
1/29

September 22, 2022

Raspberry Robin’s Roshtyak: A Little Lesson in Trickery
decoded.avast.io/janvojtesek/raspberry-robins-roshtyak-a-little-lesson-in-trickery/

by Jan VojtěšekSeptember 22, 202246 min read

There are various tricks malware authors use to make malware analysts’ jobs more difficult.
These tricks include obfuscation techniques to complicate reverse engineering, anti-
sandbox techniques to evade sandboxes, packing to bypass static detection, and more.
Countless deceptive tricks used by various malware strains in-the-wild have been
documented over the years. However, few of these tricks are implemented in a typical piece
of malware, despite the many available tricks.

The subject of this blog post, a backdoor we dubbed Roshtyak, is not your typical piece of
malware. Roshtyak is full of tricks. Some are well-known, and some we have never seen
before. From a technical perspective, the lengths Roshtyak takes to protect itself are
extremely interesting. Roshtyak belongs to one of the best-protected malware strains we
have ever seen. We hope by publishing our research and analysis of the malware and its
protection tricks we will help fellow researchers recognize and respond to similar tricks, and
harden their analysis environments, making them more resistant to the evasion techniques
described.

Roshtyak is the DLL backdoor used by Raspberry Robin, a worm spreading through
infected removable drives. Raspberry Robin is extremely prevalent. We protected over
550K of our users from the worm this year. Due to its high prevalence, it should be no
surprise that we aren’t the only ones taking note of Raspberry Robin.

Red Canary’s researchers published the first analysis of Raspberry Robin in May 2022. In
June, Symantec published a report describing a mining/clipboard hijacking operation, which
reportedly made the cybercriminals at least $1.7 million. Symantec did not link the malicious
operation to Raspberry Robin. Nevertheless, we assess with high confidence that what they
analyzed was Raspberry Robin. This assessment is based on C&C overlaps, strong
malware similarity, and coinfections observed in our telemetry. Cybereason, Microsoft, and
Cisco published further reports in July/August 2022. Microsoft reported that Raspberry

https://decoded.avast.io/janvojtesek/raspberry-robins-roshtyak-a-little-lesson-in-trickery/
https://decoded.avast.io/author/janvojtesek/
https://anti-reversing.com/Downloads/Anti-Reversing/The_Ultimate_Anti-Reversing_Reference.pdf
https://evasions.checkpoint.com/
https://redcanary.com/blog/raspberry-robin/
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/clipminer-bitcoin-mining-hijacking
https://www.cybereason.com/blog/threat-alert-raspberry-robin-worm-abuses-windows-installer-and-qnap-devices
https://www.microsoft.com/security/blog/2022/05/09/ransomware-as-a-service-understanding-the-cybercrime-gig-economy-and-how-to-protect-yourself/#DEV-0206-DEV-0243
https://blogs.cisco.com/security/raspberry-robin-highly-evasive-worm-spreads-over-external-disks

2/29

Robin infections led to DEV-0243 (a.k.a Evil Corp) pre-ransomware behavior. We could not
confirm this connection using our telemetry. Still, we find it reasonable to believe that the
miner payload is not the only way Raspberry Robin infections are being monetized. Other
recent reports also hint at a possible connection between Raspberry Robin and Evil Corp.

A map showing the number of users Avast protected from Raspberry Robin
There are many unknowns about Raspberry Robin, despite so many published reports.
What are the ultimate objectives behind the malware? Who is responsible for Raspberry
Robin? How did it become so prevalent? Unfortunately, we do not have answers to all these
questions. However, we can answer an important question we saw asked multiple times:
What functionality is hidden inside the heavily obfuscated DLL (or Roshtyak as we call it)?
To answer this question, we fully reverse engineered a Roshtyak sample, and present our
analysis results in this blog post.

Overview

Roshtyak is packed in as many as 14 protective layers, each heavily obfuscated and
serving a specific purpose. Some artifacts suggest the layers were originally PE files but
were transformed into custom encrypted structures that only the previous layers know how
to decrypt and load. Numerous anti-debugger, anti-sandbox, anti-VM, and anti-emulator
checks are sprinkled throughout the layers. If one of these checks successfully detects an
analysis environment, one of four actions are taken.

https://securityintelligence.com/posts/raspberry-robin-worm-dridex-malware/
https://twitter.com/DTCERT/status/1565664874633564162
https://decoded.avast.io/wp-content/uploads/sites/2/2022/09/map_8060_Roshtyak_31_2022-01-01%E2%80%942022-08-31.png
https://www.virustotal.com/gui/file/1073d38346b39fb3d92f4cd814ea13d32ecf5b16c07c87560802343bd1605dfd

3/29

1. The malware calls TerminateProcess on itself to avoid exhibiting any further
malicious behavior and to keep the subsequent layers encrypted.

2. Roshtyak crashes on purpose. This has the same effect as terminating itself, but it
might not be immediately clear if the crash was intentional or because of a bug thanks
to Roshtyak’s obfuscated nature.

3. The malware enters an infinite loop on purpose. Since the loop itself is located in
obfuscated code and spans thousands of instructions, it might be hard to determine if
the loop is doing something useful or not.

4. The most interesting case is when the malware reacts to a successful check by
unpacking and loading a fake payload. This happens in the eighth layer, which is
loaded with dozens of anti-analysis checks. The result of each of these checks is used
to modify the value of a global variable. There are two payloads encrypted in the data
section of the eighth layer: the real ninth layer and a fake payload. The real ninth layer
will get decrypted only if the global variable matches the expected value after all the
checks have been performed. If at least one check succeeded in detecting an analysis
environment, the global variable’s value will differ from the expected value, causing
Roshtyak to unpack and execute the fake payload instead.

4/29

Roshtyak’s obfuscation causes even relatively simple functions to grow into large
proportions. This necessitates some custom deobfuscation tooling if one wants to reverse
engineer it within a reasonable timeframe.
The fake payload is a BroAssist (a.k.a BrowserAssistant) adware sample. We believe this
fake payload was intended to mislead malware analysts into thinking the sample is less
interesting than it really is. When a reverse engineer focuses on quickly unpacking a
sample, it might look like the whole sample is “just” an obfuscated piece of adware (and a
very old one at that), which could cause the analyst to lose interest in digging deeper. And
indeed, it turns out that these fake payload shenanigans can be very effective. As can be
seen on the screenshot below, it fooled at least one researcher, who misattributed the
Raspberry Robin worm, because of the fake BrowserAssistant payload.

https://decoded.avast.io/wp-content/uploads/sites/2/2022/09/cfg2.png
https://www.virustotal.com/gui/file/b74d7ff45768a1ee6f267e895de3e46cca505edf205563ef3f7db827f38363b3

5/29

A security researcher misattributing Raspberry Robin because of the fake payload. This is
not to pick on anyone, we just want to show how easy it is to make a mistake like this given
Roshtyak’s trickery and complexity.

