
1/62

A technical analysis of Pegasus for Android – Part 2
cybergeeks.tech/a-technical-analysis-of-pegasus-for-android-part-2/

Summary

Pegasus is a spyware developed by the NSO group that was repeatedly analyzed by
Amnesty International and CitizenLab. In this article, we dissect the Android version that was
initially analyzed by Lookout in this paper, and we recommend reading it along with this post.
During our research about Pegasus for Android, we’ve found out that vendors wrongly
attributed some undocumented APK files to Pegasus, as highlighted by a researcher here.
We’ve splitted the analysis into 3 parts because of the code’s complexity and length. We’ve
also tried to keep the sections name proposed by Lookout whenever it was possible so that
anybody could follow the two approaches more easily. In this second part, we’re presenting
the HTTP communication with the C2 server, the commands received via SMS that were
implemented by the spyware, the live audio surveillance functionality, and the keylogging
activity. You can consult the first part of the Pegasus analysis here.

Analyst: @GeeksCyber

Technical analysis

SHA256: ade8bef0ac29fa363fc9afd958af0074478aef650adeb0318517b48bd996d5d5

Communication Methods

1. HTTP Communication

The agent constructs the following URL that contains the C2 server, which can be extracted
from the initial configuration or a command sent via SMS:

Figure 1
The malware adds “SessionId1” and “SessionId2” to the HTTP headers:

https://cybergeeks.tech/a-technical-analysis-of-pegasus-for-android-part-2/
https://www.amnesty.org/en/latest/research/2021/07/forensic-methodology-report-how-to-catch-nso-groups-pegasus/
https://citizenlab.ca/2020/12/the-great-ipwn-journalists-hacked-with-suspected-nso-group-imessage-zero-click-exploit/
https://info.lookout.com/rs/051-ESQ-475/images/lookout-pegasus-android-technical-analysis.pdf
https://twitter.com/maldr0id/status/1492520053702602755
https://cybergeeks.tech/a-technical-analysis-of-pegasus-for-android-part-1/
https://twitter.com/GeeksCyber

2/62

Figure 2
Figure 3 reveals the following values:

SessionId1 = f, which is the token stored on the phone

SessionId2 = c, which is the AES key used to encrypt the files exfiltrated to the C2
server

b – AES key that is used to encrypt the SessionId1 and SessionId2 fields

a – AES IV that is used during the encryption of the SessionId1 and SessionId2 fields

3/62

Figure 3
The implementation of the AES algorithm is displayed in the figure below.

4/62

Figure 4
The template of the HTTP request is displayed in figure 5:

5/62

Figure 5
The HTTP response should be an XML file containing at least the following fields:
“response”, “code”, and “message”. The application parses the XML response by overriding
the startElement, endElement, and characters methods:

6/62

Figure 6
The agent verifies if the XML response contains the following main commands: “dumpCmd”,
“upgrade”, “camCmd”, and “emailAttCmd” (those were described in part 1). In the case of the
“upgrade” command, the threat actor must specify the URL to download the package from
and others parameters (see figure 7).

https://cybergeeks.tech/a-technical-analysis-of-pegasus-for-android-part-1/

7/62

Figure 7
The implementation of the overriding functions is shown below:

8/62

9/62

Figure 8 Figure 9

10/62

Figure 10
2. SMS/MMS/WAP

As in the case of the iOS version, the package can receive commands in SMS messages
that are disguised as Google authentication codes. It searches for “your google verification
code” in the message and extracts the index of the “s=” parameter:

Figure

11
The malware computes the MD5 hash of the Token + SMS[0, index+2), which is truncated to
8 bytes and compares it with SMS[index+2, final] in order to verify the authenticity of the
command:

11/62

Figure

12
The command structure is “text:[6 digits][Command number]a=[Ack ID]&[Command
Arguments]&s=<Message Signature>” and the following regular expression is used to parse
it: “.*[:]\d{6}(\d)[\n]?(.*)”.

The following function is utilized to extract the fields from the command and to add it to a
commands queue:

12/62

Figure 13
The agent verifies if the phone is Roaming via a function call to isNetworkRoaming:

13/62

Figure 14
If the device is Roaming and the “romingSetted” config value is disabled (0), the application
can’t accept commands via HTTP, SMS, and MQTT:

Figure 15
The commands received via SMS will be described in the following paragraphs (numbers in
range 0-8).

Command 0

The first command is “KILL” and can be used to perform self deletion on the phone:

14/62

Figure 16
The process sets the intent action to “KILL”, retrieves a PendingIntent that will perform a
broadcast, and schedules an alarm, as displayed below.

15/62

Figure 17
The application creates a HandlerThread that will perform the necessary operations:

Figure 18

The getSubscriberId function is used to obtain the unique subscriber ID, and the deletion
operation continues. A detailed explanation regarding this operation can be found in the 1st
part of the Pegasus analysis – Suicide functionality section.

