Technical Analysis of Crytox Ransomware

@ zscaler.com/blogs/security-research/technical-analysis-crytox-ransomware

Key points

» Crytox is a ransomware family consisting of several stages of encrypted code that
was first observed in 2020

e The ransomware encrypts local disks and network drives and leaves a ransom note
with a five day ultimatum, but does not exfiltrate data from the victim

o Crytox drops the uTox messenger application on the infected system that enables the
victim to communicate and negotiate with the threat actors

o Crytox uses AES-CBC with a per file 256-bit key that is protected with a locally
generated RSA public key

» File decryption may be possible via a known plaintext bruteforce attack

Summary

The threat actor using Crytox ransomware has been active since at least 2020, but has
received significantly less attention than many other ransomware families. In September
2021, the Netherlands-based company RTL publicly acknowledged that they were
compromised by the threat actor. The company paid Crytox 8,500 euros. Compared with
current ransom demands, this amount is relatively low. Unlike most ransomware groups, the
Crytox threat actor does not perform double extortion attacks where data is both encrypted
and held for ransom.

1/12

https://www.zscaler.com/blogs/security-research/technical-analysis-crytox-ransomware
https://www.rtlnieuws.nl/nieuws/nederland/artikel/5255983/rtl-nederland-ransomware-aanval-cybercriminelen-losgeld

The modus operandi of the group is to encrypt files on connected drives along with network
drives, drop the uTox messenger application and then display a ransom note to the victim
as shown in Figure 1.

I
| recovery tool

YOUR FILES ARE ENCRYPTED

Your PC security is at risk
| AN your files were encrypted and important data was copied to our storage
[1f you do not need your files, then the private key will be deleted within 5 days
| Tf you want to restore files and return important data, Sta rt UTOX application, contact the operator and enter YOUR ID YOUR ID
ID of your personal operator
| If the Operator did not respond within 24 hours or encountered any problem then send an email to our support
In the header of the letter, indicate your ID and attach 2-3 infected files for the decryption tool
Files should not have important information and should not exceed the size of more than 5 MB

As our guarantees, we will return your files restored

Attention!
@ Do not rename encrypted fles,
® Do not try to deerypt your data using third party software, t may cause permanent data loss.
@ Decryption of your fles with the help of third parties may cause increased price (they add their fee to our) or you can become a victim of a scam.

2872128333802

Figure 1. Crytox ransom note

The ransom demand period is set to five days to pressure the victim into paying as soon as
possible

Technical analysis

The sample analyzed by ThreatLabz has the following SHA256 hash
32eef267a1192a9a739ccaaae0266bc66707bb64768a764541ecb039a50chba67. In most
cases, Crytox samples are packed with UPX. Once decompressed, a sample usually
weighs in around 1.23MB because the whole uTox client is embedded inside the malware.

Cryptox uses different techniques to thwart static analysis including the following:

¢ API hashing

o Encrypted configurations
e Encrypted shellcode

* Remote thread injection

Some parts of the malware look directly written in assembly. The most noteworthy thing is
the use of a specific implementation of AES-CBC shown in Figure 2.