The Bag of Tricks

For the sake of keeping this blog post (sort of) short and to the point, let’s get straight into
detailing some of the more interesting evasion techniques employed by Roshtyak.

Segment registers

Early in the execution, Roshtyak prefers to use checks that do not require calling any
imported functions. If one of these checks is successful, the sample can quietly exit without
generating any suspicious API calls. Below is an example where Roshtyak checks the
behavior of the gs segment register. The check is designed to be stealthy and the
surrounding garbage instructions make it easy to overlook.

https://decoded.avast.io/wp-content/uploads/sites/2/2022/09/vt.png

6/29

A stealthy detection of single-stepping. Only the

underscored instructions are useful.
The first idea behind this check is to detect single-stepping. Before the above snippet, the
value of cx was initialized to 2 . After the pop ecx instruction, Roshtyak checks if cx
is still equal to 2 . This would be the expected behavior because this value should
propagate through the stack and the gs register under normal circumstances. However, a
single step event would reset the value of the gs selector, which would result in a different
value getting popped into ecx at the end.

But there is more to this check. As a side effect of the two push/pop pairs above, the value
of gs is temporarily changed to 2 . After this check, Roshtyak enters a loop, counting the
number of iterations until the value of gs is no longer 2 . The gs selector is also reset
after a thread context switch, so the loop essentially counts the number of iterations until a
context switch happens. Roshtyak repeats this procedure multiple times, averages out the
result, and checks that it belongs to a sensible range for a bare metal execution
environment. If the sample runs under a hypervisor or in an emulator, the average number
of iterations might fall outside of this range, which allows Roshtyak to detect undesirable
execution environments.

Roshtyak also checks that the value of the cs segment register is either 0x1b or 0x23 .
Here, 0x1b is the expected value when running on native x86 Windows, while 0x23 is
the expected value under WoW64.

https://decoded.avast.io/wp-content/uploads/sites/2/2022/09/gs.png

7/29

APC injection through a random ntdll gadget

Roshtyak performs some of its functionality from separate processes. For example, when it
communicates with its C&C server, it spawns a new innocent-looking process like
regsvr32.exe . Using shared sections, it injects its comms module into the address space

of the new process. The injected module is executed via APC injection, using
NtQueueApcThreadEx .

Interestingly, the ApcRoutine argument (which marks the target routine to be scheduled
for execution) does not point to the entry point of the injected module. Instead, it points to a
seemingly random address inside ntdll . Taking a closer look, we see this address was
not chosen randomly but that Roshtyak scanned the code section of ntdll for pop r32;
ret gadgets (excluding pop esp , because pivoting the stack would be undesirable) and
picked one at random to use as the ApcRoutine .

A random pop r32; ret gadget used as the entry point for APC injection
Looking at the calling convention for the ApcRoutine reveals what’s going on. The pop
instruction makes the stack pointer point to the SystemArgument1 parameter of
NtQueueApcThreadEx and so the ret instruction effectively jumps to wherever
SystemArgument1 is pointing. This means that by abusing this gadget, Roshtyak can treat
SystemArgument1 as the entry point for the purpose of APC injection. This obfuscates the

https://decoded.avast.io/wp-content/uploads/sites/2/2022/09/pop_ret.png

8/29

control flow and makes the NtQueueApcThreadEx call look more legitimate. If someone
hooks this function and inspects the ApcRoutine argument, the fact that it is pointing into
the ntdll code section might be enough to convince them that the call is not malicious.

Checking read/write performance on write-combined memory

In this next check, Roshtyak allocates a large memory buffer with the
PAGE_WRITECOMBINE flag. This flag is supposed to modify cache behavior to optimize
sequential write performance (at the expense of read performance and possibly memory
ordering). Roshtyak uses this to detect if it’s running on a physical machine. It conducts an
experiment where it first writes to the allocated buffer and then reads from the allocated
buffer, all while measuring the read/write performance using a separate thread as a counter.
This experiment is repeated 32 times and the check is passed only if write performance was
at least six times higher than read performance most of the times. If the check fails,
Roshtyak intentionally selects a wrong RC4 key, which results in failing to properly decrypt
the next layer.

Hiding shellcode from plain sight

The injected shellcode is interestingly hidden, too. When Roshtyak prepares for code
injection, it first creates a large section and maps it into the current process as
PAGE_READWRITE . Then, it fills the section with random data and places the shellcode at a

random offset within the random data. Since the shellcode is just a relatively small loader
followed by random-looking packed data, the whole section looks like random data.

A histogram of the bytes inside the shared section. Note that it looks almost random, the
most suspicious sign is the slight overrepresentation of null bytes.

https://docs.microsoft.com/en-us/windows/win32/memory/memory-protection-constants#:~:text=the%20CreateFileMapping%20function.-,PAGE_WRITECOMBINE,-0x400
https://decoded.avast.io/wp-content/uploads/sites/2/2022/09/injected_section_histogram.png

9/29

The section is then unmapped from the current process and mapped into the target
process, where it is executed using the above-described APC injection technique. The
random data was added in an attempt to conceal the existence of the shellcode. Judging
only from the memory dump of the target process, it might look like the section is full of
random data and does not contain any valid executable code. Even if one suspects actual
valid code somewhere in the middle of the section, it will not be easy to find its exact
location.

The start of the shellcode

within the shared section. It might be hard to pinpoint the exact start address because it
unconventionally starts on an odd bt instruction.

Ret2Kernel32

Roshtyak makes a point of cleaning up after itself. Whenever a certain string or piece of
memory is no longer needed, Roshtyak wipes and/or frees it in an attempt to destroy as
much evidence as possible. The same holds for Roshtyak’s layers. Whenever one layer
finishes its job, it frees itself before passing execution onto the next layer. However, the
layer cannot just simply free itself directly. The whole process would crash if it called
VirtualFree on the region of memory it’s currently executing from.

