
1/16

Bad VIB(E)s Part One: Investigating Novel Malware Persistence
Within ESXi Hypervisors

mandiant.com/resources/blog/esxi-hypervisors-malware-persistence

As endpoint detection and response (EDR) solutions improve malware detection efficacy on Windows
systems, certain state-sponsored threat actors have shifted to developing and deploying malware on systems
that do not generally support EDR such as network appliances, SAN arrays, and VMware ESXi servers.

Earlier this year, Mandiant identified a novel malware ecosystem impacting VMware ESXi, Linux vCenter
servers, and Windows virtual machines that enables a threat actor to take the following actions:

1. Maintain persistent administrative access to the hypervisor
2. Send commands to the hypervisor that will be routed to the guest VM for execution
3. Transfer files between the ESXi hypervisor and guest machines running beneath it
4. Tamper with logging services on the hypervisor
5. Execute arbitrary commands from one guest VM to another guest VM running on the same hypervisor

This malware ecosystem was initially detected during an intrusion investigation when Mandiant identified
attacker commands sourced from the legitimate VMware Tools process, vmtoolsd.exe , on a Windows
virtual machine hosted on a VMware ESXi hypervisor. Mandiant analyzed the boot profile for the ESXi
hypervisors and identified a never-before-seen technique in which a threat actor leveraged malicious
vSphere Installation Bundles (“VIBs”) to install multiple backdoors on the ESXi hypervisors. We call these
backdoors VIRTUALPITA and VIRTUALPIE (Figure 1).

https://www.mandiant.com/resources/blog/esxi-hypervisors-malware-persistence
https://www.mandiant.com/resources/blog/unc3524-eye-spy-email
https://docs.vmware.com/en/VMware-vSphere/6.7/vsphere-esxi-vcenter-server-672-host-profiles-guide.pdf
https://blogs.vmware.com/vsphere/2011/09/whats-in-a-vib.html

2/16

Figure 1: Visualization of ESXi attack path
It is important to highlight that this is not an external remote code execution vulnerability; the attacker needs
admin-level privileges to the ESXi hypervisor before they can deploy malware. Mandiant has no evidence of
a zero-day vulnerability being used to gain initial access or deploy the malicious VIBs at the time of writing
this post.

Details on how to manually detect if malicious or anomalous VIBs are currently installed in your ESXi
environment are outlined in our hardening blog post. VMware has released additional information on
protecting vSphere.

vSphere Installation Bundles (VIB)

Mandiant identified two (2) new malware families installed through malicious vSphere Installation Bundles
(VIBs), which we have named VIRTUALPITA and VIRTUALPIE.

VMware VIBs are collections of files that are designed to facilitate software distribution and virtual system
management. Since ESXi utilizes an in-memory filesystem, file edits are not saved across reboots. A VIB
package can be used to create startup tasks, custom firewall rules, or deploy custom binaries upon the
restart of an ESXi machine. These packages are generally utilized by administrators to deploy updates and
maintain systems; however, this attacker was seen leveraging the packages as a persistence mechanism to
maintain access across ESXi hypervisors.

VIBs can be broken down into three (3) components:

An XML descriptor file
A “VIB payload” (.vgz archive)
A signature file – A digital signature used to verify the host acceptance level of a VIB

The XML Descriptor File is a config which contains references to the following:

The payload to be installed
VIB metadata, such as the name and install date
The signature file that belongs to the VIB

https://www.mandiant.com/resources/blog/esxi-hypervisors-detection-hardening
https://core.vmware.com/vsphere-esxi-mandiant-malware-persistence

3/16

The VIB payload is a .vgz archive which contains directories and files that will be created on the ESXi
machine through the VIB. These files can then be called on to execute on boot when the VIBs are loaded.