2/12

https://github.com/uTox/uTox
http://masm32.com/board/index.php?topic=2933.0

M SN 00005, AU AT IR R el AR 882 ELSETF AES KEY SIZE EQ
; __inted4 _ fastcall f_Rijndael_SetEncryptKey(int *, int *) 883
|f_Rijndael_SetEncryptKey proc near 884 mov ecx, [esi]
AR5 1+
arg_e= qword ptr 18h R i edx_, [+
|arg_8= qword ptr 18h el mov [edi], ecx
887 mov [edi+4], edx
imﬁer 8oh, @ 888 mov ecx, [esi+{]
.SUb rsp, 6@h RAa0 mov edx, [esi+12]
[mov [rbp+arg_8], rcx el ’
Imov [rbp+arg_8], rdx o0 mov [edi+!], ecx
Imov rsi, [rbp+arg_e] 89 mov [edi+12], edx
[mov rdi, [rbp+arg_8] 892 mov ecx, [esi+1¢6]
|lea r‘b)_(, [r12+1@88h] 893 mov edx, [esi+20]
push rdi =
a0 ecx, 7 894 mov [edi+16], ecx
rep movsd 895 mov [edi+20], edx
lodsd 896 mov ecx, [esi+24]
Ftcw y 897 mov eax, [esi+28]
|pop rdi o f
imov edx, 1 640 mov [edi+ 4], ecx
mov ecx, 6 899 mov [edi+Z8], eax
- &
= 901 mov edsx,
loc_1482E916A: 902 mov ecx,
add rdi, 28h ; ' ' 903 L2:
:iit eax, 8 904 add edi,
» ans
xlat xlatb
ror eax, 8 906 ror eax,
xlat 907 xlatb
ror eax, 8 908 ror eax
xlat A ’
ror eax, 1@h i xlatb
xor eax, edx 910 ror eax,
xor eax, [rdi-28h] 911 xlatb
shl s 912 ror eax,
mov [rdi], eax P
jnb short loc_14@2E918C o xor eax, edx
T 914 xor eax, [edi-327]
< Sdis shl dl
xor dl, 1Bh RIS s
_ 916 mov [edi], eax
X R 3
H= any jnc @F
918 xor dl,
loc_14@2E918C: -

Figure 2. Crytox implementation of AES

The authors borrowed the AES code and modified some parts to meet their needs. They
even added an alternative algorithm using Intel x86 AES instructions. Oddly enough, the
authors chose to only implement the Rijndael_Encrypt routine to both decrypt their config
and encrypt files. This means that when they embedded their configurations, they used the
AES decryption routine to encrypt them. The key used for decrypting the Crytox
configurations are either the first or second block of 32 bytes of the AES lookup table Te1
using a NULL initialization vector (IV).

First-Stage

The malware encrypts the first-stage configuration using the aforementioned
implementation of AES-CBC. Here, the AES key is the first 32 bytes of the Te 7 lookup table
a5c6636384f87c7c99ee77778df67b7b0dfff2f2bdd66b6bb1de6f6f5491c5¢c5 as shown in

Figure 3.

3/12

Recipe S]
AES Encrypt O n
Key HEX
a5 c6 63 63 84 f8 7c 7c 9.
g HEX
llzlelelels Tz lolelele el e el e oo e = 1=
Mode Input Qutput

CBC Hex Raw

Figure 3. Crytox first-stage configuration after decryption

Input

E9
D1
00
Fo
BE
E3
13
D7
D8
18
FF
9A
cs
2c
o8
34
A7
Ad
BS
B7
F8
66

Output

E2
D8
3B
04
36
a7
74
43
9B
FF
7B
F9
2B
B8
03
9C
24
6
AQ
49
FD
B4

E2
ac
6B
3B
CA
3A
11
B6
27
F1
o1
E2
8B
CA
A2
77
Fe
6B
89
63
98
48

D8
42
16
80
EB
14
07
c3
B9
28
7F
8B
3c
)
17
a7
EE
F7
85
02
8F
3A

.na.B.I11.7
00B.0>. . Aed'%" _niul.uddo.afoR.coh]

s.ih..I.us.An.--V.AD.gtydbit.00f i".«fir.r6.N.

2B
68
87
F8
4B
CA
41
ec

D2
3F
91
E1l
1D
7B
74
52
eD
41
BA
12
DF

8C
DB
B6
25
B6
96
CA
Fo
cD
BS
A2
11
42
2C
85
97
63
=%
c9
F9
9F
2B

35
oD
Fo
77
1B
BO
9E
79
85
12
9C
2C
7A
47
45
55
9A
32
F2
Bl
ca
F3

41
11
26
66
23
DC
45
1F
69
c5
5D
7E
82
15
3C
09
4F
BF
53
25
AC

88
a1
Fo
B2
es
CE
AB
68
28
78
37
32
oF
Fo
34
3C
F9
83
25
1C
7F

length: 1343
1

lines:

AF
2F
BA
55
32
E7
07
B9
6C
09
2C
69
74
77
34
96
2E
DF
4B
04
61

ec
94
Fa
DC
c2
2A
A2
58
F3
B6
68
1c
68
B8
B4
B8
3E
D7
9A
39
c7

2C
BD
AF
CF
5B
F5
78
AC
F2
73
BD
F8
93
17
85
67
F8
75
8A
2B
780

time:

length:
lines:

AVE£3. .WaH»©U2q0D7

D4
59
56
51
D9
61
FF
6C
0B
66
D2
33
DA
A8
65
85
D7
6@
D7
4E
4F

ims
464
1

34
CE
9B
FB
6E
49
AB
28
c7
cs
65
Fé
CE
48
50
F4
56
77
38
76
9B

+ 0O

B2
35
08
74
71
9
c8
15
6D
o8
FF
E9
AF
7D
47
18
BB
47
5e
57
BO

E4
35
5E
9F
D3
93
93
E6
Ele
8C
EF
D3
eF
4A
E2
EA
ep
95
8E
1D
Fe

2C
ca
97
F1
7E
4F
1A
32
38
83
B2
72
78
A
8B
E1
B5
D5
6B
D8
6B

=3

70
(<]4]
7E
29
2B
43
90
3A
6B
El
22
1C
cD
76
9C
9B
99
D8
FC
59
65

B0 ®

1e
95
67
4E
D4
EB
27
83
4E
08
7E
E8
5B
9D
D6
SB
19
28
25
1@
70

DD
99
A4
DB
12
8B
Bo
D5
65
FB
E4
93
DE
D3
39
83
16
10
45
AB
6C

a5
3D
es
13
9B
99
@6
E7
24
48
68
27
28
46
10
08
S5A
95
13
6C
AA

rA
d

"0{A.j.i.E.=0./V9r%ks§G.=t/.0"

.. .pU. %%, exOvADGOKY . C . #X *w, .

N Wiig?. .p0028§2. ihiRk. . "u*-+.20m.60.AU"'E3ea=Dff.6.Ap9N.&E 208- A,
Ep0.A..r']1j&h
. z%A .wvi, SOFTWARE\Microsoft\Windows\CurrentVersion\Run\.C:\Windo

ws\System32\mshta.exe

"C:\ReadMe.hta"..waiting\shell\open\command\.open..svchost.exe.C
\windows\utox.exe......cvvuuun 1, eIA.aAix.L.f¥b

This configuration contains the following information:

The process name to inject

A hardcoded 2048-bit RSA public key
The path to drop the uTox client application
The Run registry value for the ransom note to be displayed at startup

The class registry key to store the malware's configuration

After this configuration has been decrypted, the malware locally generates a 2048-bit RSA
key pair using the CryptGenKey function. The generated RSA private key is then
encrypted five times using the hardcoded public key.

4/12

Under the sub-key HKCR\.waiting\shell\open\command\, the ransomware stores the
following value-data pair shown in Table 1.

Value Data

en" Generated RSA public key

n Encrypted generated RSA private key

C:\Windows\System32\mshta.exe "C:\ReadMe.hta"

Table 1. Crytox registry configuration

In order to make sure the ransom note is displayed on startup, the registry value
open along with the data "C:\ReadMe.hta" are created under
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

Once the Crytox configuration is stored, the code proceeds to locate a process to inject the
second-stage. A remote thread is created to execute the first piece of shellcode.

Second-Stage

This stage decrypts a second configuration using AES-CBC with the following key
5060303003020101a9¢ce67677d562b2b19e7fefe62b5d7d7e64dabab9aec7676 (which is
the second block of 32 bytes from the lookup table Te 7). According to this decrypted
configuration, the shellcode executes a batch file to delete shadow copies and remove
events from the logs. Essentially the following commands are run::

for /F "tokens=*" %%1 in ('wevtutil.exe el') DO wevtutil.exe cl "%%1"
vssadmin.exe Delete Shadows /All /Quiet
diskshadow.exe /s ../pghdn.txt

The file pghdn.txt contains the line "delete shadows all".

