
1/15

October 12, 2022

IcedID BackConnect Protocol
netresec.com/

Erik Hjelmvik

,

Wednesday, 12 October 2022 18:24:00 (UTC/GMT)

This is a follow-up to my Hunting for C2 Traffic video. But I didn't have time to record a short
video this time, so I wrote a long blog post instead.

UPDATE 2022-11-02

Brad Duncan has released a new pcap file on malware-traffic-analysis.net, which contains an
additional C2 command (0x12). Our analysis indicates that this command launches a file
manager. This blog post has now been updated with details about this finding.

UPDATE 2022-11-09

Lenny Hansson has released IDS signatures that detect IcedID BackConnect traffic. More
details further down in this blog post.

UPDATE 2022-12-05

Lenny has updated his IDS signatures to alert on IcedID C2 traffic from port 443 in addition
to 8080. The signatures in this blog post have now been updated to Lenny's new rev:2
signatures.

IcedID BackConnect C2 Packet Structure

The IcedID BackConnect (BC) module uses a proprietary command-and-control (C2)
protocol that is pretty straight forward. Both client (bot) and the C2 server typically send
commands and responses as 13 byte packets using the following structure:

Auth: 4 bytes
Command: 1 byte
Params: 4 bytes
ID: 4 bytes

Auth Field

https://www.netresec.com/?page=Blog&month=2022-10&post=IcedID-BackConnect-Protocol
https://netresec.com/?b=2296553
https://www.malware-traffic-analysis.net/2022/10/31/index.html

2/15

The "Auth" field is presumably used by the bot and C2 server to verify that the other party is
communicating using the same protocol and version.

As mentioned by Group-IB and xors the Auth field is typically 0x974F014A (little endian), but
we prefer to use the network byte order representation "4a 01 4f 97".

In their IcedID blog post from 2020 Group-IB say:

the auth field that has not changed since at least version 5 of the IcedID core is the
constant 0x974F014A

Nevertheless, we recently noticed another IcedID Auth field being used in the wild. But more
on that later.

Commands

The following list of IcedID BackConnect C2 commands has been compiled by combining
those mentioned by Group-IB with our own analysis of the IcedID BackConnect protocol:

0x00 = Bot queries for a task
0x01 = Set sleep timer
0x02 = Bot error
0x03 = Reconnect
0x04 = Start SOCKS
0x05 = Start VNC

We've also discovered these additional commands in IcedID BackConnect C2 traffic that
uses the Auth value "1f 8b 08 08":

0x11 = Start VNC
0x12 = Start file manager
0x13 = Start reverse shell

Commands 0x04, 0x05, 0x11, 0x12 and 0x13 all cause the bot to connect back to the C2
server using a new BackConnect session, which will be used to wrap either SOCKS, VNC,
file manager or reverse shell traffic.

Command 0x01: Set Sleep Timer

The set sleep timer command is issued by the C2 server to instruct the bot to sleep for a
certain amount of time before requesting a new task from the C2 server again. The sleep
time is defined in the four bytes following directly after the 0x01 command. This value is a
32-bit little endian value indicating the number of seconds the bot should sleep, i.e. "3c 00 00
00" = 0x0000003c = 60 seconds. The most common sleep value seems to be 60 seconds,
which is why you'll often see byte sequences like this in IcedID C2 sessions:

https://blog.group-ib.com/icedid
https://nikpx.github.io/malware/analysis/2022/03/09/BokBot
https://blog.group-ib.com/icedid

3/15

zz zz zz zz 01 3c 00 00 00 xx xx xx xx

The following Wireshark display filter will show IcedID C2 packets, where the bot is
configured to sleep for 60 seconds before querying the C2 server for a new command:

tcp.len == 13 and tcp.payload[4:5] == 01:3c:00:00:00

Command 0x04: Start SOCKS

The SOCKS command (0x04) instructs the bot to start the SOCKS module. As an example,
the following byte sequence was sent by the IcedID C2 server 91.238.50.80:8080 in Brad
Duncan's 2022-06-28 TA578 IcedID pcap on malware-traffic-analysis.net (see frame
#10231):

4a 01 4f 97 04 09 00 00 00 8c a2 b1 09

The first four bytes are the auth value, followed by the Start SOCKS command (04).

After receiving this command the bot established a new TCP connection back to the C2
server, where it echoed back the server's "Start SOCKS" command and then started acting
like a SOCKS server.

Except for initially echoing the IcedID Start SOCKS command the SOCKS module actually
seems to be compliant with RFC1928, which defines the SOCKS5 protocol. This means that
the C2 server can supply an IP address and port number to the bot's SOCKS proxy in order
to relay a connection to that host through the bot.

https://www.malware-traffic-analysis.net/2022/06/28/index.html
https://www.rfc-editor.org/rfc/rfc1928

4/15

Image: C2 server instructs bot to relay a connection to 188.40.30.100:80

After receiving a Start SOCKS command an IcedID bot immediately establishes a new TCP
connection to the specified IP and port, and relays the application layer data back to the C2
server through the SOCKS connection.