The signature file is used to verify the host acceptance level of a VIB. The acceptance level is the digital
signature system used by VMware to specify what testing has been done by VMware or partners before a
VIB is published. Acceptance levels are set for hosts, image profiles, and individual VIBs. The four (4)
acceptance levels along with their XML Descriptor short names are listed below:

VMWareCertified (certified)
VMwareAccepted (accepted)
PartnerSupported (partner)
CommunitySupported (community)

Per VMware documentation, the default minimum acceptance level a VIB needs to be installed on a ESXi
host is PartnerSupported . This acceptance level indicates the VIBs are published by a partner that
VMware trusts. While this is the default acceptance level, it can be changed manually by an ESXi
administrative account. The command used to install VIBs esxcli software vib install does not
normally allow installations below the minimum acceptance level, but the --force flag can be used to ignore
any systems acceptance level requirements when installing the VIB.

The malicious VIBs observed were labelled as PartnerSupported . Mandiant’s review of the Signature
Files determined they were empty, and that an attacker modified the XML descriptor file to change the
acceptance-level field from community to partner . A CommunitySupported acceptance-level

indicates that the VIB was created by a third party which was not reviewed nor signed by VMware or its
trusted partners. This indicated the attacker masqueraded these VIB files as PartnerSupported even
though they only met the requirements of a CommunitySupported VIB. This also indicated that the VIB was
created by an individual or company outside of VMware partner programs and has not gone through any
VMware-approved testing program. Figure 2 contains an excerpt of the modified XML descriptor file that was
identified.

https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.install.doc/GUID-6ED55C6B-E2FA-4DAB-B98D-E80FE1B8F1D9.html
https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.install.doc/GUID-6ED55C6B-E2FA-4DAB-B98D-E80FE1B8F1D9.html#:~:text=partner%27s%20support%20organization.-,CommunitySupported,-The%20CommunitySupported%20acceptance

4/16

Figure 2: Modified Descriptor XML
While the acceptance-level field was modified in the Descriptor XML by the attacker, the ESXi system
still did not allow for a falsified VIB file to be installed below the minimal set acceptance level. To circumvent
this, the attacker abused the --force flag to install malicious CommunitySupported VIBs.

Testing confirmed that modified fields from the XML descriptor file reflected the changes made in the output
of commands used to list and verify VIBs. This included the modification of the <acceptance-level> field
which tricks the command, esxcli software vib list , into displaying the incorrect acceptance level of
the installed VIBs. The VMware command, esxcli software vib signature verify , verifies the
signatures of installed VIB packages and displays the following fields:

VIB Name
Version
Vendor
Acceptance Level
The result of the VIB’s signature verification

Mandiant confirmed that this command detected when these acceptance levels were falsified, which
identified the malicious VIBs. This command displays the acceptance level specified by the XML descriptor
file, but the Signature Verification column clarifies if the signature file did not match the respective
Descriptor XML. If the signature cannot be verified, the Signature Verification column will contain the
value Signature Not Available: Host may have been upgraded from an older ESXi version . An
example of this can be seen in Figure 3.

5/16

Figure 3: Example of falsified VIB acceptance level being seen in esxcli software vib signature verify

VIRTUALPITA (VMware ESXi)

VIRTUALPITA is a 64-bit passive backdoor that creates a listener on a hardcoded port number on a VMware
ESXi server. The backdoor often utilizes VMware service names and ports to masquerade as a legitimate
service. It supports arbitrary command execution, file upload and download, and the ability to start and stop
vmsyslogd . During arbitrary command execution, the malware also sets the environmental

variable HISTFILE to 0 to further hide activity that occurred on the machine. Variants of this malware were
found to listen on a Virtual Machine Communication Interface (VMCI) and log this activity to the file
sysclog .

VIRTUALPIE (VMware ESXi)

VIRTUALPIE is a lightweight backdoor written in Python that spawns a daemonized IPv6 listener on a
hardcoded port on a VMware ESXi server. It supports arbitrary command line execution, file transfer
capabilities, and reverse shell capabilities. Communications use a custom protocol and are encrypted using
RC4.