Roshtyak, therefore, frees the layer through a ROP chain executed during layer transitions
to avoid this problem. When a layer is about to exit, it constructs a ROP chain on the stack
and returns into it. An example of such a ROP chain can be seen below. This chain starts
by returning into VirtualFree and UnmapViewOfFile to release the previous layer’s
memory. Then, it returns into the next layer. The return address from the next layer is set to
RtlExitUserThread , to safeguard execution.

https://decoded.avast.io/wp-content/uploads/sites/2/2022/09/shellcode_start.png

10/29

A simple ROP chain consisting of VirtualFree -> UnmapViewOfFile -> next layer ->
RtlExitUserThread

MulDiv bug

MulDiv is a function exported by kernel32.dll , which takes three signed 32-bit integers
as arguments. It multiplies the first two arguments, divides the multiplication result by the
third argument, and returns the final result rounded to the nearest integer. While this might
seem like a simple enough function, there’s an ancient sign extension bug in Microsoft’s
implementation. This bug is sort of considered a feature now and might never get fixed.

Roshtyak is aware of the bug and tests for its presence by calling MulDiv(1,
0x80000000, 0x80000000) . On real Windows machines, this triggers the bug and
MulDiv erroneously returns 2 , even though the correct return value should be 1 ,

because (1 * -2147483648) / -2147483648 = 1 . This allows Roshtyak to detect
emulators that do not replicate the bug. For example, this successfully detects Wine, which,
funnily enough, contains a different bug, which makes the above call return 0 .

Tampering with return addresses stored on the stack

There are also tricks designed to obfuscate function calls. As shown in the previous section,
Roshtyak likes to call functions using the ret instruction. This next trick is similar in that it
also manipulates the stack so a ret instruction can be used to jump to the desired
address.

To achieve this, Roshtyak scans the current thread’s stack for pointers into the code section
of one of the previous layers (unlike the other layers, this one was not freed using the ROP
chain technique). It replaces all these pointers with the address it wants to call. Then it lets
the code return multiple times until a ret instruction encounters one of the hijacked
pointers, redirecting the execution to the desired address.

Exception-based checks

Additionally, Roshtyak contains checks that set up a custom vectored exception handler
and intentionally trigger various exceptions to ensure they all get handled as expected.

https://decoded.avast.io/wp-content/uploads/sites/2/2022/09/rop_chain.png
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-muldiv
https://devblogs.microsoft.com/oldnewthing/20120514-00/?p=7633
https://www.winehq.org/

11/29

Roshtyak sets up a vectored exception handler using
RtlAddVectoredExceptionHandler . This handler contains custom handlers for selected

exception codes. A top-level exception handler is also registered using
SetUnhandledExceptionFilter . This handler should not be called in the targeted

execution environments (none of the intentionally triggered exceptions should fall through
the vectored exception handler). So this top-level handler just contains a single call to
TerminateProcess . Interestingly, Roshtyak also uses ZwSetInformationProcess to

set SEM_FAILCRITICALERRORS using the ProcessDefaultHardErrorMode class. This
ensures that even if the exception somehow is passed all the way to the default exception
handler, Windows would not show the standard error message box, which could alert the
victim that something suspicious is going on.

When everything is set up, Roshtyak begins generating exceptions. The first exception is
generated by a popf instruction, directly followed by a cpuid instruction (shown below).
The value popped by the popf instruction was crafted to set the trap flag, which should, in
turn, raise a single-step exception. On a physical machine, the exception would trigger right
after the cpuid instruction. Then, the custom vectored exception handler would take over
and move the instruction pointer away from the C7 B2 opcodes, which mark an invalid
instruction. However, under many hypervisors, the single-step exception would not be
raised. This is because the cpuid instruction forces a VM exit, which might delay the
effect of the trap flag. If that is the case, the processor will raise an illegal instruction
exception when trying to execute the invalid opcodes. If the vectored exception handler
encounters such an exception, it knows that it is running under a hypervisor. A variation of
this technique is described thoroughly in a blog post by Palo Alto Networks. Please refer to
it for more details.

https://unit42.paloaltonetworks.com/single-bit-trap-flag-intel-cpu/

12/29

The

exception-based check using popf and cpuid to detect hypervisors
Another exception is generated using the two-byte int 3 instruction (CD 03). This
instruction is followed by garbage opcodes. The int 3 here raises a breakpoint
exception, which is handled by the vectored exception handler. The vectored exception
handler doesn’t really do anything to handle the exception, which is interesting. This is
because by default, when Windows handles the two-byte int 3 instruction, it will leave
the instruction pointer in between the two instruction bytes, pointing to the 03 byte. When
disassembled from this 03 byte, the garbage opcodes suddenly start making sense. We
believe this is a check against some overeager debuggers, which could “fix” the instruction
pointer to point after the 03 byte.

Moreover, the vectored exception handler checks the thread’s CONTEXT and makes sure
that registers Dr0 through Dr3 are empty. If they are not, the process is being debugged
using hardware breakpoints. While this check is relatively common in malware, the
CONTEXT is usually obtained using a call to a function like GetThreadContext . Here, the

malware authors took advantage of CONTEXT being passed as an argument to the
exception handler, so they did not need to call any additional API functions.

Large executable mappings

This next check is interesting mostly because we are not sure what it’s really supposed to
check (in other words, we’d be happy to hear your theories!). It starts with Roshtyak
creating a large PAGE_EXECUTE_READWRITE mapping of size 0x386F000 . Then it maps
this mapping nine times into its own address space. After this, it memsets the mapping to
0x42 (opcode for inc edx), except for the last six bytes, which are filled with four inc
ecx instructions and jmp dword ptr [ecx] (see below). Next, it puts the nine base

https://decoded.avast.io/wp-content/uploads/sites/2/2022/09/popf_cpuid.png

13/29

addresses of the mapped views into an array, followed by an address of a single ret
instruction. Finally, it points ecx into this array and calls the first mapped view, which
results in all the mapped views being called sequentially until the final ret instruction.
After the return, Roshtyak validates that edx got incremented exactly 0x1FBE6FCA times
(9 * (0x386F000 - 6)).

The

end of the large mapped section. The jmp dword ptr [ecx] instruction is supposed to
jump to the start of the next mapped view.
Our best guess is that this is yet another anti-emulator check. For example, in some
emulators, mapped sections might not be fully implemented, so the instructions written into
one instance of the mapped view might not propagate to the other eight instances. Another
theory is the check could be done to request large amounts of memory that emulators might
fail to provide. After all, the combined size of all the views is almost half of the standard 32-
bit user mode address space.

