
1/12

Andreas Klopsch October 4, 2022

Remove All The Callbacks – BlackByte Ransomware
Disables EDR Via RTCore64.sys Abuse

news.sophos.com/en-us/2022/10/04/blackbyte-ransomware-returns/

With reports of a new data-leak site published by actors behind the BlackByte ransomware,
we decided to take another look at the most recent variant written in Go.

We found a sophisticated technique to bypass security products by abusing a known
vulnerability in the legitimate vulnerable driver RTCore64.sys. The evasion technique
supports disabling a whopping list of over 1,000 drivers on which security products rely to
provide protection. Sophos products provide mitigations against the tactics discussed in this
article.

“Bring Your Own [Vulnerable] Driver” is the name given to this technique — exploiting a
targeted system by abusing a legitimate signed driver with an exploitable vulnerability. In July
2022, Trend Micro reported on the abuse of a vulnerable anti-cheat driver for the game
Genshin Impact, named mhyprot2.sys, to kill antivirus processes and services for mass-
deploying ransomware. In May 2022, another report showcased how an AvosLocker
ransomware variant likewise abused the vulnerable Avast anti-rootkit driver aswarpot.sys to
bypass security features.

https://news.sophos.com/en-us/2022/10/04/blackbyte-ransomware-returns/
https://www.bleepingcomputer.com/news/security/blackbyte-ransomware-gang-is-back-with-new-extortion-tactics/
https://www.trendmicro.com/en_us/research/22/h/ransomware-actor-abuses-genshin-impact-anti-cheat-driver-to-kill-antivirus.html
https://www.trendmicro.com/en_us/research/22/e/avoslocker-ransomware-variant-abuses-driver-file-to-disable-anti-Virus-scans-log4shell.html


2/12

Now that the actors behind BlackByte ransomware and this sophisticated technique are back
from a brief hiatus, chances are good that they will continue abusing legitimate drivers to
bypass security products. To help the industry proactively prevent such attacks, we share our
findings in this report.

Glancing At CVE-2019-16098

RTCore64.sys and RTCore32.sys are drivers used by Micro-Star’s MSI AfterBurner
4.6.2.15658, a widely used graphics card overclocking utility that gives extended control over
graphic cards on the system. CVE-2019-16098 allows an authenticated user to read and
write to arbitrary memory, which could be exploited for privilege escalation, code execution
under high privileges, or information disclosure.

The I/O control codes in RTCore64.sys are directly accessible by user-mode processes. As
stated by Microsoft’s guideline on securing IOCTL codes in drivers, defining IOCTL codes
that allow callers to read or write nonspecific areas of kernel memory is considered
dangerous. No shellcode or exploit is required to abuse the vulnerability — just accessing
these control codes with malicious intent. Later in this article, we will explain how BlackByte
abuses this vulnerability to disable security products.

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/security-issues-for-i-o-control-codes


3/12

Figure 1: Unprotected control codes in RTCore64.sys allowing read and write operations to
kernel memory

Kernel Notify Routines

Kernel Notify Routines are used by loaded drivers to be notified by the kernel of system
activity. Some of these notified system activities include:

Whether a thread is created, registered via PsSetCreateThreadNotifyRoutine
Whether a process is created, registered via PsSetCreateProcessNotifyRoutine
Whether an image is loaded, registered via PsSetLoadImageNotifyRoutine

https://news.sophos.com/wp-content/uploads/2022/10/figure-1.png
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-pssetcreatethreadnotifyroutine
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-pssetcreateprocessnotifyroutine
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-pssetloadimagenotifyroutine


4/12

When a callback function is registered, the address of the callback function address is added
to an array. For example, the array containing all registered callbacks via
PsSetCreateProcessNotifyRoutine is called PspCreateProcessNotifyRoutine.

To envision this, imagine a process A.EXE, which tries to create a new process B.EXE.
A.EXE will notify the windows kernel NTOSKRNL.EXE that a new process should be
created. The Windows kernel will assign a new process ID to the soon-to-be created
process, but will not allow executing the user-mode code of B.EXE yet. Process B.EXE stays
in a suspended state first.

If a driver has registered a callback via PsSetCreateProcessNotifyRoutine, the kernel will
hand over control and execute the registered driver callback function. After the driver routine
is finished, the control will be transferred back to the kernel, and allow continuation of the
user-mode code. This entire process is illustrated below.