The first malicious VIB named lsu-lsi-lsi-mrarpid-plugin referenced the payload lsu_lsi_.v05
(MD5: 2716c60c28cf7f7568f55ac33313468b) which contained the following three (3) files for which details
can be found in Table 1:

/etc/rc.local.d/vmware_local.sh (MD5: bd6e38b6ff85ab02c1a4325e8af29ce4)
/bin/rdt (MD5: 8e80b40b1298f022c7f3a96599806c43)
/bin/vmsyslog.py (MD5: 61ab3f6401d60ec36cd3ac980a8deb75)

Table 1: Lsu-lsi-lsi-mrarpid-plugin Malicious VIB contents

File Name Description

vmware_local.sh A bash installation script to be placed into /etc/rc.local.d/ to ensure its actions
will be executed upon each bootup of ESXi. Uses the esxcli command line utility to
enable a firewall rule for backdoor traffic, execute both backdoors, and remove every
file created by the VIB from the disk.

rdt An ELF backdoor (VIRTUALPITA) that creates a listener on the hard coded TCP port
2233. Capable of arbitrary command execution, file transfer capabilities and the ability
to start/stop vmsyslogd . VMWare documentation recorded this port is normally
utilized by the vSAN reliable datagram transport (RDT) service on the ESXi version
which was reviewed.

https://kb.vmware.com/s/article/52959

6/16

vmsyslog.py A lightweight backdoor (VIRTUALPIE) written in Python that spawns a daemonized
IPv6 listener the hardcoded port 546. Capable of arbitrary command line execution, file
transfer capabilities, and reverse shell capabilities. Communications use a custom
protocol and are encrypted using RC4.

The second malicious VIB named ata-pata-pdc20211 referenced the payload payload1.v00 (MD5:
9ea86dccd5bbde47f8641b62a1eeff07) which contained the following two (2) files for which details can be
found in Table 2:

/etc/rc.local.d/vmware_rhttpio.sh (MD5: 9d5cc1ee99ccb1ec4d20be1cee10173e)
/usr/lib/vmware/weasel/consoleui/rhttpproxy-io (MD5: 2c28ec2d541f555b2838099ca849f965)

Table 2: Lsu-lsi-lsi-mrarpid-plugin Malicious VIB contents

File Name Description

vmware_rhttpio.sh A bash installation script to be placed into /etc/rc.local.d/ to ensure its actions
will be executed upon each bootup of ESXi. This script executes the ELF backdoor

rhttpproxy-io An ELF backdoor (VIRTUALPITA) that creates a listener on the hard coded VMCI
socket port 18098. Capable of arbitrary command execution, file transfer capabilities
and the ability to start/stop vmsyslogd. The following sample generates an additional
log not seen in other samples which fetches the systems context ID (CID).

 The generated log /var/log/sysclog records in the following format
[<date/timestamp>]\n\r[!]<<PID>>:<CID>:<port>\n\n

VIRTUALPITA (LINUX)

Mandiant discovered two (2) additional VIRTUALPITA samples listening on TCP port 7475 that were
persistent as an init.d startup service on Linux vCenter systems. To disguise themselves, the binaries
shared the name of the legitimate binary ksmd . KSMD (Kernel Same-Page Merging Daemon) is normally in
charge of memory-saving de-duplication on Linux and would not be listening on this port. The samples were
found under the following directories:

/usr/libexec/setconf/ksmd (MD5: 744e2a4c1da48869776827d461c2b2ec)
/usr/bin/ksmd (MD5: 93d50025b81d3dbcb2e25d15cae03428)

These backdoors were capable of arbitrary command execution, file transfer capabilities and the ability to
start/stop vmsyslogd.

VIRTUALGATE (Windows)

The Windows guest virtual machines which were hosted by the infected hypervisors also contained a unique
malware sample located at C:\Windows\Temp\avp.exe . This malware, which we refer to as
VIRTUALGATE, is a utility program written in C that is comprised of two (2) parts, a dropper, and the payload.
The memory only dropper deobfuscates a second stage DLL payload that uses VMware's virtual machine
communication interface (VMCI) sockets to run commands on a guest virtual machine from a hypervisor host,
or between guest virtual machines on the same host.

7/16

Command Execution through vmtoolsd.exe

Reviewing the ESXi hypervisors during an active attacker event, Mandiant identified an attacker executed
commands to the guest machines through the process /bin/rdt (VIRTUALPITA). The parent process
/bin/rdt spawned a bash shell which called on a python script specifying the target guest machine and

commands to run as seen in Figure 4.