5/15

Image: Update check of Advanced Port Scanner relayed through the infected machine

In the 2022-06-28 TA578 IcedID pcap the attacker used multiple SOCKS connections to
scan the 10.6.21.0/24 network for services running on TCP ports 21, 80, 445 and 4899. That
last port (TCP 4899) is typically used by Radmin VPN, which just so happens to be created
by the outfit "Famatech" who also develop the "Advanced Port Scanner". The attacker also
used the SOCKS module to make several HTTPS connections to servers like 18.204.62.252
(tlx.3lift[.]com), 23.94.138.115 (cmd5[.]org) and 74.119.118.137 (cat.da.us.criteo[.]com). The
attacker also proxied connections to 40.97.120.242 and 52.96.182.162 (outlook.live.com)
through the infected bot.

https://www.malware-traffic-analysis.net/2022/06/28/index.html

6/15

NetworkMiner showing hosts that the bot proxied TLS traffic to

JA3 Fingerprints from Proxied Traffic

Since the SOCKS proxy doesn't touch the application layer data we know that the client TLS
handshake packets are coming from the C2 server rather than from the bot that's running the
SOCKS proxy. This means that we can fingerprint the actual TLS client using JA3.

7/15

As you can see in the CapLoader screenshot above, most proxied TLS sessions use the
cd08e31494f9531f560d64c695473da9 JA3 hash, but two of them use the rare JA3 hash
598872011444709307b861ae817a4b60. That rare JA3 hash was used only when
connecting to outlook.live.com.

Command 0x05 or 0x11: VNC

Brad Duncan's 2022-06-28 TA578 IcedID pcap also contains the "Start VNC" command
0x05.

https://www.malware-traffic-analysis.net/2022/06/28/index.html

8/15

Image: Flow transcript of Start VNC command

As can be seen in the CapLoader screenshot above, Start VNC commands were sent at
16:33:33 and 16:34:06 UTC. And just like the SOCKS command, this caused the bot to
establish a new connection back to the C2 server, echo the "Start VNC" command and then
proceed with the VNC traffic.

Image: Flow transcript of IcedID VNC traffic in ASCII encoding

9/15

Command 0x13: Reverse Shell

Brad posted a new capture file with network traffic from another IcedID infection last week
(2022-10-04). He also noted that the traffic to 51.89.201.236:8080 was different from normal
IcedID post-infection traffic.

After looking at this C2 traffic I discovered that it was in fact using the IcedID BackConnect
protocol outlined in this blog post, but the Auth field "4a 01 4f 97" had been replaced with "1f
8b 08 08".

That exact byte sequence is a common file header for gzip compressed files (RFC1952),
where

1f 8b = GZIP magic
08 = DEFLATE compression
08 = Original file name header present

IcedID has previously been seen using fake gzip file headers in payloads, but this time even
the C2 packets include the gzip header!

https://malware-traffic-analysis.net/2022/10/04/index.html
https://twitter.com/malware_traffic/status/1577780925210959882
https://www.rfc-editor.org/rfc/rfc1952
https://www.binarydefense.com/icedid-gziploader-analysis/

10/15

Image: Transcript of TCP session to 51.89.201.236:8080

The C2 traffic also contained the command 0x13, which I hadn't seen before. Just like the
SOCKS and VNC commands, this one triggered the bot to establish a new connection back
to the C2 server. But the bot sent a task query command (00) this time, instead of echoing
the C2 server's command (0x13). The new TCP session then transitioned into what looks like
a reverse shell session.

11/15

Image: Transcript of reverse shell traffic from IcedID BackConnect session

The reverse shell traffic reveals that the attackers retrieved a list of domain admin users and
then executed a PowerShell script from aicsoftware[.]com. This PowerShell script was used
to install CobaltStrike beacon on the victim's PC.

Command 0x12: File Manager

We discovered the file manager command after this blog post was published. This section
has therefore been added after the original publication of this blog post.

The following Wireshark display filter can be used to find file manager commands (0x12) in
IcedID C2 traffic that uses the "1f 8b 08 08" auth value:

tcp.len == 13 and tcp.payload[0:5] == 1f:8b:08:08:12

https://www.virustotal.com/gui/file/eb88412c9a0f78dfd515e3c602548aea1aee4e91847289eb58214841350aa12f/detection

12/15

Image: File manager commands in IcedID BackConnect C2

The screenshot above shows that the file manager command was issued three times in
2022-10-31-IcedID-with-DarkVNC-and-Cobalt-Strike-full-pcap-raw.pcap.

Image: IcedID TCP sessions in CapLoader's Flows view

As you can see in the two screenshots above, each time a file manager command was
issued in the C2 session (Wireshark screenshot) the bot established a new TCP connection
back to the C2 server (CapLoader screenshot).

The file manager sessions use a proprietary protocol to perform tasks such as listing disks,
changing directory and uploading files.

https://www.malware-traffic-analysis.net/2022/10/31/index.html

13/15

We've identified the following file manager commands:

14/15

DISK = List drives
CDDIR <path> = Change directory
PWD = Show current directory
DIR = List current directory
PUT <path> = Upload file

IDS Signatures

Lenny Hansson has released IDS signatures that can detect IcedID BackConnect traffic. I'd
like to highlight four of Lenny's signatures here.

