
1/15

From RM3 to LDR4: URSNIF Leaves Banking Fraud Behind
mandiant.com/resources/blog/rm3-ldr4-ursnif-banking-fraud

A new variant of the URSNIF malware, first observed in June 2022, marks an important milestone for the tool. Unlike previous iterations of
URSNIF, this new variant, dubbed LDR4, is not a banker, but a generic backdoor (similar to the short-lived SAIGON variant), which may have
been purposely built to enable operations like ransomware and data theft extortion. This is a significant shift from the malware’s original
purpose to enable banking fraud, but is consistent with the broader threat landscape.

Mandiant believes that the same threat actors who operated the RM3 variant of URSNIF are likely behind LDR4. Given the success and
sophistication RM3 previously had, LDR4 could be a significantly dangerous variant—capable of distributing ransomware—that should be
watched closely.

Brief History

Being one of the oldest banking malware families still active today, it is no surprise that there is a long and adventurous history behind URSNIF
(aka. Gozi or Gozi/ISFB), which is sometimes intertwined with other malware families and variants. Its source code was leaked at least twice
since the first major version appeared in 2016, resulting in other variants, from which multiple are still in circulation today (e.g., IAP). This
means neither Gozi nor URSNIF is a single malware family, but more like a set of related siblings (usually called variants). Most researchers
today have standardized on the malware family name Gozi, but for mainly historical reasons, other researchers and vendors—including
Mandiant—still reference these variants as URSNIF (the older malware from which Gozi originated from back in the mid-2000s with Haxdoor)
or even ISFB (which is technically the latest living branch of this banking malware family). Just to make things clear, we use URSNIF
(capitalized, according to Mandiant’s naming scheme) throughout this blog post when referring to the current variants that are still active today.

In recent years, multiple variants of URSNIF, based on ISFB, have been observed in the wild including:

Dreambot – One of the most successful variants
IAP – The most actively developed and distributed ISFB branch with frequent malware campaigns coming from CUTWAIL and targeting
Italy
RM2 – Also widely known as GoziAT, started its activity years ago with the Chanitor malware (aka Hancitor)
RM3 – Due to its custom executable file format, it is the most sophisticated version to date, which has mostly impacted Oceania and UK
since 2017

As of writing this, our research indicates ISFB might be the last and only active branch of the infamous URSNIF banking malware. Over the
past three years, this banking malware has seen some interesting changes, which suggest a major paradigm shift and that the entire project
was redesigned.

https://www.mandiant.com/resources/blog/rm3-ldr4-ursnif-banking-fraud
https://www.mandiant.com/resources/blog/saigon-mysterious-ursnif-fork

2/15

Figure 1: Genealogy of different URSNIF branches and variants
From a malware developer’s perspective, it is a complicated task to provide updates for so many different projects (or forks in this case), which
inevitably leads to dead-ends and mistakes. Mandiant believes that IAP 2.0 & RM2 builds over version 2.50.000 and RM3 builds over version
3.00.700 focused on removing unnecessary features and merges all forks and development branches into a single main branch. Some of the
notable changes intended to support this unification effort include

The RSA public key is now encrypted with a very specific embedded decryption key, and this has been progressively pushed into all
variants
AES encryption replaced the older Serpent encryption
Merging and simplification of fields in the beacon requests

The year 2020 was highly unsuccessful for the RM3 variant, with decreasing reliable distributions and multiple backends that collapsed (mostly
in Europe). Furthermore, this specific variant failed to take the opportunity to grow its popularity to obtain market share with the disruption of
TRICKBOT and EMOTET. One of the greatest winners of this was the ICEDID malware family, which managed to leverage the shrinking
competition on the banking malware landscape, putting RM3 into a difficult situation. It was extremely unusual for URSNIF’s ISFB variant to not
receive any updates after June 2020, thus some researchers hypothesized that the only way for this banking malware to return was to do
some major refurbishing on its code. In June 2022, with Internet Explorer finally being fully removed from Microsoft Windows, the RM3 variant
was officially seen as a “dead” malware from a technical point of view, as RM3 was reliant on this browser for some of its critical network
communication.