Figure 4: Commands executed by attacker on ESXi Hypervisor

-> /bin/rdt -i

....-> sh -c /bin/sh

........-> /bin/sh

...........-> python e.py 127.0.0.1 vpxuser <password> <target guest machine>
C:\Windows\system32\cmd.exe /c dir /od /s /a c:\ > C:\Windows\Temp\TS_<REDACTED>.tmp
2>nul

Commands passed as arguments into e.py were also seen being executed by the targeted Windows guest
machine, running as a child process under vmtoolsd.exe . This execution chain can be seen in Figure 5.
The parent binary /bin/rdt was not present on disk but was able to be recovered by dumping the
processes memory of the ESXi hypervisor. The python script that sent out commands to the guest machines,
e.py , was unable to be recovered.

Figure 5: vmtoolsd.exe executing commands passed by ESXi
The commands the attacker ran through vmtoolsd.exe on the guest virtual machines were primarily
focused on the enumeration and compression of files across both the system and connected file shares
utilizing the native tools “dir” and “makecab”. Samples of these redacted commands can be seen in Figure 6.

8/16

Figure 6: File enumeration and compression commands utilized by attacker on Guest Virtual Machines

C:\Windows\system32\cmd.exe" /c dir /od /s /a s:\ > C:\Windows\Temp\ts_<REDACTED>.tmp
2>null

C:\Windows\System32\cmd.exe makecab /F C:\Windows\Temp\TS_<REDACTED>.txt /D
compressiontype=lzx /D compressionmemory=21 /D maxdisksize=1024000000 /D
diskdirectorytemplate=C:\Windows\Temp\ /D cabinetnametemplate=TS_<REDACTED>.cab

Mandiant also identified the attacker targeting a virtualized system for credential harvesting. The attacker
used MiniDump to dump process memory and search for cleartext credentials. Figure 7 shows an excerpt of
these commands.

Figure 7: Credential Dumping on Guest Machine

-- “ C:\Program Files\VMware\Vmware Tools\vmtoolsd.exe”
 ---- “C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe”

 ------ rundll32.exe C:\windows\System32\comsvcs.dll MiniDump <Process ID>
C:\Windows\Temp\TS_<REDACTED>.tmp full

Once the process memory was dumped, a powershell script was used to parse the resultant file for any
cleartext credentials. Figure 8 shows the contents of script used for credential harvesting. The attacker also
targeted KeyPass password database files.

Figure 8: PowerShell Password Search Script

$b = New-Object System.IO.streamReader("C:\windows\Temp\<REDACTED>.tmp",
[Text.Encoding]::UTF8)

$n = 0

while (($b1 =$b.ReadLine()) -ne $null)

{

 if($b1 -like '*&password=*'){

 $n++

 Write-Host "YES $n"

 Write-Host $b1

 }

}

if($n -eq 0){Write-Host "NO!"}

$b.Dispose()

The attacker cleared the C:\Windows\Temp directory following most activity, but small errors were made
which left behind trace artifacts. As shown in Figure 9, the attacker sent the output of a dir listing to a
.tmp file. Since the attacker used the Linux syntax (2>null) to suppress errors instead of the Windows

9/16

syntax (2>nul), all errors were forwarded to the file null in the working directory
C:\Windows\System32\null . This file was only created if a file enumerated with the dir command had a

directory path too long to be displayed.

Figure 9: Failed writing Error to Null in Windows Command

C:\Windows\system32\cmd.exe" /c dir /od /s /a s:\ > C:\Windows\Temp\TS_<REDACTED>.tmp
2>null

Attribution

Mandiant has begun tracking this activity as UNC3886. Given the highly targeted and evasive nature of this
intrusion, we suspect UNC3886 motivation to be cyber espionage related. Additionally, we assess with low
confidence that UNC3886 has a China-nexus. Each investigation conducted by Mandiant includes analysts
from our Advanced Practices team who work to correlate activity observed in the thousands of investigations
to which Mandiant responds. At times, we do not have the data available to directly attribute intrusion activity
to a previously known group. In these cases, we create a new UNC group to track the activity that we
observed. An UNC group is a cluster of related cyber intrusion activity, which includes observable artifacts
such as adversary infrastructure, tools, and tradecraft, that we are not yet ready to give a classification such
as APT or FIN. For more details on how Mandiant uses UNC groups, see our blog post: DebUNCing
Attribution: How Mandiant Tracks Uncategorized Threat Actors.