Figure 2: How Kernel Notify Routines work at a high level

These routines are often used by drivers related to security products to collect information
about system activity. One goal of an attacker might be to remove these callbacks from
kernel memory. However, modern OS mitigations like Driver Signature Enforcement mean
that attackers cannot simply load their own rootkit or driver onto the target system to read
from or write to kernel memory. In order to bypass this security feature, the attacker has the
following options:

https://news.sophos.com/wp-content/uploads/2022/10/figure-2.png


5/12

1. Steal valid code signing certificates or acquire them anonymously
2. Abuse existing signed drivers to read, write, or execute code in kernel memory

The easier option is the second one, as there is a wide range of legitimate drivers available
and blacklisting all of them is simply not possible. Hence, the “Bring Your Own [Vulnerable]
Driver” technique has been abused often in the past by adversaries [1][2][3].

Diving Into BlackByte’s EDR Bypass

Our analysis targeted the BlackByte sample with the sha256

9103194d32a15ea9e8ede1c81960a5ba5d21213de55df52a6dac409f2e58bcfe

The sample was already analyzed by other researchers; thus, we focus solely on the EDR
(endpoint detection and response) bypass technique we found. However, we encountered
multiple anti-analysis measurements during our investigation, which we list in the appendix
below. The list is not complete, but it should ease fellow reverse engineers’ work to reach the
EDR bypass.

Furthermore, we have also identified routines to deactivate the ETW (Event Tracing for
Windows) Microsoft-Windows-Threat-Intelligence provider, a feature that provides logs about
the use of commonly maliciously abused API calls such as NtReadVirtualMemory to inject
into another process’s memory. This renders every security feature that relies on this
provider useless.

This article focuses solely on how the kernel callback removal is implemented. However, the
implementation to disable the Microsoft-Windows-Threat-Intelligence provider is almost
completely copied from EDRSandblast’s implementation. If readers are interested in how this
method works, we recommend reading this article by slaeryan of CNO Development Labs.

Once the anti-analysis checks finish, BlackByte attempts to retrieve a file handle of the
Master Boot Record, as seen in Figure 3. If failed, the ransomware tries to at least bypass
User Access Control and restart itself with higher privileges via CMLUA or CMSTPLUA UAC
Bypass.

https://www.trendmicro.com/en_us/research/22/e/avoslocker-ransomware-variant-abuses-driver-file-to-disable-anti-Virus-scans-log4shell.html
https://www.trendmicro.com/en_us/research/22/h/ransomware-actor-abuses-genshin-impact-anti-cheat-driver-to-kill-antivirus.html
https://news.sophos.com/en-us/2020/02/06/living-off-another-land-ransomware-borrows-vulnerable-driver-to-remove-security-software/
https://public.cnotools.studio/bring-your-own-vulnerable-kernel-driver-byovkd/exploits/data-only-attack-neutralizing-etwti-provider


6/12

Figure 3: CreateFile on PHYSICALDRIVE0, showing the retrieval attempt

Once restarted with higher privileges, it will now enter the EDR Bypass routine. We can
divide this process in two phases:

1. Kernel Identification and Service Install
2. Removal Of Kernel Notify Routines

Phase 1: Kernel Identification and Service Install

First, it will extract the version information of ntoskrnl.exe via GetFileVersionInfoW. The
version information is concatenated to a ntoskrnl_ prefix. The built string is compared against
a list of supported kernel version IDs. The list is embedded into the binary and decrypted via
a simple combination of base64-decoding and 8-byte XOR key decryption. Determining the
kernel version is essential to select the correct offsets to the structures in kernel memory that
are supposed to be patched. Figure 4 illustrates the entire process of phase 1.

https://news.sophos.com/wp-content/uploads/2022/10/figure-3.png


7/12

Figure 4: Matching kernel version identifier and extracting offsets from decrypted kernel
offset list

Overall, for each kernel version ID, the following offsets are provided:

Field Description

ntoskrnlVersion Unique identifier for ntoskrnl.exe version, built
by concatenating as described in text block
above

PspCreateProcessNotifyRoutineOffset Offset to array holding registered driver
callbacks via PsSetCreateProcessNotifyRoutine