Distribution

Mandiant first observed LDR4 in the wild on June 23, 2022, via a recruitment related lure, resembling RM3’s distribution reported back in April
2021 (Figure 2). The email contains a link to a compromised website that redirects to a domain masquerading as a legitimate company (Figure
3). A CAPTCHA challenge is presented to download an Excel document purported to contain information related to the email lure (Figure 4
and Figure 5). This document then downloads and executes the LDR4 payload. A similar chain leading to LDR4 was later observed but with a
lure pertaining to an accounting software instead (Figure 6).

In addition to HR/recruitment, Mandiant also observed RM3 in the more conventional payment/invoice lures that leverage XLM 4.0 macros in
Excel document attachments to download the payload. In April 2022, we observed its last distribution via UNC2420 as a downloaded payload
of the MOTEISLAND document. Mandiant tracks UNC2420 as a distribution threat cluster that uses malicious Microsoft Word documents as
attachments in campaigns using subjects that appear to be replies to legitimate email chains.

3/15

Figure 2: Email lure for URSNIF (RM3) in April 2021

Figure 3: Email lure for URSNIF (LDR4) on June 23, 2022

4/15

Figure 4: June 2022, CAPTCHA page for the Excel document download

5/15

Figure 5: Excel document downloader for URSNIF (LDR4) on June 24, 2022

Figure 6: Email lure for URSNIF (LDR4) on June 24, 2022

Static Analysis

6/15

The LDR4 variant appears as a DLL module on the infected computer, which is invoked via the DllRegisterServer function, but there are often
other randomly named decoy functions exported to confuse sandboxes. Some of the binaries were using valid code-signing certificates (e.g.,
NAILS UNLIMITED LIMITED and ANGOSTONE GROUP LTD LIMITED). The binaries can have either a 32-bit or 64-bit architecture and are
packed with various PE crypters. One of the crypters, tracked by Mandiant as SPELLBOOK, has an interesting property that it leaves the
signature “|SPL|” in memory after unpacking the core malware. We identified overlaps in the usage of this crypter between URSNIF LDR4 and
SNOWCONE.GZIPLOADER (ICEDID’s loader component). The unpacked core for the analyzed URSNIF LDR4 sample has the internal name
LOADER.dll.

URSNIF LDR4 is a mix of code refactoring, regressions and interesting simplification strategies.

Figure 7: IAP/RM3/LDR4 payload structures
We made the following major observations:

1. The PX era is now over.

The LDR4 variant no longer uses the custom PX executable format, that was first introduced by the RM3 variant. We believe this choice

was made to avoid overcomplicating the troubleshooting of software issues. From a developer’s point of view, spending more time that is
supposed into some superficial layer of issues and refocusing into more important pipelines of requested features are crucial for your
reputation. Equally important, given the notoriety of the PX format among analysts and AV/EDR products, it was only a matter of time for
that path to come to an end. From the attacker’s perspective, investing in a product that everyone knows how to detect, is not a very
efficient use of resources, so going back to the roots with a classic PE format is in fact a rational choice on their side.

7/15

2. FJ.exe gone or reworked?
Since the beginning of ISFB, a steganography tool called FJ.exe (File Joiner) is used for hiding multiple files into a single payload. This
one isn’t unique to ISFB but forked from another notorious banking malware called CARBERP. By comparing the code of those two,
there are no doubts this same program is used in both.

Figure 8: ISFB FJ.exe overlapping code with CARBERP FJ.cpp

Malware Family PDB Path / Project Path

Carberp bootkit.old/FJ/

ISFB d:\work\projects\bk2\bin\release\i386\FJ.pdb (The bk2 project name in the file path stands for “Bootkit v2”)

FJ.exe is the tool responsible for creating the JJ, J1, J2, or WD fields on URSNIF payloads based on the variant. But in LDR4 those
magic bytes are missing, and the hidden files usually hardcoded at the end of the payload are now gone.