Conclusion

While we noted the technique used by UNC3886 requires a deeper level of understanding of the ESXi
operating system and VMWare’s virtualization platform, we anticipate a variety of other threat actors will use
the information outlined in this research to begin building out similar capabilities. Mandiant recommends
organizations using ESXi and the VMware infrastructure suite follow the hardening steps outlined in this blog
post to minimize the attack surface of ESXi hosts.

MITRE ATT&CK Techniques

Collection

T1560: Archive Collected Data
T1560.001: Archive via Utility

Execution

T1059: Command and Scripting Interpreter
T1059.001: PowerShell
T1059.003: Windows Command Shell
T1059.004: Unix Shell
T1059.006: Python
T1129: Shared Modules

Command and Control

T1105: Ingress Tool Transfer
T1573.001: Symmetric Cryptography

https://www.mandiant.com/resources/blog/how-mandiant-tracks-uncategorized-threat-actors
https://www.mandiant.com/resources/blog/esxi-hypervisors-detection-hardening

10/16

Defense Evasion

T1027: Obfuscated Files or Information
T1070: Indicator Removal on Host
T1070.003: Clear Command History
T1070.004: File Deletion
T1140: Deobfuscate/Decode Files or Information
T1202: Indirect Command Execution
T1218.011: Rundll32
T1497: Virtualization/Sandbox Evasion
T1497.001: System Checks
T1620: Reflective Code Loading

Discovery

T1016: System Network Configuration Discovery
T1083: File and Directory Discovery