Detecting process suspension

This trick abuses an undocumented thread creation flag in NtCreateThreadEx to detect
when Roshtyak’s main process gets externally suspended (which could mean that a
debugger got attached). This flag essentially allows a thread to keep running even when
PsSuspendProcess gets called. This is coupled with another trick abusing the fact that the

thread suspend counter is a signed 8-bit value, which means that it maxes out at 127.
Roshtyak spawns two threads, one of which keeps suspending the other one until the
suspend counter limit is reached. After this, the first thread keeps periodically suspending
the other one and checking if the call to NtSuspendThread keeps failing with
STATUS_SUSPEND_COUNT_EXCEEDED . If it does not, the thread must have been externally

https://decoded.avast.io/wp-content/uploads/sites/2/2022/09/large_mappings.png

14/29

suspended and resumed (which would leave the suspend counter at 126, so the next call to
NtSuspendThread would succeed). Not getting this error code would be suspicious

enough for Roshtyak to quit using TerminateProcess . This entire technique is described
in more detail in a blog post by Secret Club. We believe that’s where the authors of
Roshtyak got this trick from. It’s also worth mentioning Roshtyak uses this technique only on
Windows builds 18323 (19H1) and later because the undocumented thread creation flag
was not implemented on prior builds.

Indirect registry writes

Roshtyak performs many suspicious registry operations, for example, setting up the
RunOnce key for persistence. Since modifications to such keys are likely to be monitored,

Roshtyak attempts to circumvent the monitoring. It first generates a random registry key
name and temporarily renames the RunOnce key to the random name using
ZwRenameKey . Once renamed, Roshtyak adds a new persistence entry to the temporary

key before finally renaming it back to RunOnce . This method of writing to the registry can
be easily detected, but it might bypass some simple hooking-based monitoring methods.

Similarly, there are multiple methods Roshtyak uses to delete files. Aside from the apparent
call to NtDeleteFile , Roshtyak is able to effectively delete a file by setting
FileDispositionInformation or FileRenameInformation in a call to
ZwSetInformationFile . However, unlike the registry modification method, this doesn’t

seem to be implemented in order to evade detection. Instead, Roshtyak will try these
alternative methods if the initial call to NtDelete file fails.

Checking VBAWarnings

The VBAWarnings registry value controls how Microsoft Office behaves when a user
opens a document containing embedded VBA macros. If this value is 1 (meaning “Enable
all macros”), macros are executed by default, even without the need for any user
interaction. This is a common setting for sandboxes, which are designed to detonate
maldocs automatically. On the other hand, this setting is uncommon for regular users, who
generally don’t go around changing random settings to make themselves more vulnerable
(at least most of them don’t). Roshtyak therefore uses this check to differentiate between
sandboxes and regular users and refuses to run further if the value of VBAWarnings is 1 .
Interestingly, this means that users, who for whatever reason have lowered their security
this way, are immune to Roshtyak.

Command line wiping

Roshtyak’s core is executed with very suspicious command lines, such as RUNDLL32.EXE
SHELL32.DLL,ShellExec_RunDLL REGSVR32.EXE -U /s "C:\Users\

<REDACTED>\AppData\Local\Temp\dpcw.etl." . These command lines don’t look
particularly legitimate, so Roshtyak attempts to hide them during execution. It does this by

https://secret.club/2021/01/04/thread-stuff.html

15/29

wiping command line information collected from various sources. It starts by calling
GetCommandLineA and GetCommandLineW and wiping both of the returned strings. Then

it attempts to wipe the string pointed to by PEB->ProcessParameters->CommandLine
(even if this points to a string that has already been wiped). Since Roshtyak is often running
under WoW64, it also calls NtWow64QueryInformationProcess64 to obtain a pointer to
PEB64 to wipe ProcessParameters->CommandLine obtained by traversing this “second”

PEB. While the wiping of the command lines was probably meant to make Roshtyak look
more legitimate, the complete absence of any command line is also highly unusual. This
was noticed by the Red Canary researchers in their blog post, where they proposed a
detection method based on these suspiciously empty command lines.

Roshtyak’s core process, as shown

by Process Explorer. Note the suspiciously empty command line.

Additional tricks

Aside from the techniques described so far, Roshtyak uses many less sophisticated tricks
that are commonly found in other malware as well. These include:

Hiding threads using ThreadHideFromDebugger (and verifying that the threads
really got hidden using NtQueryInformationThread)
Patching DbgBreakPoint in ntdll
Detecting user inactivity using GetLastInputInfo
Checking fields from PEB (BeingDebugged , NtGlobalFlag)
Checking fields from KUSER_SHARED_DATA (KdDebuggerEnabled ,
ActiveProcessorCount , NumberOfPhysicalPages)

Checking the names of all running processes (some are compared by hash, some by
patterns, and some by character distribution)
Hashing the names of all loaded modules and checking them against a hardcoded
blacklist
Verifying the main process name is not too long and doesn’t match known names
used in sandboxes
Using the cpuid instruction to check hypervisor information and the processor brand

https://redcanary.com/blog/raspberry-robin/
https://decoded.avast.io/wp-content/uploads/sites/2/2022/09/cmdline_wiped.png

16/29

Using poorly documented COM interfaces
Checking the username and computername against a hardcoded blacklist
Checking for the presence of known sandbox decoy files
Checking MAC addresses of own adapters against a hardcoded blacklist
Checking MAC addresses from the ARP table (using GetBestRoute to populate it
and GetIpNetTable to inspect it)
Calling ZwQueryInformationProcess with ProcessDebugObjectHandle ,
ProcessDebugFlags , and ProcessDebugPort

Checking DeviceId of display devices (using EnumDisplayDevices)
Checking ProductId of \\.\PhysicalDrive0 (using
IOCTL_STORAGE_QUERY_PROPERTY)

Checking for virtual hard disks (using NtQuerySystemInformation with
SystemVhdBootInformation)

Checking the raw SMBIOS firmware table (using NtQuerySystemInformation with
SystemFirmwareTableInformation)

Setting up Defender exclusions (both for paths and processes)
Removing IFEO registry keys related to process names used by the malware

Obfuscation

We’ve shown many anti-analysis tricks that are designed to prevent Roshtyak from
detonating in undesirable execution environments. These tricks alone would be easy to
patch or bypass. What makes analyzing Roshtyak especially lethal is the combination of all
these tricks with heavy obfuscation and multiple layers of packing. This makes it very
difficult to study the anti-analysis tricks statically and figure out how to pass all the checks in
order to get Roshtyak to unpack itself. Furthermore, even the main payload received the
same obfuscation, which means that statically analyzing Roshtyak’s core functionality also
requires a great deal of deobfuscation.

In the rest of this section, we’ll go through the main obfuscation techniques used by
Roshtyak.

17/29

A random code snippet from Roshtyak. As can be seen, the obfuscation makes the raw
output of the Hex-Rays decompiler practically incomprehensible.