Figure 19

https://cybergeeks.tech/a-technical-analysis-of-pegasus-for-android-part-1/

16/62

Figure 20
Command 1

This command is used to send a “Ping” message via SMS or HTTP. Depending on the value
received in the parameters (“0” or “1”), the spyware chooses between the two
communication channels:

Figure 21
The Ack ID received in the command and a counter value will be part of the SMS message
that is sent:

Figure 22
The process logs the phone number to send messages to, the Ack ID, and the counter. It
computes the time after the last network communication with C2 in seconds:

17/62

Figure 23
In the case of HTTP communication, the agent creates a Handler object and calls the
postDelayed function with a delay of 5 seconds:

Figure 24

The malware creates an XmlSerializer object that will be encrypted using the AES algorithm
and then sent to a C2 server via HTTP. Finally, it checks if the data was successfully sent:

18/62

Figure 25
Command 2

In this case, the process tries to compute the index of “&” in the arguments. The resulting two
values will be used to modify the “adrate” and “adlocation” configuration options:

Figure 26
For example, if the “adrate” value is set to 0 then the malware stops the location monitoring
functionality. However, if the “adlocation” value is 0 or “adrate” < “adlocation” then the
malware starts the functionality:

19/62

Figure 27
When stopping the location monitoring functionality, the process sets the intent action to
“finishLocationMonitor” and calls the cancel method:

20/62

Figure 28
The getSystemService function is utilized to retrieve a handle to the location service. The
agent receives data about the location from the network and passive providers (see figure
29).

Figure 29
Command 3

The process configures the following config options:

“WindowTargetSms” – SMS number used in the outbound communication

21/62

“Skypi” – Phone number used to trigger the live audio surveillance functionality

“NetworkWindowAddresess”

Figure 30
The entire list of config options that can be set using this command is presented at the end of
the Lookout’s paper.

Command 4

The application obtains the index of “&” in the arguments and creates two values
representing the camera snapshot number and time, as shown in figure 31.

https://info.lookout.com/rs/051-ESQ-475/images/lookout-pegasus-android-technical-analysis.pdf

22/62

Figure 31
The snapshot source type and the phone camera resolution are logged using the Log.i
method:

23/62

Figure 32
The agent tries to take a snapshot of the screen using a binary called
“/system/bin/screencap”. The photo is saved at “/data/data/com.network.android/bqul4.dat”.
A deep dive into the screenshot functionality can be found in the 1st part of the Pegasus
analysis.

https://cybergeeks.tech/a-technical-analysis-of-pegasus-for-android-part-1/

24/62

Figure 33
Command 5

In this case, the malware specifies a file or a directory listing to be exfiltrated. This
information can be transmitted in the “f=” and “p=” parameters:

25/62

Figure 34
The process changes permissions to 777 for the targeted file using the “superuser binary”. It
verifies the existence of the file by calling the File.exists method and expects a non-empty
file:

26/62

Figure 35

The application creates a directory called “/data/data/com.network.android/chnkr/” using the
File.mkdirs function. The targeted file is copied to the newly created folder, and the malware
broadcasts the “new_chunker_file_event” intent to all BroadcastReceivers in order to
exfiltrate data:

27/62

Figure 36
Command 6

This command prepares the phone to accept an audio surveillance call that will be detailed in
the “Live Audio Surveillance” section.

28/62

Figure 37
Command 7

The package enables the call recording functionality by setting the “window canada” config
value to true:

29/62

Figure 38
Command 8

The agent extracts the configured C2 servers and sends a request to one of them in order to
ask for new commands, as shown in the figure below.

Figure 39
It sets the intent action to “httpPing”, the intent data to “PING: <Current time in
milliseconds>”, retrieves a PendingIntent that will perform a broadcast, and schedules an
alarm:

30/62

Figure 40

Figure 41
Outbound SMS

The malware logs the message “MO sendSmsMO Ping SMS MO Start to number: ” +
WindowTargetSms, which is the phone number used in the outbound communication:

31/62

Figure 42
The agent extracts the following information: the current location of the device, the numeric
name (MCC+MNC) of the registered operator, the GSM cell ID, the GSM location area code,
the IMEI and IMSI of the device (see figure 43).

32/62

Figure 43
The application obtains the unique subscriber ID that is validated based on its length:

33/62

Figure 44

SmsManager.getDefault is utilized to retrieve the SmsManager. The process creates two
Intents with the “SMS_SENT” and “SMS_DELIVERED” parameters and then broadcasts
them via a call to getBroadcast. Finally, the SMS containing the information extracted above
is sent using sentTextMessage:

Figure 45
The getResultCode method is used to verify if the message was successfully sent. If that’s
not the case, the SMS is re-sent in 1 minute:

34/62

Figure 46
The application logs the number of times it re-sent the SMS using the Log.i method:

Figure 47
Live Audio Surveillance

The threat actor can enable this functionality only when multiple conditions are met at the
same time. The functionality can be activated when the phone receives a call from the
attacker’s number, and it will allow capturing the audio via the device’s microphone.