Lateral Movement

T1021: Remote Services
T1021.004: SSH

Credential Access

T1003: OS Credential Dumping
T1003.001: LSASS Memory

Persistence

T1547: Boot or Logon Autostart Execution

Indicators of Compromise

Type Value Description

MD5

SHA1

SHA256

2716c60c28cf7f7568f55ac33313468b

5ffa6d539a4d7bf5aacc4d32e198cc1607d4a522

2be5f4520846bf493b4694789841907d058fe08d59fff6bad7abe1db8ed96e7d

Malicious VIB
.vgz Payload

MD5

SHA1

SHA256

bd6e38b6ff85ab02c1a4325e8af29ce4

17fb90d01403cb3d1566c91560f8f4b7dd139aa8

e68872c49aaedeb3bde3ff5fd2ad6f70658687dc02d04f12ebc7cb28e821cc88

Malicious VIB
Deployment
Script

11/16

MD5

SHA1

SHA256

8e80b40b1298f022c7f3a96599806c43

e9cbac1f64587ce1dc5b92cde9637affb3b58577

c2ef08af063f6d416233a4b2b2e991c177fc72d70a76c24bca9080521d41040f

VIRTUALPITA

MD5

SHA1

SHA256

61ab3f6401d60ec36cd3ac980a8deb75

93d5c4ebec2aa45dcbd6ddbaad5d80614af82f84

4cf3e0b60e880e6a6ba9f45187ac5454813ae8c2031966d8b264ae0d1e15e70d

VIRTUALPIE

MD5

SHA1

SHA256

9ea86dccd5bbde47f8641b62a1eeff07

b90b19781fde2c35963eb3eac4ce2acc6f5019fb

23eb8d056f18e7c69ec3568f2833c9d09e91df98d11b11de235331ef42756fe5

Malicious VIB
Payload

MD5

SHA1

SHA256

9d5cc1ee99ccb1ec4d20be1cee10173e

9d191849d6c57bc8a052ec3dac2aa9f57c3fe0cd

4d995eb87b0685124b7f1640d1ab431f5a1ab991ade02750b876ed5c523234bb

Malicious VIB
Deployment
Script

MD5

SHA1

SHA256

2c28ec2d541f555b2838099ca849f965

e35733db8061b57b8fcdb83ab51a90d0a8ba618c

505eb3b90cd107cf7e2c20189889afdff813b2fbb98bbdeab65cde520893b168

VIRTUALPITA

MD5

SHA1

SHA256

744e2a4c1da48869776827d461c2b2ec

a3cc666e0764e856e65275bd4f32a56d76e51420

4a6f559426493abc0d056665f23457e2779abd3482434623e1f61f4cd5b41843

VIRTUALPITA

MD5

SHA1

SHA256

93d50025b81d3dbcb2e25d15cae03428

abff003edf67e77667f56bbcfc391e2175cb0f8a

13f11c81331bdce711139f985e6c525915a72dc5443fbbfe99c8ec1dd7ad2209

VIRTUALPITA

MD5

SHA1

SHA256

fe34b7c071d96dac498b72a4a07cb246

0962e10dc34256c6b31509a5ced498f8f6a3d6b6

5731d988781c9a1d2941f7333615f6292fb359f6d48498f32c29878b5bedf00f

VIRTUALPITA

Descriptor
XML
Name

lsu-lsi-lsi-mrarpid-plugin VIB Name

12/16

Filename lsu_lsi_.v05 VIB .vgz
payload

Fullpath /etc/rc.local.d/vmware_local.sh VIB
Deployment
Script

Fullpath /bin/rdt VIRTUALPITA

Fullpath /bin/vmsyslog.py

Descriptor
XML
Name

ata-pata-pdc20211 VIB Name

Filename payload1.v00 VIB .vgz
payload

Fullpath /etc/rc.local.d/vmware_rhttpio.sh VIB
Deployment
Script

Fullpath /usr/lib/vmware/weasel/consoleui/rhttpproxy-io VIRTUALPITA

Fullpath /usr/libexec/setconf/ksmd VIRTUALPITA
(Linux)

Fullpath /usr/bin/ksmd VIRTUALPITA
(Linux)

Fullpath C:\Windows\Temp\avp.exe VIRTUALGATE

Fullpath
and Hash
(MD5)

C:\Windows\Temp\Silverlight\wmpd.exe
 76df41ee75d5077f2c5bec70747b3c99

Deleted File
created by
vmtoolsd.exe
and executed
by
vmtoolsd.exe
child process

Yara Detections

13/16

rule M_APT_VIRTUALPITA_1

{

 meta:

 author = "Mandiant"

 md5 = "fe34b7c071d96dac498b72a4a07cb246"

 description = "Finds opcodes to set a port to bind on 2233, encompassing
the setsockopt(), htons(), and bind() from 40973d to 409791 in
fe34b7c071d96dac498b72a4a07cb246"

 strings:

 $x = {8b ?? ?? 4? b8 04 00 00 00 [0 - 4] ba 02 00 00 00 be 01 00 00 00 [0
- 2] e8 ?? ?? ?? ?? 89 4? ?? 83 7? ?? 00 79 [0 - 50] ba 10 00 00 00 [0 - 10] e8}

 condition:

 uint32(0) == 0x464c457f and all of them

}

rule M_APT_VIRTUALPITA_2

{

 meta:

 author = "Mandiant"

 md5 = "fe34b7c071d96dac498b72a4a07cb246"

 description = "Finds opcodes to decode and parse the recieved data in the
socket buffer in fe34b7c071d96dac498b72a4a07cb246. Opcodes from 401a36 to 401adc"

 strings:

 $x = {85 c0 74 ?? c7 05 ?? ?? ?? ?? fb ff ff ff c7 8? ?? ?? ?? ?? 00 00 00
00 e9 ?? ?? ?? ?? 4? 8b 05 ?? ?? ?? ?? 4? 83 c0 01 4? 89 05 ?? ?? ?? ?? c7 4? ?? 00 00
00 00 e9 ?? ?? ?? ?? 8b 4? ?? 4? 98 4? 8d 9? ?? ?? ?? ?? 4? 8d ?? e0 4? 8b 0? 4? 89 0?
4? 8b 4? ?? 4? 89 4? ?? 8b 4? ?? 4? 98 4? 8d b? ?? ?? ?? ?? b? ?? ?? ?? ?? e8 ?? ?? ??
?? c7 4? ?? 00 00 00 00 eb ?? 8b 4? ?? 8b 4? ?? 01 c1 8b 4? ?? 03 4? ?? 4? 98 0f b6 9?
?? ?? ?? ?? 8b 4? ?? 4? 98 0f b6 8? ?? ?? ?? ?? 31 c2 4? 63 c1 88 9? ?? ?? ?? ?? 83 4?
?? 01}