Control flow flattening

Control flow flattening is one of the most noticeable obfuscation techniques employed by
Roshtyak. It is implemented in an unusual way, giving the control flow graphs of Roshtyak’s
functions a unique look (see below). The goal of control flow flattening is to obscure control
flow relations between individual code blocks.

Control flow is directed by a 32-bit control variable, which tracks the execution state,
identifying the code block to be executed. This control variable is initialized at the start of
each function to refer to the starting code block (which is frequently a nop block). The
control variable is then modified at the end of each code block to identify the next code
block that should be executed. The modification is performed using some arithmetic
instructions, such as add , sub , or xor .

There is a dispatcher using the control variable to route execution into the correct code
block. This dispatcher is made up of if/else blocks that are circularly linked into a loop. Each
dispatcher block takes the control variable and masks it using arithmetic instructions to
check if it should route execution into the code block that it is guarding. What’s interesting
here is there are multiple points of entry from the code blocks into the dispatcher loop,
giving the control flow graphs the jagged “sawblade” look in IDA.

https://decoded.avast.io/wp-content/uploads/sites/2/2022/09/obfuscation_example.png

18/29

Branching is performed using a special code block containing an imul instruction. It relies
on the previous block to compute a branch flag. This branch flag is multiplied using the
imul instruction with a random constant, and the result is added, subbed, or xored to the

new control variable. This means that after the branch block, the control variable will identify
one of the two possible succeeding code blocks, depending on the value that was
computed for the branch flag.

Control flow graph of a function obfuscated using control flow flattening

Function activation keys

https://decoded.avast.io/wp-content/uploads/sites/2/2022/09/flattening_graph.png

19/29

Roshtyak’s obfuscated functions expect an extra argument, which we call an activation key.
This activation key is used to decrypt all local constants, strings, variables, etc. If a function
is called with a wrong activation key, the decryption results in garbage plaintext, which will
most likely cause Roshtyak to get stuck in an infinite loop inside the control flow dispatcher.
This is because all constants used by the dispatcher (the initial value of the control variable,
the masks used by the dispatcher guards, and the constants used to jump to the next code
block) are encrypted with the activation key. Without the correct activation key, the
dispatcher simply does not know how to dispatch.

Reverse engineering a function is practically impossible without knowing the correct
activation key. All strings, buffers, and local variables/constants remain encrypted, all cross-
references are lost, and worse, there is no control flow information. Only individual code
blocks remain, with no way to know how they relate to each other.

Each obfuscated function has to be called from somewhere, which means the code calling
the function has to supply the correct activation key. However, obtaining the activation key
is not that easy. First, call targets are also encrypted with activation keys, so it’s impossible
to find where a function is called from without knowing the right activation keys. Second,
even the supplied activation key is encrypted with the activation key of the calling function.
And that activation key got encrypted with the activation key of the next calling function. And
so on, recursively, all the way until the entry point function.

This brings us to how to deobfuscate the mess. The activation key of the entry point
function must be there in plaintext. Using this activation key, it is possible to decrypt the call
targets and activation keys of functions that are called directly from this entry point function.
Applying this method recursively allows us to reconstruct the full call graph along with the
activation keys of all the functions. The only exceptions would be functions that were never
called and were left in by the compiler. These functions will probably remain a mystery, but
since the sample does not use them, they are not that important from a malware analyst’s
point of view.

Variable masking

Some variables are not stored in plaintext form but are masked using one or more
arithmetic instructions. This means that if Roshtyak is not actively using a variable, it keeps
the variable’s value in an obfuscated form. Whenever Roshtyak needs to use the variable, it
has to first unmask it before it can use it. Conversely, after Roshtyak uses the variable, it
converts it back into the masked form. This masking-based obfuscation method slightly
complicates tracking variables during debugging and makes it harder to search memory for
a known variable value.

Loop transformations

20/29

Roshtyak is creative with some loop conditions. Instead of writing a loop like for (int i
= 0; i < 1690; i++) , it transforms the loop into e.g. for (int32_t i = 0x06AB91EE;
i != 0x70826068; i = i * -0x509FFFF + 0xEC891BB1) . While both loops will execute
exactly 1690 times, the second one is much harder to read. At first glance, it is not clear
how many iterations the second loop executes (and if it even terminates). Tracking the
number of loop iterations during debugging is also much harder in the second case.

Packing

As mentioned, Roshtyak’s core is hidden behind multiple layers of packing. While all the
layers look like they were originally compiled into PE files, all but the strictly necessary data
(entry point, sections, imports, and relocations) were stripped away. Furthermore, Roshtyak
supports two custom formats for storing the stripped PE file information, and the layers take
turns on what format they use. Additionally, parts of the custom formats are encrypted,
sometimes using keys generated based on the results of various anti-analysis checks.

This makes it difficult to unpack Roshtyak’s layers statically into a standalone PE file. First,
one would have to reverse engineer the custom formats and figure out how to decrypt the
encrypted parts. Then, one would have to reconstruct the PE header, the sections, the
section headers, and the import table (the relocation table doesn’t need to be reconstructed
since relocations can just be turned off). While this is all perfectly doable (and can be
simplified using libraries like LIEF), it might take a significant amount of time. Adding to this
that the layers are sometimes interdependent, it might be easier to just analyze Roshtyak
dynamically in memory.

A section header in one of the custom PE-like file formats: raw_size corresponds to
SizeOfRawData , raw_size + virtual_padding_size is effectively VirtualSize .

There is no VirtualAddress or PointerToRawData equivalent because the sections
are loaded sequentially.

Other obfuscation techniques

In addition to the above-described techniques, Roshtyak also uses other obfuscation
techniques, including:

https://lief-project.github.io/
https://decoded.avast.io/wp-content/uploads/sites/2/2022/09/first_section.png

21/29

Junk instruction insertion
Import hashing
Frequent memory wiping
Mixed boolean-arithmetic obfuscation
Redundant threading
Heavy polymorphism

Core Functionality

Now that we’ve described how Roshtyak protects itself, it might be interesting to also go
over what it actually does. Roshtyak’s DLL is relatively large, over a megabyte, but its
functionality is surprisingly simple once you eliminate all the obfuscation. Its main purpose
is to download further payloads to execute. In addition, it does the usual evil malware stuff,
namely establishing persistence, escalating privileges, lateral movement, and exfiltrating
information about the victim.