PspCreateThreadNotifyRoutineOffset Offset to array holding registered driver
callbacks via PsSetCreateThreadNotifyRoutine

PspLoadImageNotifyRoutineOffset Offset to array holding registered driver
callbacks via PsSetLoadImageNotifyRoutine

_PS_PROTECTIONOffset Offset to _PS_PROTECTION field in
EPROCESS structure, defining the protection
level of a process

https://news.sophos.com/wp-content/uploads/2022/10/figure-4.png


8/12

EtwThreatIntProvRegHandleOffset Offset to structure holding GuidEntry and
ProviderEnableInfo fields below, needed to
remove the ETW Microsoft-Windows-Threat-
Intelligence provider

EtwRegEntry_GuidEntryOffset Offset to GuidEntry in structure above

EtwGuidEntry_ProviderEnableInfoOffset Offset to ProviderEnableInfo in structure above

Table 1: Matching offsets for each kernel ID

Once the kernel version is identified and the offsets are determined, BlackByte continues by
dropping RTCore64.sys into the AppData\Roaming folder. The filename is hardcoded into
the binary and omits the file extension.

A service is created via CreateServiceW and finally started. The service name and the
display name are both hardcoded into the binary. While the service name is always the
same, the display name is randomly selected from a list of very depressing strings, listed
below.

Hardcoded Display Names (Randomly Selected)

I’m so lonely, help me.

Stop doing this, go away, they are waiting for you at home.

You laugh a lot, because you simply don’t have the strength to cry.

When will it end? I want this.

AAAAAAAAAAAAAA!!!!!!!!!!!!!!!

If I had feelings, then I would probably be happy and scared at the same time.

Who are you? However, it doesn’t matter. Nobody ever cares about you.

The routine dragged on.

I’m at a dead end, help me.

I’m empty inside, help me.

May be enough?

Bad ending.

Table 2: A selection of frankly concerning display names

Phase 2: Removal of Kernel Notify Routines



9/12

After the offsets are determined and the service installed, the sample continues to remove
the callbacks from kernel memory. In this phase, BlackByte abuses the arbitrary read and
write vulnerability in RTCore64.sys. Thus, all mentioned read and write operations to kernel
memory are via the exploitable driver.

As explained in the section “Kernel Notify Routine,” there are at least three different arrays
that can contain addresses to callback functions:

PspCreateProcessNotifyRoutine for process creation, filled by
PsSetCreateProcessNotifyRoutine
PspCreateThreadNotifyRoutine for thread creation, filled by
PsSetCreateThreadNotifyRoutine
PspLoadImageNotifyRoutine for image loading, filled by PsSetLoadImageNotifyRoutine

For the sake of simplicity, we will focus on how the process creation callbacks are removed.
The process for the other two events is the same, even though different offsets are used.

Generally speaking, in order to remove these callbacks BlackByte needs to complete the
following three phases:

2a. Identify the address of the array PspCreateProcessNotifyRoutine

2b. Identify to which driver the corresponding callback function belongs


2c. Overwrite the callback function inside the array with zeros

2a. Identify the address of the array PspCreateProcessNotifyRoutine

The sample identified the kernel version and fetched the corresponding needed offsets from
the hardcoded list. Depending on the array we are iterating, a different offset is used. In this
case, offset 0xCEC3A0 leads to PspCreateProcessNotifyRoutine.

It retrieves the base address of ntoskrnl.exe via EnumDeviceDrivers and adds the offset to
PspCreateProcessNotifyRoutine. This will retrieve the pointer to
PspCreateProcessNotifyRoutine holding all callbacks registered via
PsSetCreateProcessNotifyRoutine.



10/12

Figure 5: Retrieving the address for the PspCreateProcessRoutine array

2b. Identify to which driver the corresponding callback function belongs

Next, BlackByte needs to identify whether the callback function belongs to a driver used by
EDR products. To achieve this, BlackByte uses a procedure to calculate the most likely driver
from the callback address itself.

At the start of the procedure, all base addresses are fetched via EnumDeviceDrivers. Each
base address is compared against the callback function address. From all fetched
addresses, the base address with the smallest delta to the callback function address is
chosen and passed to GetDeviceDriverBaseNameW, which will return the name of the
corresponding driver.