The first condition to be met is that the phone’s screen is OFF, which is verified using a
variable that should be false. The malware verifies if the screen is ON or OFF by calling the
isScreenOn method. The configuration option called “Skypi” should be not null:

35/62

Figure 48

Figure 49 Figure

50
The process makes sure that the user didn’t cancel the previous live surveillance operation,
as displayed in the figure below.

36/62

Figure 51
The phone should be in the idle state, and the phone’s screen should be locked. The
inKeyguardRestrictedInputMode function is used to verify the last condition:

37/62

Figure 52 Figure 53

Figure 54
The configuration option called “forwarding” indicates whether call forwarding is enabled on
the phone. This feature should be disabled for the functionality to work:

38/62

Figure 55

39/62

Figure

56
The agent extracts the value of the “STAY_ON_WHILE_PLUGGED_IN” constant. It expects
the device to stay off even if it’s charging:

Figure 57
The microphone should not be in use for the functionality to work:

40/62

Figure 58

41/62

42/62

Figure 59
isWiredHeadsetOn is utilized to confirm that a wired headset is not connected to the phone:

Figure 60
isBluetoothA2dpOn is utilized to confirm that a Bluetooth A2DP audio peripheral is not
connected to the phone:

43/62

Figure 61
The spyware doesn’t expect communications to use Bluetooth SCO at the time of the audio
surveillance. It calls the isBluetoothScoOn method for this purpose:

44/62

Figure 62
The music should not be active during the time of the operation, as highlighted below:

45/62

Figure 63
The final condition that must be met is that either the phone is not Roaming or the
functionality was configured by the TA to be performed even if the device is Roaming:

46/62

Figure 64

Figure 65

47/62

Now we’ll describe the functionality after all of the above conditions are met.

Audio recording

The application creates a MediaRecorder object that can be used to record audio and video:

Figure 66
The agent sets the audio mode to 2 (MODE_IN_CALL – a call is established), calls the
setStreamSolo function with a True parameter, sets the audio source to be used depending
on the phone’s build model, sets the format of the output file to 2 (MPEG4 media file format),
and sets the audio encoder to 1 (AMR_NB – narrowband audio codec):

48/62

Figure 67

Figure 68

49/62

The directory “/data/data/com.network.android/network_cache/” is created by the spyware:

Figure 69

The output file is “/data/data/com.network.android/network_cache/cache1.dat<Integer>”, and
the recording is started by calling the prepare and start functions:

Figure 70

The audio files can be exfiltrated by incorporating them into XML files, as displayed in the
figure below.

50/62

Figure 71
Phone Calls

The following columns can be extracted from the Call logs: “number”, “type”, “date”,
“duration”, “_id”, and “logtype” (see figure 72).

51/62

Figure 72

52/62

The agent implements a different functionality for calls coming from these two numbers:
“*762646466” and “*7626464633”. If the phone receives a call from the first number/second
number, then the “romingSetted” configuration option is set to true/false. This option controls
how the phone communicates with the C2 server (via SMS, HTTP, MQTT) when it’s
Roaming:

Figure 73

53/62

Figure 74
Keylogging

As we’ve already seen, the spyware logs relevant messages regarding the activities
performed:

Figure 75

The malware expects to find the “superuser binary” called “/system/csk” on the device:

54/62

Figure 76
The files containing the keystrokes will be stored in the “/data/local/tmp/ktmu” folder. The
content of these files will be exfiltrated using XmlSerializer objects with specific tags:

55/62

Figure 77

56/62

Figure 77

Figure 78
The application tries to identify the process ID of the keyboard process:

Figure 79
It extracts the process ID for the input method service that is currently selected from the
“default_input_method” value. The getRunningAppProcesses function is utilized to obtain a
list of running processes on the phone, and then the spyware extracts the process ID and
name of the keyboard process:

57/62

Figure 80

58/62

Figure 81
The libk binary found in the “/res/raw” directory is copied to a new file called
“/data/local/tmp/libuml.so”. The shared object is injected (using the addk binary) in the
keyboard process identified above and will be responsible for the keylogging activity:

59/62

Figure 82
The captured keystrokes will be stored in a file called “/data/local/tmp/ktmu/ulmndd.tmp”, as
shown in figure 83.

60/62

Figure 83
The agent stores the bitwise NOT of every keystroke in the file using the fwrite instruction:

61/62

Figure

84
The temporary file storing the captured keystrokes is renamed as
“/data/local/tmp/ktmu/finidk.<current timestamp>”. The current timestamp is obtained using
the time syscall:

62/62

Figure 85