Persistence

Roshtyak first generates a random file name in %SystemRoot%\Temp and moves its DLL
image there. The generated file name consists of two to eight random lowercase characters
concatenated with a random extension chosen from a hardcoded list. The PRNG used to
generate this file name is seeded with the volume serial number of C:\ . The sample we
analyzed hardcoded seven extensions (.log , .tmp , .loc , .dmp , .out , .ttf , and
.etl). We observed other extensions being used in other samples, suggesting this list is

somewhat dynamic. With a small probability, Roshtyak will also use a randomly generated
extension. Once fully constructed, the full path to the Roshtyak DLL might look like e.g.
C:\Windows\Temp\wcdp.etl .

After the DLL image is moved to the new filesystem path, Roshtyak stomps its Modified
timestamp to the current system time. It then proceeds to set up a RunOnce(Ex) registry
key to actually establish persistence. The registry entry is created using the previously
described indirect registry write technique. The command inserted into the key might look
as follows:

RUNDLL32.EXE SHELL32.DLL,ShellExec_RunDLL REGSVR32.EXE -U /s
"C:\Windows\Temp\wcdp.etl."

There are a couple of things to note here. First, regsvr32 doesn’t care about the
extensions of the DLLs it loads, allowing Roshtyak to hide under an innocent-looking
extension such as .log . Second, the /s parameter puts regsvr32 into silent mode.
Without it, regsvr32 would complain that it did not find an export named
DllUnregisterServer . Finally, notice the trailing period character at the end of the path.

This period is removed during path normalization, so it practically has no effect on the
command. We are not exactly sure what the author’s original intention behind including this

https://docs.microsoft.com/en-us/archive/blogs/jeremykuhne/path-normalization#trimming-characters

22/29

period character is. It looks like it could have been designed to trick some anti-malware
software into not being able to connect the persistence entry with the payload on the
filesystem.

By default, Roshtyak uses the
HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce key for persistence.

However, under some circumstances (such as when it detects that Kaspersky is running by
checking for a process named avp.exe) the key
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnceEx will be used instead.

The RunOnceEx key is capable of loading a DLL, so when using this key, Roshtyak
specifies shell32.dll directly, omitting the use rundll32 .

A RunOnceEx persistence entry established by Roshtyak

Privilege escalation

Roshtyak uses both UAC bypasses and regular EoP exploits in an attempt to elevate its
privileges. Unlike many other pieces of malware, which just blindly execute whatever UAC
bypasses/exploits the authors could find, Roshtyak makes efforts to figure out if the
privilege escalation method is even likely to be successful. This was probably implemented
to lower the chances of detection due to the unnecessary usage of incompatible
bypasses/exploits. For UAC bypasses, this involves checking the
ConsentPromptBehaviorAdmin and ConsentPromptBehaviorUser registry keys. For

EoP exploits, this is about checking the Windows build number and patch level.

Besides checking the ConsentPromptBehavior(Admin|User) keys, Roshtyak performs
other sanity checks to ensure that it should proceed with the UAC bypass. Namely, it
checks for admin privileges using CheckTokenMembership with the SID S-1-5-32-544
(DOMAIN_ALIAS_RID_ADMINS). It also inspects the value of the DbgElevationEnabled
flag in KUSER_SHARED_DATA.SharedDataFlags . This is an undocumented flag that is set if
UAC is enabled. Finally, there are AV checks for BitDefender (detected by the module
atcuf32.dll), Kaspersky (process avp.exe), and our own Avast/AVG (module
aswhook.dll). If one of these AVs is detected, Roshtyak avoids selected UAC bypass

techniques, presumably the ones that might result in detection.

As for the actual UAC bypasses, there are two main methods implemented. The first is an
implementation of the aptly named ucmDccwCOM method from UACMe. Interestingly when
this method is executed, Roshtyak temporarily masquerades its process as

https://decoded.avast.io/wp-content/uploads/sites/2/2022/09/runonceex.png
http://undoc.airesoft.co.uk/ntdll.dll/RtlQueryElevationFlags.php
https://github.com/hfiref0x/UACME/blob/c998cb1f1bafd36f566f17208b915dc48dda5edf/Source/Akagi/methods/hybrids.c#L877
https://github.com/hfiref0x/UACME

23/29

explorer.exe by overwriting FullDllName and BaseDllName in the _LDR_MODULE
structure corresponding to the main executable module. The payload launched by this
method is a randomly named LNK file, dropped into %TEMP% using the IShellLink COM
interface. This LNK file is designed to relaunch the Roshtyak DLL, through LOLBins such as
advpack or register-cimprovider .

The second method is more of a UAC bypass framework than a specific bypass method,
because multiple UAC bypass methods follow the same simple pattern: first registering
some specific shell open command and then executing an autoelevating Windows binary
(which internally triggers the shell open command). For instance, a UAC bypass might be
accomplished by writing a payload command to HKCU\Software\Classes\ms-
settings\shell\open\command and then executing fodhelper.exe from
%windir%\system32 . Basically, the same bypass can be achieved by substituting the pair
ms-settings / fodhelper.exe with other pairs, such as mscfile / eventvwr.exe .

Roshtyak uses the following six pairs to bypass UAC:

Class Executable

mscfile eventvwr.exe

mscfile compmgmtlauncher.exe

ms-settings fodhelper.exe

ms-settings computerdefaults.exe

Folder sdclt.exe

Launcher.SystemSettings slui.exe

Let’s now look at the kernel exploits (CVE-2020-1054 and CVE-2021-1732) Roshtyak uses
to escalate privileges. As is often the case in Roshtyak, these exploits are stored encrypted
and are only decrypted on demand. Interestingly, once decrypted, the exploits turn out to be
regular PE files with completely valid headers (unlike the other layers in Roshtyak, which
are either in shellcode form or stored in a custom stripped PE format). Moreover, the
exploits lack the obfuscation given to the rest of Roshtyak, so their code is immediately
decompilable, and only some basic string encryption is used. We don’t know why the
attackers left these exploits so exposed, but it might be due to the difference in bitness.
While Roshtyak itself is x86 code (most of the time running under WoW64), the exploits are
x64 (which makes sense considering they exploit vulnerabilities in 64-bit code). It could be
that the obfuscation tools used by Roshtyak’s authors were designed to work on x86 and
are not portable to x64.

http://undocumented.ntinternals.net/index.html?page=UserMode%2FStructures%2FLDR_MODULE.html
https://docs.microsoft.com/en-us/windows/win32/api/shobjidl_core/nn-shobjidl_core-ishelllinka
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2020-1054
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-1732

24/29

Snippet from Roshtyak’s exploit for CVE-2020-1054, scanning through IsMenu to find the
offset to HMValidateHandle.
To execute the exploits, Roshtyak spawns (the AMD64 version of) winver.exe and gets
the exploit code to run there using the KernelCallbackTable injection method. Roshtyak’s
implementation of this injection method essentially matches a public PoC, with the biggest
difference being the usage of slightly different API functions due to the need for cross-
subsystem injection (e.g. NtWow64QueryInformationProcess64 instead of
NtQueryInformationProcess or NtWow64ReadVirtualMemory64 instead of
ReadProcessMemory). The code injected into winver.exe is not the exploit PE itself but

rather a slightly obfuscated shellcode, designed to load the exploit PE into memory.

