DcDcrypt Ransomware Decryptor

%7 labs.k7computing.com/index.php/dcdcrypt-ransomware-decryptor/

By Gaurav Yadav September 26, 2022
i
(&
\\\////

We at K7 Labs came across DcDcrypt ransomware sample, that had infected a user
machine and encrypted all user files. Usually the chances of getting back the encrypted
files in such a scenario is 0, given the level of sophistication involved in the encryption.
Also paying up the ransomware does not guarantee the files be decrypted as “promised” in
the ransomware note. Usually the ransom notes and the encrypted are only left behind in a
victimized system, the ransomware sample usually gets self-deleted. This case wasn’t so,
the ransomware binary was available and naturally we had a closer look at it. Turns out we
were able to decrypt the user files after having looked at the malware. The malware and
the decryptor would be henceforth discussed.

Analysing Ransomware

This is a basic ransomware written in C#. It encrypts the user files and writes a ransom
note in every directory. It does not delete backups, does not create persistence,does not
even self-delete(like we mentioned earlier).

Upon execution, this ransomware first checks for a file named “ID.cl”. If the file is not
present in the same directory, it creates the file and writes a randomly generated ID (used
as Victim ID in this case) into it and also stores the ID for further use in a variable named
userlD. If the ID.cl file is already present in the same directory it will read and store the
content (ID) into the same variable userlD as shown in Figure 1.

1/12

https://labs.k7computing.com/index.php/dcdcrypt-ransomware-decryptor/

Reading and storing the content of
ID.cl file in variakle userIDif the file
arl: exists.

Randomly generating userIDand
storing it if the file does not exists.

writing userIDin the file ID.cl after
creating it

utility.Write{™\nUserID = " +
Figure 1: Creating a userlD for the victim
This ransomware then asks the user to write yes and press enter to continue the
encryption through the command line. Once obliged before the start of the encryption the
ransomware first uses the userlD and a hardcoded salt to create a password. It uses the

method GetHashCode of passwordHasher class which is then stored in a variable
named password as shown in Figure 2.

userID and salt being sent to GetHashCode method to
generdte a password for further use

Figue 2: Generating a assword
GetHashCode method just adds the userlD and salt and sends it to another method called
Hasher which will create a Sha512 hash of the added userID and salt. Then the sha512
hash is converted into base64 as shown in Figure 3. The resultant value is stored in the
variable named password of the class CoreEncrypter.

2/12

Hasher method generating
Sha512 hash and encoding it in

asher(password)

eProvider sha512Crm

GetHashCode method

adding userID and salt
+ salt;| and sendng it to method
2); Hasher

password,

?gure 3: GetHashCode and Hasher method
After generating the password, the ransomware starts encrypting the contents of the
current directory as shown in Figure 4. Enc method takes the current directory path as an
argument and starts encrypting the files within, traversing all the folders inside the current
directory. This ransomware does not encrypt anything other than the contents of the
current directory it has been run from.

(passwordHasher.GetHashCode(Program.userID, Program.sal

Enc method is
responsible
for file encryption

Figure 4: Enc method being called with the current directory path as argument

The Enc method contains two “for” loops, Figure 4: Enc method being called with the
current directory path as argumentone to traverse the sub-directories within the current
directory using recursive call to Enc method and the other one to encrypt the files of the
current directory. Before encrypting the file, it first checks if the file name contains any of
the following strings:

e "[Enc] which is present in the extension of the encrypted file.

o ‘hta’ which is the extension of ransom note,’ID.cl’ is the userlD file that ransomware
creates in the beginning.

» 'desktop.ini’ is a configuration file.

e ‘Encrypter.exe’ is the name of ransomware.

If any one of these strings is present in the filename then the ransomware won'’t encrypt
that file. Check Figure 5 for details.

