
1/13

September 28, 2022

Investigating Web Shells
blog.gigamon.com/2022/09/28/investigating-web-shells/

Threat Research / September 28, 2022

 Pavle Culum Roman

Kroshinsky
A web shell is an internet-accessible malicious file implanted in a victim web server’s file
system that enables an attacker to execute commands by visiting a web page. Once placed
on a compromised web server, it allows an attacker to perform remote command execution
to the operating system running on the host machine. The web shell provides the attacker
with a form of persistence in the compromised system and the potential to further pivot
through the network to compromise hosts and data that may not otherwise be externally
accessible.

Success of a targeted cyber attack is often directly related to the efficacy of the initial access
to the victim’s environment and how well it can be leveraged. Threat groups who establish
their initial access through the exploitation of a web application vulnerability often opt to use
web shells to further facilitate their ability to operate efficiently within the context of the
foothold system.

In this article, we will look at common web shell functionality, encryption, and obfuscation
techniques, as well as several web shell management frameworks. Next, we will explore
detection and investigation opportunities, followed by an example of reversing the
obfuscation or encryption scheme of an example web shell. Finally, we will discuss proactive
infrastructure protection measures that reduce the likelihood of successful web shell activity
against managed systems.

Web Shell Functionality

Many web application programming languages implement functions such as exec() ,
eval() , system() , and os() , or process strings as syntax with special characters

(such as “`”, or backtick, in the case of PHP) that can be used to execute system commands.

https://blog.gigamon.com/2022/09/28/investigating-web-shells/
https://blog.gigamon.com/category/threat-research/
https://blog.gigamon.com/author/pavleculum/
https://blog.gigamon.com/author/romankroshinsky/

2/13

In cyber attacks, threat groups abuse this functionality by smuggling these default functions
and commands via web shells, allowing for remote tasking and code execution. The scope
and breadth of code execution are arbitrary and only limited by the capabilities of the
underlying victim server operating system shell.

Some of the common post-installation reconnaissance commands that attackers initially use
include:

whoami

netstat

ip route or route print
ls –latr or dir
uname –a or systeminfo
ifconfig or ipconfig

This set of commands allows the attackers to get their bearings within the victim system and
understand what kind of privileges are available from the perspective of the compromised
server. Additionally, attackers gain the ability to discover what applications and data reside
on the local file system and perform additional reconnaissance to determine their next action
in relation to escalating access or moving laterally to another host.

Figure 1. Simple PHP web shell example.

Figure 2. Simple ASPX web shell example.

Figure 3. Simple JSP web shell example.
While attackers may opt to upload new files to the compromised web servers to enable web
shell functionality, they may also append web shell functionality and code to an existing
resource hosted on the server. An attacker may prefer this action to avoid raising potential
suspicion in the event that file creation events are monitored.

Complicating matters further, an attacker may identify a web application parameter that is
already being used as input inside of one of these risky default functions (a web form or an
interactive application), thereby facilitating web shell functionality without requiring the
attacker to upload a backdoor to the victim server. While this approach has the downside of

https://blog.gigamon.com/wp-content/uploads/2022/09/Figure-1-Simple-PHP-Web-shell-example-V2.png
https://blog.gigamon.com/wp-content/uploads/2022/09/Figure-2-Simple-ASPX-Web-shell-Example-v2.png
https://blog.gigamon.com/wp-content/uploads/2022/09/Figure-3-Simple-JSP-web-shell-example-v2.png

3/13

having the remote tasking input and output flowing across the network without any
obfuscation (allowing for potential detection by monitoring services), this capability would be
used briefly to graduate remote access to a more covert method.

Web shell behavior is highly dependent on the configuration of the compromised web
service. Rather than opening a new service on the network, like a traditional bind implant
(which would be relatively simple to detect and alert on), web shells most often use the
preexisting HTTP(S) service already hosted on the victim system to facilitate backdoor
access. For example, if the web service is hosted on HTTP 80/TCP, the web shell will be
accessible via HTTP 80/TCP. However, if the web service is hosted on HTTPS 443/TCP, the
web shell will also use 443/TCP and inherit any existing SSL/TLS configuration, including
using the legitimate victim web application SSL/TLS certificate and all associated metadata
for connections flowing to the web shell. This is one of the reasons why web shells have the
potential to go undetected for a longer duration compared to other types of implants. They
are simply buried too deep in the daily HTTP noise.

To avoid detection, threat actors rely on obfuscation techniques which are commonly chained
together in order to hide the true functionality of the web shell. These techniques are often
used in combination and include, but are not limited to:

String rotations
Array segmentation
Hex encoding
Base64 encoding
Compression
Whitespace removal

Many web shells observed in the wild also encrypt the remote command input and output
through hard-coded pre-shared keys. While code obfuscation or encryption isn’t a new
concept in the context of cyber attacks, it introduces an additional layer of challenge when it
comes to detecting and investigating web shell implants.

Web Shell Management Frameworks

The desire to enhance and automate tradecraft has led to development of various fully
featured web shell management frameworks alongside continuous improvements and
automation functionality. Table 1 lists some of the publicly available web shell management
frameworks which have been used in the more recent events.