The kernel exploits target certain unpatched versions of Windows. Specifically, CVE-2020-
1054 is only used on Windows 7 systems where the revision number is not higher than
24552 . On the other hand, the exploit for CVE-2021-1732 runs on Windows 10, with the

targeted build number range being from 16353 to 19042 . Before exploiting CVE-2021-
1732, Roshtyak also scans through installed update packages to see if a patch for the
vulnerability is installed. It does this by enumerating the registry keys under
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Component Based

Servicing\Packages and checking if the package for KB4601319 (or higher) is present.

Lateral movement

When it comes to lateral movement, Roshtyak simply uses the tried and tested PsExec tool.
Before executing PsExec, Roshtyak ensures it makes sense to run it by checking for a SID
matching the “well-known” WinAccountDomainAdminsSid group. If domain admin rights
are not detected, Roshtyak skips its lateral movement phase entirely.

Roshtyak attempts to get around detection by setting Defender exclusions, as PsExec is
often flagged as a hacktool (for good reasons). It sets a path exclusion for %TEMP% (where
it will drop PsExec and other files used for lateral movement). Later, it sets up a process
exclusion for the exact path from which PsExec will be executed.

https://decoded.avast.io/wp-content/uploads/sites/2/2022/09/hmvalidatehandle.png
https://github.com/sam-b/windows_kernel_address_leaks/blob/master/HMValidateHandle/HMValidateHandle/HMValidateHandle.cpp
https://modexp.wordpress.com/2019/05/25/windows-injection-finspy/
https://github.com/odzhan/injection/blob/master/kct/kct.c
https://support.microsoft.com/en-us/topic/february-9-2021-kb4601319-os-builds-19041-804-and-19042-804-87fc8417-4a81-0ebb-5baa-40cfab2fbfde
https://docs.microsoft.com/en-us/sysinternals/downloads/psexec
https://docs.microsoft.com/en-us/windows/win32/api/winnt/ne-winnt-well_known_sid_type

25/29

While we would expect PsExec to be bundled inside Roshtyak, it turns out Roshtyak
downloads it on demand from
https://download.sysinternals[.]com/files/PSTools.zip . The downloaded zip

archive is dropped into %TEMP% under a random name with the .zip extension. PsExec
is then unzipped from this archive using the Windows Shell COM interface
(IShellDispatch) into a randomly named .exe file in %TEMP% .

The payload to be executed by PsExec is a self-extracting package created by a tool called
IExpress. This is an archaic installer that’s part of Windows, which is probably why it’s used,
since Roshtyak can rely on it already being on the victim machine. The installer generation
is configured by a text file using the Self Extraction Directive (SED) syntax.

Roshtyak’s IExpress configuration template

Roshtyak uses a SED configuration template with three placeholders (%1 , %2 , and %3)
that it substitutes with real values at runtime. As seen above, the configuration template
was written in mixed-case, which is frequently used in Raspberry Robin in general. Once
the SED configuration is prepared, it is written into a randomly named .txt file in
%TEMP% . Then, iexpress is invoked to generate the payload using a command such as
C:\Windows\iexpress.exe /n /q <path_to_sed_config> . The generated payload is

dumped into a randomly named .exe file in %TEMP% , as configured by the TargetName
directive (placeholder %1).

Once the payload is generated, Roshtyak proceeds to actually run PsExec. There are two
ways Roshtyak can execute PsExec. The first one uses the command <path_to_psexec>
* -accepteula -c -d -s <path_to_payload> . Here, the * wildcard instructs
PsExec to run the payload on all computers in the current domain. Alternatively, Roshtyak
might run the command <path_to_psexec> @<path_to_target_file> -accepteula -c
-d -s <path_to_payload> . Here, the target_file is a text file containing a specific list
of computers to run the payload on. Roshtyak builds this list by enumerating Active
Directory objects using API functions exported from activeds.dll .

https://en.wikipedia.org/wiki/IExpress
https://www.mdgx.com/INF_web/cdfinfo.htm
https://decoded.avast.io/wp-content/uploads/sites/2/2022/09/iexpress_config.png

26/29

Profiling the victim

USB worms tend to have a life of their own. Since their worming behavior is usually
completely automated, the threat actor who initially deployed the worm doesn’t necessarily
have full control over where it spreads. This is why it’s important for threat actors to have
the worm beacon back to their C&C servers. With a beaconing mechanism in place, the
threat actor can be informed about all the machines under their control and can use this
knowledge to manage the worm as a whole.

The outgoing beaconing messages typically contain some information about the infected
machine. This helps financially-motivated cybercriminals decide on how to best monetize
the infection. Roshtyak is no exception to this, and it collects a lot of information about each
infected victim. Roshtyak concatenates all the collected information into a large string, using
semicolons as delimiters. This large string is then exfiltrated to one of Roshtyak’s C&C
servers. The exfiltrated pieces of information are listed below, in order of concatenation.

External IP address (obtained during a Tor connectivity check)
A string hardcoded into Roshtyak’s code, e.g. AFF123 (we can’t be sure what’s the
meaning behind this, but it looks like an affiliate ID)
A 16-bit hash of the DLL’s PE header (with some fields zeroed out) xored with the
lower 16 bits of its TimeDateStamp . The TimeDateStamp appears to be specially
crafted so that the xor results in a known value. This could function as a tamper check
or a watermark.
Creation timestamp of the System Volume Information folder on the system drive
The volume serial number of the system drive
Processor count (GetActiveProcessorCount)
IsWow64Process (_PROCESS_EXTENDED_BASIC_INFORMATION.Flags & 2)
Windows version (KUSER_SHARED_DATA.Nt(Major|Minor)Version)
Windows product type (KUSER_SHARED_DATA.NtProductType)
Windows build number (PEB.OSBuildNumber)
Local administrative privileges
(ZwQueryInformationToken(TokenGroups) / CheckTokenMembership , check for
DOMAIN_ALIAS_RID_ADMINS)

Domain administrative privileges (check for
WinAccountDomainAdminsSid / WinAccountDomainUsersSid)