3/12

<pir) For Loop 1: To check the file name and encrypt
" the file if file name fits the criteria

(sDir))

O
(sDir})

For Loop 2: To tranverse the
direcotories inside current
directory and send the files
for encryption to Enc
method

Figure 5: Implementation of Enc method

EncryptFile contains the encryption routine which is being called in the For loop 1 with the
filename as an argument as shown in Figure 5. Let’s analyse this method so that we can
figure out how the encryption is done.

As we can see in Figure 6 EncryptFile method uses Rfc2898DeriveBytes to generate
bytes using a password (generated previously using userlD and salt) and a salt which can
later be used to derive the key and IV(Initialization Vector) for the encryption algorithm.
This ransomware uses Rijndael as encryption algorithm which is the predecessor of AES
algorithm, at default block size (128 bytes) and in cbc mode it works like AES itself.

Microsoft declared this algorithm as obsolete and suggests using AES instead.

4/12

https://learn.microsoft.com/en-us/dotnet/api/system.security.cryptography.rijndaelmanaged?view=net-6.0

password and salt being
sent to Rfc2898DeriveBytes

Key and IV being

_> derived from

Rfc2898DeriveBytes

(file) +
(file) +

(File) + "\\"

Creating a .hta
file and writing
ransomnote in it

Figure 6: Encryption routine and ransom note

The password that is generated using userlD and hardcoded salt remains the same for the
same userlD (check Figure 2 for reference) and since the password is the same, the key
and IV generated using Rfc2898DeriveBytes also remains the same for the same userlD.
Rijndael is a symmetric algorithm so the Key-IV pair used for encryption can be used for
decryption also.

After initialising all the variables related to encryption, it writes a ransom note in the current
directory. Then the ransomware checks for the file size. If it is less than 1000000 bytes, it
will create a new file with the same name + encryption extension and then encrypt the
original file and put the encrypted content in new file and deletes the original file but if it is
larger than the mentioned size it will just XOR the 1st byte of the file with 255 and renames
the file with original name + encryption extension, where the encryption extension is .[Enc]
[dc.dcrypt@cyberfear.com And dc.dcrypt@mailfence.com (send both) ATTACK ID =
%userlD% Telegram ID = @decryptionsupport1].

5/12

creating file stream for new file
and cryptostream for encryption
+
filestrea m(path, File
cryptoStream = am(fileStr

num;

writing encrypted
bytes to new file

filestream
(file,

XORing 1st byte of large files

6/12

= R

IunnelBear Encrypter.exe

- |

Recycle Bin

N7

Oracle VM

VirtualBox B ChUsersy, \Desktop\Encrypter.exe

New -» UserID

Foxit/Reader

LogMeln
Rescueil

Process
Hacker Z.In...

lafcObd5eb:
And dedcr.s

bintextiexes
And dedcr.

Figure 9: Ransomware execution

What happened to my files?
Your files have been decrypted by me ;)
for more information send your Attack ID to the folowing Email
Emall 1 = de.deryplicyberfear.com
Email 2 = de.derypti@mailfence.com
Telegram ID = @decryptionsupport1

trxerkZend Email To both Addreggt e

Do not try to kill the ransomware in any way
Do not install ant antivirus it,s a joke ;)
Do not try to open Encrypted file
Do not trust anybody for decryption
Fallure to do 0 may result in the destruction of your information forever
When the timer expires, your data will be Kill
Attack |D also Writed to and of each file
before pay you can send us up to 3 test file

for free decryption (less than 5 MB)

Remember your files should not be database or archive files

***DO NOT PAY ANY MONEY
BEFORE DECRYPTING TEST
FILE***

Your Attack ID = 713587Q3S6T7Y9Z
Figure 10: Ransom Note
Decryptor Internals

As we already know the ransomware generates a password using userID that it created
randomly and a hardcoded salt, since every infected user have a unique userID and we
know it will be stored in a file called ID.cl so in our decryptor, instead of creating the userlD
we would instead read ID.cl file to get the userID and use the same method for generating
the password (GetHashCode in Figure 3) as ransomware did to generate the password.