The driver’s name is then compared against a list of over 1000 driver names. If the driver’s
name matches one of the names in the list, the binary will continue to remove the callback.

2c. Remove the callback function from array

https://news.sophos.com/wp-content/uploads/2022/10/figure-5.png


11/12

In the final step, the malware will remove the callback entry from the
PspCreateProcessRoutine array. Overwriting the entry is done by calling DeviceIoControl to
interact with RTCore64.sys again. The element that holds the address to the callback
function of the driver is simply overwritten with zeros.

Similarities between EDRSandblast and BlackByte’s EDR Bypass

During our analysis, we have found multiple similarities between the open-source tool
EDRSandblast and the EDR Bypass implementation we’ve just covered. EDRSandblast is a
tool written in C to weaponize vulnerable signed drivers to bypass EDR detections via
various methods. Thus, we believe that the group behind BlackByte have at least copied
multiple code snippets from the open-source tool and reimplemented it into the ransomware.
Below is a list of similarities between the open-source tool and BlackByte’s implementation:

The list of known drivers related to security software is almost if not completely
identical.
EDRSandblast’s github repository contains a list of supported kernel offsets and
versions in a CSV file. If we decrypt the kernel offset list from BlackByte, it is almost if
not completely identical to the list in the GitHub repository, except that the CSV file
header is missing.
Multiple functions defined in EDRSandblast can be found almost if not completely
identical in the implementation of BlackByte.

To conclude, we suggest the following to proactively defend against such type of attacks:

Threat actors rarely deploy legitimate drivers with zero-day vulnerabilities. Usually, the
vulnerabilities in the attacks are well-known and documented. By keeping track of the
latest security news, you can prepare beforehand and investigate which legitimate
drivers are currently exploited by threat actors, for example by blocklisting drivers
known to be exploitable.
Always keep track of the drivers installed on your systems. Vulnerable legitimate
drivers can also be installed on the target system beforehand, such that there is no
need for threat actors to drop it on the target system. Thus, you should always keep
your system updated.

For a list of IoCs associated with this threat, please see our GitHub.

Appendix: BlackByte’s anti-analysis tricks

BlackByte calls the IsDebuggerPresent and CheckRemoteDebuggerPresent API. If a
debugger is detected, execution will quit.

https://github.com/wavestone-cdt/EDRSandblast
https://github.com/sophoslabs/IoCs/blob/master/Ransomware-BlackByte.csv


12/12

The sample tries to hide the main thread from debugger by calling
NetSetInformationThreadW with undocumented value
THREAD_INFORMATION_CLASS::ThreadHideFromDebugger to prevent a debugger
from being attached to a running process.
BlackByte tries to detect whether a hardware breakpoint is set via GetThreadContext.
While we did not fully confirm, we believe that this API call is used to detect hardware
breakpoints being set by a debugger. GetThreadContext is known to be used to by
malware to detect such breakpoints.
The sample performs a simple filename length check. If longer than 10 characters,
execution will quit.
Similarly, as explained in ZScaler’s article about BlackByte, the sample performs a
check as to whether any known hooking DLL is injected into the binary. If a blacklisted
DLL is found, execution will quit. The list is consistent with the ones provided by the
linked article.
BlackByte ransomware requires a seed to be passed via the “-s” parameter. The
correct seed is hardcoded into the binary as an encrypted string. If the seed does not
match, execution will quit.

Further reading

bs [handle]. “Removing Kernel Callbacks Using Signed Drivers.” GitHub, August 2,
2020. Link retrieved October 4, 2022
Hand, Matt. “Mimidrv In Depth: Exploring Mimikatz’s Kernel Driver.” SpecterOps (via
Medium), January 13, 2020. Link retrieved October 4, 2022
Vicente, Javier; Stone-Gross, Brent. “Analysis of BlackByte Ransomware’s Go-Based
Variants.” ZScaler, May 3, 2022. Link retrieved October 4, 2022

https://www.zscaler.com/blogs/security-research/analysis-blackbyte-ransomwares-go-based-variants
https://br-sn.github.io/Removing-Kernel-Callbacks-Using-Signed-Drivers/
https://posts.specterops.io/mimidrv-in-depth-4d273d19e148
https://www.zscaler.com/blogs/security-research/analysis-blackbyte-ransomwares-go-based-variants