3. LDR4 is a backdoor.

URSNIF is the latest malware following the same path that EMOTET and TRICKBOT did before, by focusing into a new strategy and

leaving behind its banking fraud legacy. LDR4 is the proof of that statement by removing all its banking malware features and modules
and only focusing into getting VNC and/or remote shell into the compromised machine.

Obfuscation

It is a common practice in offensive software operations to apply some sort of obfuscation to the code itself or at least to API calls to thwart
analysis efforts. URSNIF historically did not use this (except for the outermost crypter layer used for AV evasion). However, this new LDR4
variant incorporated obfuscation for the Windows API calls. First, it builds a hash lookup table from the export names and addresses of the
Windows modules used by the malware (kernel32, ntdll, crypt32, advapi32, ws2_32), that maps the JAMCRC32 checksum (JAMCRC32 is the
modification of the regular CRC32 algorithm, where all the bits of the final checksum are flipped) of the function names to their respective
virtual addresses in memory. Later in the code, any invocation to the Windows API functions will just look up the checksum value in the table to
quickly retrieve the function address. Apart from this, no further code obfuscation is leveraged in the compiled binaries, making LDR4 a
relatively easy family to reverse engineer.

Behavior

One of the most noticeable things during analysis was that the developers had simplified and cleaned up various parts of the code, compared
to previous variants. Most notably, its banking features were totally scrapped.

8/15

The malware first locates the .bss section in the executable, and decrypts it using a simple XOR-based algorithm. This is performed with a key
that is constructed of the PE Timestamp, and the section’s PointerToRawData and SizeOfRawData fields. To ensure that the decryption was
successful, it calculates a checksum on part of the decrypted data, which must match the checksum of the UTF-16 encoded string "All rights
reserved.". This checksum will be used in later operations as a XOR key (similar to the XOR cookie value used in leaked source code, which
refers to this value as CsCookie).

Next, it gathers a list of system services by enumerating the subkeys under the registry key HKLM\SYSTEM\CurrentControlSet\Control, and it
generates two separate IDs: a System ID, which is derived from the creation date of pagefile.sys or hiberfil.sys – which is exactly the way how
the RM3 and SAIGON variants did it; and a User ID, which is simply the MD5 hash of the current user’s username.

To ensure that only one instance of the malware is active at a time, it creates a mutex with a randomized name, where the System ID created
in the previous step is used as a random seed value. Then the decrypted configuration (from the .bss section) is validated to see if it contains
both the required bot configuration and an RSA public key that is used for decrypting data from the command and control (C2) servers. This is
followed by launching the main communication thread via the QueueUserAPC () function.

The main communication loop retrieves the C2 server information from the embedded bot config.

If the IdleTime option is present in the configuration, then the code waits for this many seconds before starting communication with the
servers.
If the RunCommand option is present, its value is executed in a separate thread with the output of the command redirected to a
temporary file. All the binaries we encountered contained two embedded commands: “echo Commands” and “dir”.

The C2 servers are contacted one by one trying to download the file TASK.BIN which contains a list of commands to perform. The list of
potential commands is detailed in the Capabilities section.

Network Communication

The communication protocol used by LDR4 does not differ too much from the protocol used by the older RM3 variant. It uses POST requests
over HTTPS, with beacon URLs ending in /index.html. The User Agent string depends on the exact Windows version and architecture with the
following format:

Mozilla/5.0 (Windows NT %d.%d; %s) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.66 Safari/537.36

The use of an outdated Chrome version in the User Agent string provides a good detection opportunity in environments where a proxy server
oversees outbound HTTP/HTTPS connections, and can block or alert based on the User Agent string.