Web Shell Framework Source

AntSword https://github.com/AntSwordProject/antSword

4/13

Behinder https://github.com/rebeyond/Behinder

Godzilla https://github.com/BeichenDream/Godzilla

Table 1. Public web shell management frameworks.

While some frameworks are relatively simple scripts, others come with a myriad of
functionality, ease-of-use elements, and modular capabilities. This makes web shells
extremely potent as a threat vector and provides attackers with a multitude of options during
their attack.

The figures below demonstrate sample HTTP requests and responses for web shell
interactions using these frameworks:

5/13

Figure 4. Godzilla web shell POST request and response. (Click image for larger size.)

https://blog.gigamon.com/wp-content/uploads/2022/09/Figure-4-Godzilla-web-shell-POST-request-v2-e1664220736998.png

6/13

Figure 5. Behinder web shell POST request. (Click image for larger size.)

Figure 6. Behinder web shell server response. (Click for larger size.)

https://blog.gigamon.com/wp-content/uploads/2022/09/Figure-5-Behinder-web-shell-POST-request-V5.png
https://blog.gigamon.com/wp-content/uploads/2022/09/Figure-6-Behinder-web-shell-server-response-v5.png

7/13

Figure 7. AntSword web shell POST request and response. (Click image for larger size.)
If the attack objective requires access to other systems beyond the compromised web
server, the attacker can use the web shell to relay subsequent interactions to other systems
of interest. To increase the pace of killchain execution, an attacker may use the web shell to
establish SOCKS tunneling capabilities that can facilitate subsequent access to specific
networked applications and resources internal to the organization.

Detection and Investigation

In previous sections, we discussed how input provided during an HTTP client request can
contain malicious instructions. Therefore, a key element of network-based web shell
detection is to identify the presence of operating system commands associated with
administrative/situational awareness operations within the contents of inbound web traffic
flows.

There are several inherent challenges in detecting and investigating web shells that analysts
should be aware of. The heavy use of layered obfuscation techniques can evade static
signature-based detections with relative ease while also making it challenging for the
analysts to perform manual analysis on PCAPs and web logs. Additionally, web shells are
passive implants and don’t require regular “keep-alives” with the C2 infrastructure, further
avoiding pattern-based detection mechanisms.

To increase probability and confidence in web shell detection efforts, analysts should look for
a combination of potentially suspicious sets of events relating to inbound HTTP(S) flows. For
example, tracking access attempts to specific web pages without valid referrers or historic
precedents, unique or never-before-seen user agents, or anomalous GET/POST requests
flowing to a web server without a corresponding set of prior activity.

Web shell detection techniques greatly benefit from statistical and anomaly-based analytics.
To enable this effort, an organization must first gain comprehensive visibility into web traffic
patterns and build a baseline of aggregated network traffic flows. In this case specifically,
HTTP traffic and associated telemetry is key to detecting anomalies which could potentially

https://blog.gigamon.com/wp-content/uploads/2022/09/Figure-7-AntSword-web-shell-POST-request-V5.png

8/13

correspond to web shell interaction by comparing expected inputs (baseline data) versus
abuse of dynamic content on a web application. When used in conjunction with an
understanding of adversary techniques and operations, powerful, intelligence-informed
models can flag potential web shell activity in victim networks.

Another approach involves tracking each unique URI observed within inbound flows, the
theory being that if a web shell were to be planted onto an external facing asset into a net-
new file, interaction with the web shell would transit using an endpoint or URI that had not
previously existed and would be visited by less than a handful of source IP addresses over a
set period of time. On the other hand, in cases where the attacker opts to implant web shell
functionality to an existing file, the focus of the analysis should be on validating the contents
of the existing files and cross referencing them against URI traffic patterns to those
resources. Analysts can also pivot on any identified source IP addresses associated with
access to a previously unknown URI to determine if subsequent traffic remains limited to the
suspected web shell URI or if there are other requests to legitimate pages on the destination
server or other servers on the perimeter.

Web Shell Deobfuscation

When investigating suspected web shell implants and network traffic, analysts benefit from
rapidly testing decryption schemes with the aid of tools such as Cyberchef. The following is
an example of analysis of the default Behinder web shell template. Behinder web shell
accepts attacker input from HTTP POST requests. Attacker input is shaped by the Behinder
client to be a valid class written in the syntax of the target web server, in this case PHP.

https://gchq.github.io/CyberChef/

9/13

Figure

8. Behinder web shell sample. (Click image for larger size.)
To recover attacker instructions from network traffic requires recovery of the hardcoded pre-
shared key from the web shell script. In this case, the default AES key supplied by the
source code is “ e45e329feb5d925b ” (first 16 characters of the MD5 hash of the
“ rebeyond ” string). The contents are base64 encoded before being AES encrypted, so the
string must be decoded prior to the encryption key being used:

https://blog.gigamon.com/wp-content/uploads/2022/09/Figure-8-Behinder-web-shell-sample-v5.png