Given the following hashing algorithm, the second-stage searches for the process ID (pid)
of the process for which the hash of its name corresponds to 0OXDCF164CD (explorer.exe)
or 0x561F1820 (svchost.exe).

name = process_name + "\x00"
hash =0
for ¢ in name.upper():
hash = ROTR32(hash, 0xD) + ord(c)

5/12

Inside a new thread, the shellcode creates a mutex by concatenating a hardcoded 4-letter
word (e.g., "CSWS") with some random characters based on the pid of the targeted process
as shown in Figure 4.

mov rcx, 4
loc_1402E95A1:
pid = rdx

mov al, dl

and al, 7

add al, 4Dh ; "M’

cld

stosb

shr pid, 3

loop loc_1402E95A1

Figure 4. Crytox mutex creation

The thread then decrypts the content from the resource section of the original malware
using the same algorithm and key as for the second configuration. This resource contains
another shellcode, which is the final stage. This shellcode is injected inside the targeted
remote process.

Third and Final Stage

Using the same encryption algorithm, with the first 32-bytes of the Te7 lookup table as the
AES key, this final stage decrypts the main configuration containing the following
information:

» A seed for generating the file encryption key

¢ An .hta formatted ransom note

e A simple regular expression for listing all files on the system

e The encrypted file extension (e.g., YOUR ID.waiting)

» Privileges to remove (SeBackupPrivilege, SeRestorePrivilege)

First, the code tries to retrieve the configuration that the first stage stored in the registry
hive. If this configuration doesn't exist, Crytox will create it. The code proceeds to set a
countdown variable in the ransom note followed by replacing the string YOUR ID in the

6/12

ransom note template. The latter value is replaced with a unique victim ID that is generated
by the following pseudo-algorithm based on the encrypted locally generated RSA private
key:

hash = *(_DWORD *)config_ t->encrypted_priv_key;
counter = 9i64;
for (initial hash = @x37; ; LOBYTE(initial hash) = (hash & ©xF) + ©x4B)
{
*(_WORD *)&config t->generated_id[2 * counter] = initial_hash;
config_t->readme_hta_content[counter + ©x27DF] initial_hash;

hash = _ ROR4__ (hash, 4);
if (!--counter)
break;
}

Figure 5. Crytox victim ID generation algorithm

Before encrypting any files, the malware removes the SeBackupPrivilege and
SeRestorePrivilege privileges. Using the functions WNetOpenEnumW and
WNetEnumResourceW, the malware retrieves connected drives and for each drive found,
a thread is created to encrypt files. The same process is applied for every logical drive
using the function GetLogicalDrives. The malware then waits for a lock to be released
before calling the ShChangeNotify function in order to change the icon and file association
and to display the ransom note to the victim.

File encryption

The algorithm to discover all the files is relatively standard and relies on a recursive
approach. The Windows directory is excluded from the search along with the ransom note
and files with the .waiting extension. In addition, Crytox will only encrypt files that are larger
than 16 bytes, which is the size of a block for AES. If the size of a file is not an exact
multiple of 16 bytes, the malware will not pad and encrypt the last block of data. For large
files, only the first 1,048,576 (0x100000) bytes are read and encrypted to optimize
encryption speed.

For each file, a new 256-bit AES key is generated and the content of the file is encrypted
using AES-CBC. Crytox then creates the following structure in Figure 6.

712

00000000 cipher_fdoter_t struc ; (sizeof=0x80, mappedto 29)

00000000

00000000 blob_hdr
00000oe8 key size
0000000C key

0000o2C filesizehigh
00000030 filesizelow
0000034 encrypt_size
90000038 unk_0x37
0000003C padding

BLOBHEADER ?
dd ?
db 32 dup(?)
dd ?
dd ?
dd ?
dd ?
db 68 dup(?)

00000080 cipher footer t ends

Figure 6. Cryptox cipher footer structure

The BLOBHEADER structure is set like this:

.bType = PLAINTEXTKEYBLOB

.bVersion = CUR_BLOB_VERSION

.aiKeyAlg = CALG_AES_256

; XREF: sub _A73/r

Since the structure is not initialized, the padding structure is filled with random data.

This structure is encrypted with the locally generated RSA public key. The resulting cipher is

concatenated to the end of the encrypted file followed by the encrypted generated RSA
private key. The encrypted file is renamed by appending YOUR ID.waiting to the original
filename with YOUR ID replaced by the victim ID computed as described previously.