The beacon request’s query string uses the following format (which is almost the same as RM3’s beacon format):

version=%u&user=%s&group=%u&system=%s&file=%08x&arc=%u&crc=%08x&size=%u

The meaning of the parameters is detailed in the following table:

Parameter Name Description

version Bot version, e.g., “100123” (1.00.123)

user User ID

group Botnet ID

system System ID

file File ID (the JAMCRC32 checksum of the uppercase filename)

arc File architecture (0 – x86, 1 – x64)

crc File checksum (only if it was downloaded before, otherwise 0)

size File size (only if it was downloaded before, otherwise 0)

9/15

A fake parameter consisting of a random name and value is prepended to the aforementioned query string, every time a request is made, then
the entire request string is encrypted using AES-256 in CBC mode, with an embedded key (see ServerKey in the Configuration section) and an
initialization vector (IV) consisting of sixteen “0” characters, then encoded using Base64 (any ending “=” characters are stripped from the end
of the encoded string), and then sent as the payload of a POST request.

Example query string of an initial beacon (file ID 0x8fd8a91e corresponds to the filename TASK.BIN):

clypnrkl=wsktexbmn&version=100123&user=f2472a25a2e15c3d&group=202208152&system=18245c7ff14d7902&file=8fd8a91e&arc=0&crc=00

Example query string for subsequent beacons (existing TASK.BIN size is 320 bytes, and the checksum of its contents is 0x3e3edc47):

chjm=kckhu&version=100123&user=f2472a25a2e15c3d&group=202208152&system=18245c7ff14d7902file=8fd8a91e&arc=0&crc=3e3edc47&si

Example network beacon (with the request string encrypted with AES, and encoded as Base64):

POST /index.html

Host: logotep[.]xyz

Cache-Control: no-cache

Connection: Keep-Alive

Pragma: no-cache

Content-Type: multipart/form-data; boundary=9808fdecfe274c1d

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.66
Safari/537.36

Content-Length: 285

--9808fdecfe274c1d

Content-Disposition: form-data; name="rcgmbh"

QgrHabeBs9/vsorhqEP2jV88dSwmgvyxepEZczkNSFXt89yV2nH9/7A5QYcIslSIoimlOmGG53oykoFVIfc

rge6eCwchr62tLGsho13OHolmwJBYFYH0+sxqa1AH8qV4CEjKX+UwyioMNnv0QlW9pagvAc6JMo1JoTHjrq

aci07r/dByQSndma/MhZU1aIrI

--9808fdecfe274c1d--

All of the control servers that we identified used domain names consisting of 5-10 letters, were registered under the .xyz, .cyou or .com top-
level domains, and used Let’s Encrypt TLS certificates. The domain names are registered with Namecheap, and the infrastructure is hosted at
a company named Stark Industries Solutions Ltd., registered in the UK in February 2022. This company is listed on the website for Perfect
Quality Hosting (aka. PQ Hosting).

Configuration

As mentioned, in the LDR4 variant of URSNIF, the configuration storage was significantly reworked. Previous URSNIF variants used magic
markers to locate additional files that were embedded into the binary, called joined files. The magic markers varied between different URSNIF
variants, i.e. JF, JJ, J1, J2, or WD.

This new LDR4 variant introduces a new data structure for storing joined files, which are now merged with the strings in the encrypted .bss
section.

10/15

Figure 9: LDR4 decrypted .bss section structure
The data structure has an 8-byte header, and has the following fields:

Data Size Field Name Description

2 bytes NextOffset The offset to the next element in the linked list, if zero, then no more elements

2 bytes ItemSize The size of the data in bytes in the ItemValue field

4 bytes ItemID A value that uniquely identifier the item, this is usually the JAMCRC32 hash of the item name

ItemSize bytes ItemValue The value of the current element

There are two joined files that must always be present, otherwise the malware will not operate: the bot configuration, and the RSA public key
that is used to decrypt and verify responses from the command server. Like in other URSNIF variants, the configuration options are identified
by a hexadecimal number, which is the JAMCRC32 checksum of the option’s uppercase name. Note, that the name of the option is not
referenced anywhere in the binary or in the configuration, and it is only possible to find it out by brute-forcing the checksum.