10/13

Figure 9. Decoding and decrypting the obfuscated string. (Click image for larger size.)
Deobfuscating the string reveals the arbitrary instructions passed to the server as a PHP
class. Operator instructions to the web shell are encoded inside of the $cmd parameter:

Figure 10. Contents of the deobfuscated function. (Click image for larger size.)
The value of the cmd parameter is base64 decoded before being evaluated. In the case of
our example, the command “ Y2QgL3Zhci93d3cvaHRtbC87d2hvYW1p ” decodes to cd
/var/www/html/;whoami:

https://blog.gigamon.com/wp-content/uploads/2022/09/Figure-9-Decoding-and-decrypting-the-obfuscated-string-v5.png
https://blog.gigamon.com/wp-content/uploads/2022/09/Figure-10-Contents-of-the-deobfuscated-function-V5.png

11/13

Figure 11. Decoded system command. (Click image for larger size.)
While obfuscation techniques can mask the contents of a script, in cases where TLS is not
being used, the query responses from the server will be displayed in plain text via the web
logs and PCAPs. To remain stealthy under these conditions, attackers opt to also encrypt
their web shell responses using the same hardcoded pre-shared key. Successfully
deobfuscating the script explains what the script is capable of. However, obtaining the pre-
shared key can be further used to understand what input was issued and what output was
produced from a compromised asset. This information can be leveraged in the event that a
packet capture or HTTP application content logs of the event are generated and made
available to the analysts.

Proactive Infrastructure Protection

In terms of web server hardening, there are a few measures that can be taken to limit the
functionality of potentially implanted web shells. Web applications should avoid using
dangerous operations and methods including, but not limited to: exec() , eval() , or
os() , especially when processing user-provided input, such as form fields or cookies.

Robust input validation and sanitization best practices, such as OWASP Proactive Control
C5: Validate all Inputs, should be followed and implemented during the software
development life cycle (SDLC), as well as validated periodically through recurring application
security testing.

Investigating potential and detecting actual web shell activity requires maturity within the
security organization, including, but not limited to, timely access to:

An up-to-date, accurate hardware inventory
An up-to-date, accurate software inventory
Network traffic flow logs for traffic to and from any zone that hosts web applications and
services
Web server logs

https://blog.gigamon.com/wp-content/uploads/2022/09/Figure-11-Decoded-system-command-v5.png
https://github.com/OWASP/www-project-proactive-controls/blob/master/v3/OWASP_Top_10_Proactive_Controls_V3.pdf
https://www.cisecurity.org/controls/inventory-and-control-of-enterprise-assets
https://www.cisecurity.org/controls/inventory-and-control-of-software-assets

12/13

Retention of web server logs for future analysis can especially be valuable in cases where
the deployed network or security stack lacks SSL visibility.

Due to the polymorphic nature of web shell scripts, blocking based on known-bad
hashes/strings may be of limited effectiveness. Individual organizations may benefit more
from deploying and baselining high-risk assets, including web servers, with file integrity
monitoring (FIM) solutions.

Conclusion

Once an adversary achieves initial access to a web server, deploying one or multiple web
shells has been observed to be a common next step in the attack lifecycle. Organizations
can gain insight into potential web shell activity by analyzing highly available NetFlow data.
The network profile of client interaction with a web server when searching for an attack
vector is distinct from interaction with a web shell that has been successfully operationalized.
These network profiles can be observed within network metadata regardless of the
obfuscation and encryption schemes used by the attacker.

Combining these investigative techniques alongside proactively employing infrastructure
hardening measures, organizations can detect and eliminate web shell attacks in their
earliest stages.

Featured Webinars

Hear from our experts on the latest trends and best practices to optimize your network
visibility and analysis.

CONTINUE THE DISCUSSION

People are talking about this in the Gigamon Community’s
ThreatINSIGHT group.

Share your thoughts today

NDR Resource

RELATED CONTENT

REPORT

2022 Ransomware Defense Report

https://www.gigamon.com/resources/resource-library/webinar-hub.html?intcid=blog
https://community.gigamon.com/gigamoncp/s/group/0F95Y000000NtoTSAS/threatinsight
https://blog.gigamon.com/tag/ndr-resource/

13/13

GET YOUR COPY

WEBINAR

ThreatINSIGHT: Eliminating Adversaries’ Dwell Time Advantage

WATCH ON DEMAND

WEBINAR

SANS 2022 Cloud Security Survey

WATCH ON DEMAND

REPORT

Gigamon ThreatINSIGHT Guided-SaaS Network Detection and Response

GET YOUR COPY

OLDER ARTICLE

Modern IT Architectures: Moving Beyond Network Visibility

NEWER ARTICLE

Definitive Guide to Hybrid Clouds, Chapter 1: Navigating the Hybrid Cloud Journey

https://blog.gigamon.com/2022/09/22/modern-it-architectures-moving-beyond-network-visibility/
https://blog.gigamon.com/2022/09/30/definitive-guide-to-hybrid-clouds-chapter-1-navigating-the-hybrid-cloud-journey/