A ransom note is written to every directory after encrypting all files that are present. A
process flow chart for Crytox is illustrated in Figure 7.

8/12

https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/ns-wincrypt-publickeystruc

4}{ CREATE CORPUS

DROPS

Crytox UPX sample Generate RSA key pair

IMITIALIZES—»

Store key & configuration

Ensure persistence

Resource

DECRYPT & INJECT

Remote process

Delete shadow copies

Second layer shellcode —PREPARE >
Injector thread

|

7 AEs
><_DECRYPT ~

¥

Create mutex

svchost.exe OR explorer.exe

Remove privileges

v

INJECT——» Third layer shellcode
Network enumeration thread
Drive enumeration thread

Show ransom note

For each file
Y
Generate 256-bit AES key
_~DISCOVER™.. .
<. FLES ™ Encrypt file content

Store encrypted keys in file

Rename with ID and .waiting
extension

Figure 7. Process flowchart for Cryptox encryption

Key Generation Algorithm and Weakness

As stated previously, a 256-bit AES key is generated for each file that is encrypted.
The following algorithm in Figure 8 is used for the key generation.

9/12

; void __usercall f_gen_random{char *buf@<rdi>, config_t *pConfi@<ri2:) 1 woid __usercall f_gen_random(char *buf@<rdi>, config_t *pConf@<rli2>)

f_gen_random proc near 24

enter 88h, 8 3| __dinted4 w2; [/ i

sub rsp, Géh 4| __inté4 hash; //

mov rle, eFFFFFFFFE2B@BACER 5| __dnte4 i; [/ rox

call f_call_api 3 GetTickCount & __int64 j; // rc

mov ecx, 4 7| unsigned __inté4 tmp_hash; //

unsigned _ inté4 v7; [/ rbx
| __int128 result; //

11] = {{ nted (_ fastcall *)())f_call_api)();// GetTickCount
12| for {(i = 4i64; i 1= 1; --i)
3 (

14 i = 64i64;
b= 7 15 do
loc_1387: § 1

ac_ i . 17 hash = 8x706C3 * (pConf->random_generated + hash) + @x159ECT

add rax, [rlz+config_t.random_generated] a SConf-srandom_generated = tnp h e
imul rax, 7D6C3h = = g
add rax, 159EC7h d

a Conf-»config_seed;
mov [ri2+config_t.random_generated], rax \)/ B i
|shr rax, 18h £ s . e R

¥ ned in Conf-» ?
e Rt o ig 3)% config_seed;
xor rdx, rdx i
imul rax, rbx "
imul rax, rbx ;
div [ri2+config_t.config_seed]
|shrd rsi, rdx, 1
loop loc_13B7

mowv rax, rsi 311}
stosq

pop rex

loop loc_13AF

— 1
=
leave
retn
f_gen_random endp|

Figure 8. Crytox key generation algorithm
The custom pseudo random key generator functions relies on the variables below:

o A seed value determined by calling GetTickCount
o A 64-bit integer config_t.random_generated initially set to 0
o A 32-bit integer constant config_t.config_seed

The last value is stored inside the malware's configuration. This value has been the same
across samples analyzed by ThreatLabz. The only unknown value necessary to determine
the AES key is the value of GetTickCount at the time of encryption. However, if some
plaintext of a file is known, efforts to bruteforce the AES key are feasible.

Based on file magic values, one can divise a bruteforce program with the following logic:

. Set a counterto 0

. Let the random generator create a key with the counter as the rotating seed

. Decrypt the first block of the encrypted file

. Compare a known magic value with the decrypted data

. If the value matches, the initial value of GetTickCount and the key have been
successfully identified. Else, increment counter and loop back to 2.

a b~ WON -

Figure 8 shows an bruteforce program running on a machine with 16 logic cores. Here, the
encrypted file was dotnet-sdk-3.1.416-win-x64.exe (SHA1:
83A53E8770EDD38EDDD37DED63CEF2253FC16979) and the known plaintext was the
Windows PE (MZ) file header 4D5A9000.

