
1/12

September 30, 2022

Dissecting BlueSky Ransomware Payload
yoroi.company/research/dissecting-bluesky-ransomware-payload/

09/30/2022

Introduction

BlueSky is a ransomware firstly spotted in May 2022 and it gained the attention of the threat researchers for
two main reasons: the first one is that the group behind the ransomware doesn’t adopt the double-extortion
model; the second one is that their targets are even normal users because the ransomware has been
discovered inside cracks of programs and videogames.

For these reasons, we at Yoroi malware ZLab decided to keep track of the threat, following the distribution of
the samples, and we decided to provide a technical analysis of the ransomware payload.

https://yoroi.company/research/dissecting-bluesky-ransomware-payload/

2/12

Figure 1: Bluesky Control Flow

Technical Analysis

Hash 9e302bb7d1031c0b2a4ad6ec955e7d2c0ab9c0d18d56132029c4c6198b91384f

Threat Ransomware

Brief
Description

BlueSky Ransomware

SSDEEP 1536:G+5geBR2Q+a8M124Zl2i5SADBDg8trv4t9MBY5ySvV:GDeBgQ+a8M12Y2i59hrvWMBGvV

The API Loading Scheme

The sample starts by walking the PEB (Process Environment Block) to dynamically load the APIs. It is a
common technique to not statically show them in the import table, it walks one of the three linked lists located
in the PEB_LDR_DATA such as InLoadOrderModuleList. In this way, the sample is able to enumerate the
modules contained inside the linked list and to compare them with the hashed names hidden inside the code in
order to correctly import the desired ones. In this case, the APIs are hashed with djb2 algorithm.

3/12

Figure 2: Dynamically loading APIs

The following figure shows the routines to dynamically load the function:

4/12

Figure 3: "mw_load_function routine"

The obfuscated Stack Strings

Instead, other critical strings are obfuscated through the stackstrings method and a simple routine to encrypt
them

5/12

Figure 4: Strings Decryption Routine

However, the algorithm is easy to revert, and we developed an easy script to decrypt the stackstrings:

string = [123,82,90,123,45,56,32,88,94]

decrypted = ""

for i in string:

 decrypted += chr((34 * (i - 94) % 127 + 127) % 127)

print(decrypted)

Anti-Debug Technique

Once resolved the first functions, the sample calls NtSetInformationThread with ThreadHideFromDebugger
hiding the thread and if any breakpoint is placed causing the crash of the process, you can read more about
this anti-debug technique here

Figure 5: NtSetInformationThread

anti-debug
Privilege Escalation

https://anti-debug.checkpoint.com/techniques/interactive.html#ntsetinformationthread

6/12

While analyzing the sample, we also found similarities with Conti Ransomware in how the strings are
obfuscated and some other routines, like how BlueSky removes the shadow copies through the WMI COM
Interface. It abuses the “ICMLuaUtil COM Interface (3E5FC7F9-9A51-4367-9063-A120244FBEC7)”. However,
this technique is a well-known and documented technique publicly available on the internet, adopted both in
intrusion and malware development operations.

Figure 6: Bypassing UAC via ICMLuaUtil

The sample calls RtlAdjustPrivilege API call with the token “SeDebugPrivilege”, in order to gain the privilege to
arbitrary manipulate every file and process.

Figure 7: Evidence of privilege escalation method

Generating the Victim ID

BlueSky proceeds by generating the victim ID by hashing with MD5 the following system info:

MachineGuid (4 Bytes)
DigitalProductId
InstallDate
C:\ Serial Number

7/12

Then the hash is passed to the following custom routine:

Figure 8: Hash custom routine

The sample proceeds creating a mutex “Global\\{generated_id}” in this case being
“Global\1580B4213F8F3E90E4E0E3CD1F6FAC52”

Figure 9: Mutex Creation

The Encryption Routine

Now it’s time to encrypt the files. The first operation of the sample is to aquire a handle to the cryptographic
provider PROV_RSA_FULL by calling CryptAcquireContextA:

8/12

Figure 10: Acquiring a handle to

PROV_RSA_FULL
BlueSky stores the information related to the encryption, in the registry key
“HKCU\SOFTWARE\1580B4213F8F3E90E4E0E3CD1F6FAC52\”. To store the recovery information, it uses
“ChaCha20 + Curve25519 + RC4 (on RECOVERYBLOB)”, meanwhile “ChaCha20 + Curve25519” for the
encryption

Figure 11: BlueSky Recovery Information
Below the encryption routine:

9/12

Figure 12: Encryption routine
 BlueSky creates a list of the excluded files inside the code. The list is the following:

Extensions (ldf, scr, icl, 386, cmd, ani, adv, theme, msi, rtp, diagcfg, msstyles, bin, hlp, shs, drv, wpx, bat,
rom, msc, lnk, cab, spl, ps1, msu, ics, key, msp, com, sys, diagpkg, nls, diagcab, ico, lock, ocx, mpa, cur,
cpl, mod, hta, exe, ini, icns, prf, dll, bluesky, nomedia, idx)

Directories ($recycle.bin, $windows.~bt, $windows.~ws, boot, windows, windows.old, system volume
information, perflogs, programdata, program files, program files (x86), all users, appdata, tor browser)
Filenames (# decrypt files bluesky #.txt, # decrypt files bluesky #.html, ntuser.dat, iconcache.db,
ntuser.dat.log, bootsect.bak, autorun.inf, bootmgr, ntldr, thumbs.db)

Exception Handling and other features

10/12

The sample implements also some interesting Exception Handling features in order to avoid the system crash.
In detail, before proceeding to the encryption BlueSky checks if after calling CreateFileW the LastErrorValue is
ERROR_SHARING_VIOLATIONif true, the sample calls NtQueryInformatonFile retrieving the
FileProcessIdsUsingFileInformation which contains a list of the PIDs which use the file. If the PID isn’t equal
to itself or the PID of explorer.exe retrieved before, it calls NtQueryInformatonProcess with
ProcessInformationClass set to 29 (ProcessBreakOnTermination) to retrieve a value indicating whether the
process is considered critical. In this case, the malware skips that file and keeps encrypting others.