List of currently known configuration options:

11/15

Option ID Option Name Description

0xb892845a Controller List of C2 URLs used for communication (whitespace separated)

0x656b798a Group Botnet ID

0x4fa8693e ServerKey AES key used for communicating with the C2

0x8c871ff9 IdleTime Number of seconds to wait before the initial request to the C2

0x9d29ade4 RequestTime Number of seconds between beacon requests to the C2

0xf76f421a HostKeepTime In case of communication failures, the number of minutes to wait before trying the next C2 server

0x08b2f0fb HostShiftTime In case of successful communication, the number of minutes to wait before switching to the next C2 server

0x89a5deaa RunCommand Embedded initial command list to execute upon startup

0x303378c6 <unknown> Unknown timeout parameter, probably unused as of now

Capabilities

The following commands are implemented in the malware:

Command ID Command Name Description

0xf880e2be LOAD_DLL Load a DLL module into the current process

0xfee861f1 SHELL_STATE Retrieve the state of the cmd.exe reverse shell

0xc202e685 SHELL_START Start the cmd.exe reverse shell

0xa5946e4a SHELL_STOP Stop the cmd.exe reverse shell

0xa04d6355 SHELL_RESTART Restart the cmd.exe reverse shell

0x5d2295b5 RUN_COMMAND Run an arbitrary command

0x5d639645 EXIT Terminate

The two most common commands that we have observed sent out to new victims are related to network reconnaissance:

RUN_COMMAND=net group "domain computers" /domain
RUN_COMMAND=net session

The same two commands were also observed from the RM3 variant of URSNIF in the past, which is another behavioral trait that proves the
connection between the two variants.

Command Shell

The built-in command shell functionality provides a reverse shell that connects to a remote IP address and gives the attackers the ability to
execute system commands via the cmd.exe program. This functionality is almost an exact copy to what the RM3 variant provided via its
separate cmdshell.dll plugin. The remote IP address and port number to connect to is provided at run time, as an argument to the
SHELL_START command. This functionality gives the attackers the ability to perform hands-on-keyboard attacks, perform further host and
network reconnaissance, and do lateral movement.

Plugins

12/15

Previous URSNIF variants had a feature that allowed the capabilities of the malware to be extended with various plugins loaded via the
LOAD_PLUGIN command, which was not implemented in the URSNIF LDR4 binary we analyzed. However, we have observed at least one
occasion where a VNC module was downloaded via the LOAD_DLL command. The LOAD_DLL command thus allows for a simpler, more
generic way of providing a plugin-like feature by extending the features of the malware via arbitrary DLL modules (in contrast to regular plugin
DLLs, which must be implemented in a specific way to work with the main malware). Interestingly, the VNC module still uses an older way of
storing its embedded configuration (using the J1 magic bytes), so it is possible that it was originally compiled for a different URSNIF variant
(likely for IAP 2.0).

VNC module

Filename vnc64_1.dll

Internal name VncDLL.dll

MD5 hash bd4a92d4577ddedeb462a71cdf2fa934

PE timestamp Tue Sep 14 19:32:19 2021

Embedded VNC C2 141[.]98.169.6:80

Attribution

Some of the LDR4 control servers are configured to leak detailed error messages and file paths, and the file paths indicate that the bot panel is
installed into the home directory of the user expro with the directory name www_loader_ldl (Figure 10).

Figure 10: Error message from the C2

server revealing the expro home directory
This supports our current understanding that expro is the nickname of the web developer responsible for the bot panel for both the RM3 and
LDR4 variants.

Implications

The demise of the RM3 variant earlier this year, and the author’s decisions to make heavy simplifications to their code, including the removal of
all banking related features, point toward a drastic change in their previously observed TTPs. These shifts may reflect the threat actors’
increased focus towards participating in or enabling ransomware operations in the future. This assessment is further supported by the fact that
Mandiant identified an actor operating in underground communities seeking partners to distribute a new ransomware and the URSNIF RM3
variant, which is highly similar to the new LDR4 variant, since at least early 2022

Acknowledgements

The authors would like to thank Benoit Ancel for providing additional malware IOCs in relation to the LDR4 variant, and Cian Lynch for spotting
the initial malware sample.