"*K7 Labs Standalone Decryptor for DC.Crypt Ransomware****", ConsoleColor. ¥s
utility.l z I : Place ID.cl file in the same directory as K7_DcDecryptor ", ConsoleColor. }s
utility.Write(" want to continue decryption (Y/N)", ConsoleColor. ¥s

:E; (flag) Reading ID.cl file to get the userID

bool flag2 = ckIDFile():
if (flag2)
{

ram.userID _ _ + "\\ID.cl");

Program.co crypter new CoreDecrypter(passwordHasher.GetHashCode(Program.userID, Program.sal
uwtility.Write(™ ...", ConsoleColor. ¥:

foreach (DriveInfo driveInfo in drives)

=
=
o

Sending userID an}salt to generate password
= ConsoleColor. ;
{"Scanning Drive {@} for encrypted file", driwveInfo. s
. = ConsoleColor. 3
ool isReady = driveInfo. 3

Figure 11: Generating password with userlD

After that this tool would scan all the drives for any encrypted files, all the encrypted files
have .[Enc] in their extension hence identifying the encrypted file wouldn’t be too hard.

(DriveInfo driveInfo drives)—— Traversing all the drives

file™, driveInfo.

Sending Drive path to search for
ancryptad fila if the Drive is active

(Current Directory))

= ConsoleColor.

(file_name);

Checking file name for .[Enc] and sending it for decryption

Since the ransomware used built-in classes and methods provided by .Net for encrypting
the files (RijndaelManaged) we can use the same for decrypting the files. We will generate
the Key and IV same way ransomware generated with the password using
Rfc2898DeriveBytes.

9/12

Generating Key and IV same woy ransomware did

()s

rijndaelManaged.

startIndex
filename

Figure 14: Initialising Key and IV for decryption
In order to decrypt the file size is checked if less than 1000000 bytes then the tool would
proceed to decrypt it. Ransomware uses rijndaelManaged.CreateEncryptor to create
encryption stream in the same manner we can use rijndaelManaged.CreateDecryptor to
create thedecryption stream it would use the Key-IV generated before for decryption.

Creating filestream for new file
and Cryptostream for decryption

yptoStream = Mana daelManaged. , rijndaelManaged.IV),
pt

Writing decrypted
bytes to new file
and renaming
encrypted file as
.[backup]

3
tFileName) ;

Figure 15: Decrypting file

After decryption, we will write the decrypted bytes into a new file and keep the encrypted
file as .[backup] in case the file is not decrypted correctly. For files above 1000000 bytes
we will XOR the 1st byte with 255 again to get the original byte and rename the file as the
original name (without encryption extension).

10/12

pDSitiDn = filest
num = fileStream.R
tileStream. s sition, Se

fileStream. W i) Ynum} ;

fileStream.Close();

(file, new_filename};
ption ex4)

ConsoleColor.
)i

ConsoleColor.

W C\Userst Deskt /L il m Share View
- > decrypt
& Dewnloads - MName

% Documents BOOTNXT
=] Pictures | BOOTNKT [backup]

| FORUM Viewer
FORUM Viewer.Ink.[backup]
InstallUtilinstallLog
InstallLtil.InstallLog.[backup]

=| Punch service start stop
Punch service start stop.cml [backup]

(%] serviceSmin
serviceSmin,bat [backup]

Figure 17: Decryption Tool

We at K7 Labs provide detection for the DcDcrypt ransomware and all the latest threats.
Users are advised to use a reliable security product such as “K7 Total Security” and
keep it up-to-date to safeguard their devices.

Indicators of Compromise (IOCs)

Filename Hash Detection Name

Encrypterexe 1A5C50172527D4F867951FF73AB09EDS Trojan(0001140e1)

References

11/12

https://docs.microsoft.com/en-us/archive/blogs/shawnfa/the-differences-between-rijndael-
and-aes

https://docs.microsoft.com/en-

12/12

https://docs.microsoft.com/en-us/archive/blogs/shawnfa/the-differences-between-rijndael-and-aes
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.rijndaelmanaged?view=net-6.0