System time (KUSER_SHARED_DATA.SystemTime)
Time zone (KUSER_SHARED_DATA.TimeZoneBias)
System locale (NtQueryDefaultLocale(0))
User locale (NtQueryDefaultLocale(1))
Environment variables (username , computername , userdomain ,
userdnsdomain , and logonserver)

Java version (GetFileVersionInfo("javaw.exe") -> VerQueryValue)
Processor information (cpuid to obtain the Processor Brand String)

27/29

Path to the image of the main executable module
(NtQueryVirtualMemory(MemorySectionName))
Product ID and serial number of the main physical drive
(DeviceIoControl(IOCTL_STORAGE_QUERY_PROPERTY, StorageDeviceProperty))
MAC address of the default gateway (GetBestRoute -> GetIpNetTable)
MAC addresses of all network adapters (GetAdaptersInfo)
Installed antivirus software (root\securitycenter2 -> SELECT * FROM
AntiVirusProduct)
Display device information (DeviceId , DeviceString , dmPelsWidth ,
dmPelsHeight , dmDisplayFrequency) (EnumDisplayDevices ->
EnumDisplaySettings)

Active processes (NtQuerySystemInformation(SystemProcessInformation))
Screenshot encoded in base64 (gdi32 method)

Beaconing

Once collected, Roshtyak sends the victim profile to one of its C&C servers. The profile is
sent over the Tor network, using a custom comms module Roshtyak injects into a newly
spawned process. The C&C server processes the exfiltrated profile and might respond with
a shellcode payload for the core module to execute.

Let’s now take a closer look at this whole process. It’s worth mentioning that before
generating any malicious traffic, Roshtyak first performs a Tor connectivity check. This is
done by contacting 28 legitimate and well-known .onion addresses in random order and
checking if at least one of them responds. If none of them respond, Roshtyak doesn’t even
attempt to contact its C&C, as it would most likely not get through to it anyway.

As for the actual C&C communication, Roshtyak contains 35 hardcoded V2 onion
addresses (e.g. ip2djbz3xidmkmkw:53148 , see our IoC repository for the full list). Like
during the connectivity check, Roshtyak iterates through them in random order and
attempts to contact each of them until one responds. Note that while V2 onion addresses
are officially deprecated in favor of V3 addresses (and the Tor Browser no longer supports
them in its latest version) they still appear to be functional enough for Roshtyak’s nefarious
purposes.

https://www.torproject.org/
https://github.com/avast/ioc/tree/master/RaspberryRobin
https://support.torproject.org/onionservices/v2-deprecation/

28/29

Roshtyak’s hardcoded C&C addresses
The victim profile is sent in the URL path, appended to the V2 onion address, along with the
/ character. As the raw profile might contain characters forbidden for use in URLs, the

profile is wrapped in a custom structure and encoded using Base64. The very first 0x10
bytes of the custom structure serve as an encryption key, with the rest of the structure being
encrypted. The custom structure also contains a 64-bit hash of the victim profile, which
presumably serves as an integrity check. Interestingly, the custom structure might get its
end padded with random bytes. Note that the full path could be pretty large, as it contains a
doubly Base64-encoded screenshot. The authors of Roshtyak were probably aware that the
URL path is not suitable for sending large amounts of data and decided to cap the length of
the victim profile at 0x20000 bytes. If the screenshot makes the exfiltrated profile larger than
this limit, it isn’t included.

When the full onion URL is constructed, Roshtyak goes ahead to launch its Tor comms
module. It first spawns a dummy process to host the comms module. This dummy process
is randomly chosen and can be one of dllhost.exe , regsvr32.exe , or
rundll32.exe . The comms module is injected into the newly spawned process using a

shared section, obfuscated through the previously described shellcode hiding technique.
The comms module is then executed via NtQueueApcThreadEx , using the already
discussed ntdll gadget trick. The injected comms module is a custom build of an open-
source Tor library packed in three additional protective shellcode layers.

The core module communicates with the comms module using shared sections as an IPC
mechanism. Both modules synchronously use the same PRNG with the same seed
(KUSER_SHARED_DATA.Cookie) to generate the same section name. Both then map this
named section into their respective address spaces and communicate with each other by
reading/writing to it. The data read/written into the section is encrypted with RC4 (the key
also generated using the synchronized PRNGs).

https://decoded.avast.io/wp-content/uploads/sites/2/2022/09/cncs.png

29/29

The communication between the core module and the comms module follows a simple
request/response pattern. The core module writes an encrypted onion URL (including the
URL path to exfiltrate) into the shared section. The comms module then decrypts the URL
and makes an HTTP request over Tor to it. The core module waits for the comms module to
write the encrypted HTTP response back to the shared section. Once it’s there, the core
module decrypts it and unwraps it from a custom format (which includes decrypting it yet
again and computing a hash to check the payload’s integrity). The decrypted payload might
include a shellcode for the core module to execute. If the shellcode is present, the core
module allocates a huge chunk of memory, hides the shellcode there using the shellcode
hiding technique, and executes it in a new thread. This new thread is hidden using the
NtSetInformationThread -> ThreadHideFromDebugger technique (including a follow-

up anti-hooking check using NtGetInformationThread to confirm that the
NtSetInformationThread call did indeed succeed).

Conclusion

In this blog post, we took a technical deep dive into Roshtyak, the backdoor payload
associated with Raspberry Robin. The main focus was to describe how to deal with
Roshtyak’s protection mechanisms. We showed some never-before-seen anti-
debugger/anti-sandbox/anti-VM tricks and discussed Roshtyak’s heavy obfuscation. We
also described Roshtyak’s core functionality. Specifically, we detailed how it establishes
persistence, escalates privileges, moves laterally, and uses Tor to download further
payloads.

We have to admit that reverse engineering Roshtyak was certainly no easy task. The
combination of heavy obfuscation and numerous advanced anti-analysis tricks made it a
considerable challenge. Nick Harbour, if you’re looking for something to repurpose for next
year’s final Flare-On challenge, this might be it.

Indicators of Compromise (IoCs)

IoCs are available at https://github.com/avast/ioc/tree/master/RaspberryRobin.

Tagged asCVE-2020-1054, CVE-2021-1732, Rapsberry Robin, Roshtyak

https://github.com/avast/ioc/tree/master/RaspberryRobin
https://decoded.avast.io/tag/cve-2020-1054/
https://decoded.avast.io/tag/cve-2021-1732/
https://decoded.avast.io/tag/rapsberry-robin/
https://decoded.avast.io/tag/roshtyak/