Alert on "sleep 60 seconds" C2 command, regardless of Auth value:

alert tcp $EXTERNAL_NET [443,8080] -> $HOME_NET 1024: (msg:"NF - Malware
IcedID BackConnect - Wait Command"; flow:established; flags:AP; dsize:13;
content:"|01 3c 00 00 00|"; offset:4; depth:5; reference:url,networkforensic.dk;
metadata:02112022; classtype:trojan-activity; sid:5006006; rev:3;)

Alert on "start VNC" C2 command with "4a 01 4f 97" Auth:

alert tcp $EXTERNAL_NET [443,8080] -> $HOME_NET 1024: (msg:"NF - Malware
IcedID BackConnect - Start VNC command"; flow:established; flags:AP; dsize:13;
content:"|4a 01 4f 97 05|"; offset:0; depth:5; reference:url,networkforensic.dk;
metadata:03112022; classtype:trojan-activity; sid:5006007; rev:2;)

Alert on "start VNC" C2 command with "1f 8b 08 08" Auth:

alert tcp $EXTERNAL_NET [443,8080] -> $HOME_NET 1024: (msg:"NF - Malware
IcedID BackConnect - Start VNC command - 11"; flow:established; flags:AP; dsize:13;
content:"|1f 8b 08 08 11|"; offset:0; depth:5; reference:url,networkforensic.dk;
metadata:03112022; classtype:trojan-activity; sid:5006011; rev:2;)

Alert on "start file manager" C2 command with "1f 8b 08 08" Auth:

alert tcp $EXTERNAL_NET [443,8080] -> $HOME_NET 1024: (msg:"NF - Malware
IcedID BackConnect - Start file manager command"; flow:established; flags:AP;
dsize:13; content:"|1f 8b 08 08 12|"; offset:0; depth:5; reference:url,networkforensic.dk;
metadata:03112022; classtype:trojan-activity; sid:5006008; rev:2;)

A zip file containing Lenny's Snort rules can be downloaded from networkforensic.dk.

Questions and Answers

Allright, that's all I had to say about the IcedID BackConnect C2 protocol. I'm now ready to
take your questions.

https://networkforensic.dk/

15/15

Q: Is IcedID's BackConnect VNC traffic the same thing as DarkVNC?

No, DarkVNC traffic doesn't use the IcedID BackConnect C2 Packet Structure described in
this blog post. Also, one characteristic behavior DarkVNC is that the first C2 packet contains
a string that looks like one of these:

(COMPUTERNAME)_ADDITIONAL_ID-DARKVNC
BOT-COMPUTERNAME(USERNAME)_ID-REFnnn
USR-COMPUTERNAME(USERNAME)_ID-REFnnn

Additionally, the first four bytes in the DarkVNC packets containing one of the strings above
is a 32 bit little endian length field. For more details on DarkVNC, see the archived blog post
A short journey into DarkVNC attack chain from REAQTA.
Q: Is IcedID's BackConnect VNC traffic the same thing as hVNC?

Almost. hVNC means "hidden VNC" and includes any type of malicious VNC server running
on a victim's PC, including IcedID's VNC module as well as DarkVNC.

Q: How did you get Wireshark to decode the SOCKS traffic from IcedID BackConnect?

1. Open the pcap file from 2022-06-28 TA578 IcedID
2. Apply display filter: tcp.port eq 8080
3. Right-click, Decode As, TCP port 8080 = SOCKS
4. Display filter: tcp.dstport eq 8080 and tcp.len eq 13 and tcp.payload[0:5] eq

4a:01:4f:97:04
5. Select all packets (Ctrl+A)
6. Edit, Ignore Packets (Ctrl+D)
7. Display filter: socks.dst

Q: Can CapLoader's Protocol Identification feature detect the IcedID BackConnect protocol?

The current version (1.9.4) doesn't have a protocol model for the BackConnect protocol, but
the next CapLoader release will be able to identify this type if IcedID C2 traffic.

Posted by Erik Hjelmvik on Wednesday, 12 October 2022 18:24:00 (UTC/GMT)

Tags: #IcedID #TA578 #SOCKS #SOCKS5 #JA3 #gzip #PowerShell

https://web.archive.org/web/20200530034502/https://reaqta.com/2017/11/short-journey-darkvnc/
https://www.malware-traffic-analysis.net/2022/06/28/index.html
https://www.netresec.com/?page=CapLoader
https://www.netresec.com/?page=Blog&tag=IcedID
https://www.netresec.com/?page=Blog&tag=TA578
https://www.netresec.com/?page=Blog&tag=SOCKS
https://www.netresec.com/?page=Blog&tag=SOCKS5
https://www.netresec.com/?page=Blog&tag=JA3
https://www.netresec.com/?page=Blog&tag=gzip
https://www.netresec.com/?page=Blog&tag=PowerShell