Appendix A: Comparison with other recently active URSNIF variants

 IAP 2.0 RM3 LDR4

Persistence method Scheduled task that executes code
stored in a registry key using
PowerShell

Scheduled task that executes code
stored in a registry key using
PowerShell

No persistence

https://advantage.mandiant.com/reports/22-00010977

13/15

Configuration storage Security PE directory points to
embedded binary data starting with
'JJ' magic bytes

Security PE directory points to
embedded binary data starting with
'WD' magic bytes

Hidden into the encrypted .bss section

PRNG algorithm Various xorshift64* Various

Checksum algorithm JAMCRC (aka. CRC32 with all the
bits flipped)

JAMCRC (aka. CRC32 with all the
bits flipped)

JAMCRC (aka. CRC32 with all the bits
flipped)

Data compression aPLib aPLib No compression

Encryption/Decryption Old versions: Serpent CBC New
versions: AES-256 CBC

Old versions: Serpent CBC New
versions: AES-256 CBC

AES-256 CBC

Data integrity
verification

RSA signature RSA signature RSA signature

Communication
method

HTTP GET/POST requests HTTP GET/POST requests HTTP POST requests

Payload encoding Unpadded Base64 ('+' and '/' are
replaced with '_2B' and '_2F'
respectively), random slashes are
added

Unpadded Base64 ('+' and '/' are
replaced with '_2B' and '_2F'
respectively), random slashes are
added

Unpadded Base64 ('+' and '/' are URL
encoded as '%2B' and '%2F'
respectively), random slashes are NOT
added

Uses URL path
mimicking?

No Yes No

Uses PX file format? No Yes No

Embedded commands
in binary

Yes No Yes

Appendix B: IOCs

Malware sample hashes:

360417f75090c962adb8021dbb478f67 [VT]
3e0f28bcaf35af2802f45b58f49481be
590d96a7be55240ad868ebec78ce38f2
8c658b9b02814927124351484c42a272 [VT]
9f68d1a4b33e3ace6215040dc9fc73e8 [VT]
b4610d340a9bff58616543b10e961cd3
baa784967fd0558715f4011a72eb872e [VT]
bd4a92d4577ddedeb462a71cdf2fa934
bea60bab50d47f239132890a343ae84c [VT]
d38f6f01bb926df07d34de0649f608f6 [VT]
d6ef4778f7dc9c31a0a2a989ef42d2fd [VT]
d94657449f8d8c165ef88fd93e463134 [VT]
eee617806c18710e8635615de6297834 [VT]
f4b0a6ab164f7c58cccce651606caede [VT]

Malware sample hashes (unpacked):

00b981b4d3f47bcbd32dfa37f3b947e5 [VT]
09bc2a1aefbafd3e7577bc3c352c82ad [VT]
1b0ec09ca4cb7dcf5d59cea53e1b9c93
3c5f002b46ef11700caca540dcc7c519
498d5e8551802e02fe4fa6cd0425c608
58169007c2e7a0d022bc383f9b9476fe [VT]
7808d22a4343b2617ceef63fd0d43651
7eea48e592c4bccbfa3929b1b35a7c0b

https://www.virustotal.com/gui/file/eb2564a6f22dcec73dda3b6e4dc5fd37a4fa017f6b98b6dea5ac5b23a44b1f57
https://www.virustotal.com/gui/file/1480777c361ac1d398cc26c90215de629733f66d60dcbd5970700db0ce786ae1
https://www.virustotal.com/gui/file/d2fc2e2b90b23c2a91e144fd8ac22668dd682f7d0145963615203d087c48aca4
https://www.virustotal.com/gui/file/c2b80b8cbd660c3208162ed596e0443ea8f786b6fd1f809f2d2a1e07fe6475cd
https://www.virustotal.com/gui/file/74b57e264dd84cbb7c4e1a7eb8a8dbdb932f01ac34e48e2e6d41ab82f05c682f
https://www.virustotal.com/gui/file/b59430d733e346aef69dc5992cee0f06d8dbfca7744d212159528c89d1008953
https://www.virustotal.com/gui/file/54de1f2c26a63a8f6b7f8d5de99f8ebd4093959ab07f027db1985d0652258736
https://www.virustotal.com/gui/file/2502a3f8c9a6a8681f9222e93b14e077bf879e3009571c646ee94275bc994d01
https://www.virustotal.com/gui/file/12d88935437064d8478bc4adec0c0042fb73da774905004c7de55e559729e15c
https://www.virustotal.com/gui/file/88de34ad95486071b8796d95150461a8a7968d1eb8817772e892d258f3aa1c91
https://www.virustotal.com/gui/file/5d1dbec0a0fb5014c387c308a83c9259774713219d283cd3653897b527e83713
https://www.virustotal.com/gui/file/6039fcf4b3d79f847f7b545ae0d7767a4d58e12721b049b04ade6550eef549b9
https://www.virustotal.com/gui/file/082c51164b2c20ff163f2640313c81cd64a26ff9790d3570e5cde857fa93272a