Figure 13: Checking file availability

 The sample can prevent the system from entering sleep or turning off the display by calling
SetThreadExecutionState to ES_CONTINUOUS

Figure 14: Preventing sleep mode

 At the end of the encryption, the ransom note points to the blog of the attackers:

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ne-wdm-_file_information_class

11/12

Figure 15: BlueSky Ransomware Website

Conclusion

Blusky ransomware is a proof that even nowadays cyber criminals use basic and highly effective social
engineering techniques. When we are looking for a cracked software, we have to know that there is always a
price and in this case it’s a ransomware with a high ransom.

So, it is necessary to sensibilize people to avoid installing cracked software, not only inside the company
perimeter, but also inside the home devices. It is a simple but effective preventive measure to defend against
similar threats.

The attention for emerging threats is one of the core activities of Yoroi and we think that BlueSky needs to be
observed with attention.

Yara Rules

12/12

rule bluesky_ransomware

{

 meta:

 author = "Yoroi Malware ZLab"

 description = "Rule for BlueSky Ransomware"

 last_updated = "2022-09-14"

 tlp = "WHITE"

 category = "informational"

 hash = "9e302bb7d1031c0b2a4ad6ec955e7d2c0ab9c0d18d56132029c4c6198b91384f"

 strings:

 //sub_00407a30

 $1 = {55 8b ec 83 ec ?? 56 e8 ?? ?? ?? ?? 85 c0 0f 84 ?? ?? ?? ?? 0f 10 05 ?? ?? ?? ?? 68 ?? ?? ??
?? 68 ?? ?? ?? ?? 0f 11 4? ?? 68 ?? ?? ?? ?? 0f 10 05 ?? ?? ?? ?? c7 4? ?? ?? ?? ?? ?? c7 4? ?? ?? ??
?? ?? 0f 11 4? ?? e8 ?? ?? ?? ?? 0f 10 4? ?? 83 c4 ?? 8b d0 8d 4? ?? 50 83 ec ?? 8b cc 6a ?? 6a ?? 83
ec ?? 0f 11 01 8b c4 0f 10 4? ?? 0f 11 00 ff d2 85 c0 0f 88 ?? ?? ?? ?? 68 ?? ?? ?? ?? 68 ?? ?? ?? ??
68 ?? ?? ?? ?? e8 ?? ?? ?? ?? 83 c4 ?? 8d 4? ?? 51 ff d0 68 ?? ?? ?? ?? 68 ?? ?? ?? ?? 68 ?? ?? ?? ??
e8 ?? ?? ?? ?? 83 c4 ?? 8d 4? ?? 51 ff d0 68 ?? ?? ?? ?? 68 ?? ?? ?? ?? 68 ?? ?? ?? ?? e8 ?? ?? ?? ??
83 c4 ?? 8d 4d c8 51 ff d0 68 ?? ?? ?? ?? 68 ?? ?? ?? ?? 68 ?? ?? ?? ?? e8 ?? ?? ?? ?? 83 c4 ?? 8d 4?
?? 51 ff d0 0f 10 4? ?? 8b 4? ?? 83 ec ?? 8b c4 83 ec ?? 8b 11 0f 11 00 8b c4 83 ec ?? 0f 10 4? ?? 0f
11 00 8b c4 83 ec ?? 0f 10 4? ?? 0f 11 00 8b c4 0f 10 4? ?? 51 0f 11 00 ff 52 28 68 ?? ?? ?? ?? 68 ??
?? ?? ?? 68 ?? ?? ?? ?? 8b f0 e8 ?? ?? ?? ?? 83 c4 ?? 8d 4? ?? 51 ff d0 68 ?? ?? ?? ?? 68 ?? ?? ?? ??
68 ?? ?? ?? ?? e8 ?? ?? ?? ?? 83 c4 ?? 8d 4? ?? 51 ff d0 68 ?? ?? ?? ?? 68 ?? ?? ?? ?? 68 ?? ?? ?? ??
e8 ?? ?? ?? ?? 83 c4 ?? 8d 4? ?? 51 ff d0 68 ?? ?? ?? ?? 68 ?? ?? ?? ?? 68 ?? ?? ?? ?? e8 ?? ?? ?? ??
83 c4 ?? 8d 4? ?? 51 ff d0 85 f6 78 ?? 8b 4? ?? 8d 5? ?? 52 68 ?? ?? ?? ?? 50 8b 08 ff 5? ?? 85 c0 78
?? 8b 4? ?? 6a ?? ff 7? ?? 8b 08 50 ff 5? ?? 8b 4? ?? 85 c9 74 ?? 8b 01 51 ff 5? ?? 8b 4? ?? 85 c9 74
?? 8b 01 51 ff 50 08 68 ?? ?? ?? ?? 68 ?? ?? ?? ?? 68 ?? ?? ?? ?? e8 ?? ?? ?? ?? 83 c4 ?? ff d0 5e 8b
e5 5d c3}

 condition:

 uint16(0) == 0x5A4D and $1

}

This blog post was authored by Luigi Martire, Carmelo Ragusa of Yoroi Malware ZLAB