 condition:

 uint32(0) == 0x464c457f and all of them

}

14/16

rule M_APT_VIRTUALPITA_3

{

 meta:

 author = "Mandiant"

 md5 = "fe34b7c071d96dac498b72a4a07cb246"

 description = "Finds opcodes from 409dd8 to 409e46 in
fe34b7c071d96dac498b72a4a07cb246 to set the HISTFILE environment variable to 'F' with a
putenv() after loading each character individually."

 strings:

 $x = {4? 8b 4? ?? c6 00 48 4? 8b 4? ?? 4? 83 c0 05 c6 00 49 4? 8b 4? ?? 4?
83 c0 01 c6 00 49 4? 8b 4? ?? 4? 83 c0 06 c6 00 4c 4? 8b 4? ?? 4? 83 c0 02 c6 00 53 4?
8b 4? ?? 4? 83 c0 07 c6 00 45 4? 8b 4? ?? 4? 83 c0 03 c6 00 54 4? 8b 4? ?? 4? 83 c0 08
c6 00 3d 4? 8b 4? ?? 4? 83 c0 04 c6 00 46 4? 8b 4? ?? 4? 83 c0 09 c6 00 00 4? 8b 7? ??
e8}

 condition:

 uint32(0) == 0x464c457f and all of them

}

rule M_APT_VIRTUALPITA_4

{

 meta:

 author = "Mandiant"

 md5 = "fe34b7c071d96dac498b72a4a07cb246"

 description = "Finds opcodes from 401f1c to 401f4f in
fe34b7c071d96dac498b72a4a07cb246 to decode text with multiple XORs"

 strings:

 $x = {4? 8b 4? ?? 4? 83 c1 30 4? 8b 4? ?? 4? 8b 10 8b 4? ?? 4? 98 4? 8b 04
?? ?? ?? ?? ?? 4? 31 c2 4? 8b 4? ?? 4? 83 c0 28 4? 8b 00 4? c1 e8 10 0f b6 c0 4? 98 4?
8b 04}

 condition:

 uint32(0) == 0x464c457f and all of them

}

15/16

rule M_Hunting_Script_LaunchAndDelete_1

{

 meta:

 author = "Mandiant"

 md5 = "bd6e38b6ff85ab02c1a4325e8af29ce4"

 description = "Finds scripts that launch and then delete files,
indicative of cleaning up tracks and remaining in-memory only."

 strings:

 $ss = /setsid[^\n\r]{,250}-i[\r\n]{,5}rm/

 condition:

 all of them

}

rule M_Hunting_Python_Backdoor_CommandParser_1

{

 meta:

author = "Mandiant"

 md5 = "61ab3f6401d60ec36cd3ac980a8deb75"

 description = "Finds strings indicative of the vmsyslog.py python
backdoor."

 strings:

 $key1 = "readInt8()" ascii wide

 $key2 = "upload" ascii wide

 $key3 = "download" ascii wide

 $key4 = "shell" ascii wide

 $key5 = "execute" ascii wide

 $re1 = /def\srun.{,20}command\s?=\s?self\.conn\.readInt8\(\).{,75}upload.
{,75}download.{,75}shell.{,75}execute/s

 condition:

 filesize < 200KB and all of them

}

Acknowledgements

Special thanks to Brad Slaybaugh, Joshua Kim, Zachary Smith, Kirstie Failey, Nick Simonian, and Charles
Carmakal for their assistance with the investigation, technical review, and creating detections for the malware
families discussed in this blog post. In addition, we would also like to thank VMware for their collaboration on

16/16

this research.