14/15

89b4dd18bea842fddd021aa74d109ec3
a3539bc682f39406c050e5233058c930 [VT]
ac39f1a22538f0211204037cce30431d
c1989d25287cd9044b4d936e73962e35
c7facfffad15a9c84239b495770183bb
cde05576e7c48ca89d2f21c283a4a018 [VT]

Network indicators (domains):

astope[.]xyz
binchfog[.]xyz
damnater[.]com
daydayvin[.]xyz
dodsman[.]com
dodstep[.]cyou
fineg[.]xyz
fingerpin[.]cyou
fishenddog[.]xyz
giantos[.]xyz
gigeram[.]com
gigiman[.]xyz
gigimas[.]xyz
higmon[.]cyou
isteros[.]com
kidup[.]xyz
lionnik[.]xyz
logotep[.]xyz
mainwog[.]xyz
mamount[.]cyou
minotos[.]xyz
pinki[.]cyou
pipap[.]xyz
prises[.]cyou
reaso[.]xyz
rorfog[.]com
tornton[.]xyz
vavilgo[.]xyz

Network indicators (IP addresses):

5[.]182.36.248 (CH) – ISP: STARK INDUSTRIES SOLUTIONS LTD (GB)
5[.]182.37.136 (RU) – ISP: STARK INDUSTRIES SOLUTIONS LTD (GB)
5[.]182.38.43 (HU) – ISP: STARK INDUSTRIES SOLUTIONS LTD (GB)
5[.]182.38.68 (HU) – ISP: STARK INDUSTRIES SOLUTIONS LTD (GB)
5[.]252.23.238 (SK) – ISP: STARK INDUSTRIES SOLUTIONS LTD (GB)
45[.]8.147.179 (SE) – ISP: STARK INDUSTRIES SOLUTIONS LTD (GB)
45[.]8.147.215 (SE) – ISP: STARK INDUSTRIES SOLUTIONS LTD (GB)
45[.]67.34.75 (RO) – ISP: STARK INDUSTRIES SOLUTIONS LTD (GB)
45[.]67.34.172 (RO) – ISP: STARK INDUSTRIES SOLUTIONS LTD (GB)
45[.]67.34.245 (RO) – ISP: STARK INDUSTRIES SOLUTIONS LTD (GB)
45[.]67.229.39 (MD) – ISP: STARK INDUSTRIES SOLUTIONS LTD (GB)
45[.]89.54.122 (SK) – ISP: STARK INDUSTRIES SOLUTIONS LTD (GB)
45[.]89.54.152 (SK) – ISP: STARK INDUSTRIES SOLUTIONS LTD (GB)
45[.]95.11.62 (SK) – ISP: STARK INDUSTRIES SOLUTIONS LTD (GB)
45[.]140.146.241 (MD) – ISP: STARK INDUSTRIES SOLUTIONS LTD (GB)
45[.]142.212.87 (MD) – ISP: STARK INDUSTRIES SOLUTIONS LTD (GB)
45[.]150.67.4 (MD) – ISP: STARK INDUSTRIES SOLUTIONS LTD (GB)
77[.]75.230.62 (CZ) – ISP: STARK INDUSTRIES SOLUTIONS LTD (GB)
77[.]91.72.15 (HU) – ISP: STARK INDUSTRIES SOLUTIONS LTD (GB)
94[.]131.100.71 (FI) – ISP: STARK INDUSTRIES SOLUTIONS LTD (GB)
94[.]131.100.209 (FI) – ISP: STARK INDUSTRIES SOLUTIONS LTD (GB)
94[.]131.106.8 (NL) – ISP: STARK INDUSTRIES SOLUTIONS LTD (GB)
94[.]131.106.16 (NL) – ISP: STARK INDUSTRIES SOLUTIONS LTD (GB)
94[.]131.107.13 (NL) – ISP: STARK INDUSTRIES SOLUTIONS LTD (GB)