10/12

{.\ k-3.1.416-win-x64.exe @x4 | Out-Default}).ToString()
Found seed @xPadadf6c with corr ey 96b044604c1728652238a1048332220dde5d26d9db57

00:12:42.3531808
Figure 9. Cryptox example bruteforce key recovery

The method relies on knowing a part of the plaintext at a specific offset. Thus, only specific
file types may be decrypted. Because the seed is based on GetTickCount, if one has
access to the master file table (MFT) and is able to locate and decrypt the first and last file
encrypted, then the range of GetTickCount values can be deduced. Therefore, the
bruteforce range can be greatly reduced to decrypt all files.

Conclusion

Crytox exposes some interesting features to hinder static analysis by self-decrypting itself
several times, injecting shellcode inside different processes, encrypting its configurations
and using API hashing. The main file encryption logic of Crytox is standard using a unique
AES key per file that is protected with RSA. However, the author(s) chose to rely on a weak
random generator to create new AES keys. Using a 32-bit integer as the seed is not
sufficient with today's computational power.

Ransomware families have a lot in common due to their shared goals and most use secure
encryption schemes. However, there may still be implementation weaknesses that enable
file decryption without having access to a private key. The bruteforce methods described in
this blog could be reused for similar scenarios.

Cloud Sandbox Detection

SANDBOX DETAIL REPORT R f Mo ek Low Rak 8
Report D (MDS): OF 7BBB60A06A5B060BACE19F 87200868 Analysls Performed: 06/09/2022 19:01:20 Flle Type: exe6d

CLASSIFICATION MITRE ATTRCK “ VIRUS AND MALWARE

Class Type Threat Score This repart cantaing B ATTACK techniques mapped to 5 tactics

Malicious

Category 90 No known Malware found

Malware & Botnat [1]

SECURITY BYPASS . NETWORKING w STEALTH

URLs Faund In Memary Or Birary Data Disables Application Errer Messages
May Try To Detact The Virtual Machine To Hinder Analysis
SPREADING INFORMATION LEAKAGE EXPLOITING

* Known MDS

PERSISTENCE - SYSTEM SUMMARY = DOWNLOAD SUMMARY

* Crestes An Autastart Registry Key Contains Thiead Delay riginal fil

jot Started Or Loaded Qne Or More Drapped files

PE Fila Contains Morg & 5 Than Mormal Packet capture Mo network traffic

ontaing Paths To Debug Symbols

Clas: Label

Craatas Fias Inside The System Diractory
Dropped PE Files Which Have Not Been Started Or Loaded Creatas Mutexes

11/12

In addition to sandbox detections, Zscaler’s multilayered cloud security platform detects
indicators related to the campaign with the following threat name:

Win64.Ransom.Crytox

Indicators of Compromise

Hashes

e 1c0bf0c2e7d0c34ec038a8b717bb19d9c4cf3382ada1412f055a9786d3069d78

e 2115¢c4c859d497eec163ca33798c389649543d8a6e4db5806a791c6186722b71
e 307c83924e90f4627f08c2f744cf51f18ec6e246687282a0c1794369ff08442

e 3764200cfab673e8796e7c955454b57¢c20852¢c2a7931fb9f632ef89d267bbd4c8

e 6d4e75bc0cc095fef94b9d98a4e94ce9145890b435012b5624aa73621babe312
e 79aff06385¢c16a98594c6fd314c572bfbe07fbe923f30a627e9b86ac3ab7c071

o 8ee4a58699%ecf02dca516dc6b5b72d93fd9968f672b2be6f8920dfec027d7815

e ¢5550f44332750552921cb5d685ccfbeefa2ab4b03aed8c51c5db52bbe2ff5d4

e d60dc6965f6d68a3e7c82d42e90bfda7ad3c5874d2c59a66df6212aef027b455

Files written

e C:\ReadMe.hta
¢ Files with ".waiting" extension

Registry keys

HKCR\.waiting\shell\open\command

12/12

https://threatlibrary.zscaler.com/threats/5c75f751-856d-4026-bd4c-6af8862481c2

