Get the latest Zscaler blog updates in your inbox

By submitting the form, you are agreeing to our privacy policy.

https://www.zscaler.com/privacy/company-privacy-policy