https://www.virustotal.com/gui/file/f7c5b8ea8de9aad8ea2661e79636a87a4a5949217cfbe5e97fcef4fb881701af
https://www.virustotal.com/gui/file/78fed40495b176adaf7093f946a1ee07cd7cf455858804e08446571bc8be799a

15/15

94[.]131.107.132 (NL) – ISP: STARK INDUSTRIES SOLUTIONS LTD (GB)
94[.]131.107.252 (NL) – ISP: STARK INDUSTRIES SOLUTIONS LTD (GB)
141[.]98.169.6 (FI) – ISP: STARK INDUSTRIES SOLUTIONS LTD (GB)
185[.]250.148.35 (MD) – ISP: STARK INDUSTRIES SOLUTIONS LTD (GB)
188[.]119.112.104 (NL) – ISP: STARK INDUSTRIES SOLUTIONS LTD (GB)
193[.]38.54.157 (NL) – ISP: STARK INDUSTRIES SOLUTIONS LTD (GB)

User Agent strings:

Mozilla/5.0 (Windows NT <os_version>; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.66 Safari/537.36
Mozilla/5.0 (Windows NT <os_version>; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.66 Safari/537.36

Appendix C: YARA rule

The following YARA rule is not intended to be used on production systems or to inform blocking rules without first being validated through an
organization's own internal testing processes to ensure appropriate performance and limit the risk of false positives. This rule is intended to
serve as a starting point for hunting efforts to identify new LDR4 samples; however, it may need adjustment over time if the malware family
changes.

rule URSNIF_LDR4 {

 strings:

 $str1 = "LOADER.dll" fullword

 $str2 = "DllRegisterServer" fullword

 $str3 = ".bss" fullword

 $x64_code1 = { 3D 2E 62 73 73 74 0A 48 83 C7 28 }

 $x64_code2 = { 8B 17 48 83 C7 04 8B CA 8b C2 23 CB 0B C3 F7 D1 23 C8 41 2B CA 44 8B D2 41 89 08 41 8B CB 49 83
C0 04 83 E1 07 FF C1 41 D3 C2 41 83 EB 04 79 }

 $x64_code3 = { 41 0F B6 01 49 FF C1 8B C8 8B D0 83 E1 03 C1 E1 03 D3 E2 44 03 C2 41 83 C2 FF 75 }

 $x64_code4 = { 45 8D 45 08 48 8D 8C 24 [4] BA 30 00 FE 7F E8 }

 $x64_code5 = { 48 8D 8C 24 [4] BA 30 00 FE 7F 41 B8 08 00 00 00 E8 }

 $x86_code1 = { 81 F9 2E 62 73 73 74 09 83 C6 28 }

 $x86_code2 = { 8B 06 8B D0 23 55 0C 8B D8 0B 5D 0C F7 D2 23 D3 2B D1 8A 4D 08 80 E1 07 83 C6 04 89 17 83 C7 04
FE C1 D3 C0 83 6D 08 04 8B C8 79 }

 $x86_code3 = { 8A 0E 0F B6 D1 8B CA 83 E1 03 C1 E1 03 D3 E2 46 03 C2 4F 75 }

 $x86_code4 = { 6A 08 8D 45 F8 68 30 00 FE 7F 50 E8 }

 condition:

 5 of them

}

