
1/12

Technical Analysis of Crytox Ransomware
zscaler.com/blogs/security-research/technical-analysis-crytox-ransomware

Key points

Crytox is a ransomware family consisting of several stages of encrypted code that
was first observed in 2020
The ransomware encrypts local disks and network drives and leaves a ransom note
with a five day ultimatum, but does not exfiltrate data from the victim
Crytox drops the uTox messenger application on the infected system that enables the
victim to communicate and negotiate with the threat actors
Crytox uses AES-CBC with a per file 256-bit key that is protected with a locally
generated RSA public key
File decryption may be possible via a known plaintext bruteforce attack

Summary

The threat actor using Crytox ransomware has been active since at least 2020, but has
received significantly less attention than many other ransomware families. In September
2021, the Netherlands-based company RTL publicly acknowledged that they were
compromised by the threat actor. The company paid Crytox 8,500 euros. Compared with
current ransom demands, this amount is relatively low. Unlike most ransomware groups, the
Crytox threat actor does not perform double extortion attacks where data is both encrypted
and held for ransom.

https://www.zscaler.com/blogs/security-research/technical-analysis-crytox-ransomware
https://www.rtlnieuws.nl/nieuws/nederland/artikel/5255983/rtl-nederland-ransomware-aanval-cybercriminelen-losgeld


2/12

The modus operandi of the group is to encrypt files on connected drives along with network
drives, drop the uTox messenger application and then display a ransom note to the victim
as shown in Figure 1.

 Figure 1. Crytox ransom note

The ransom demand period is set to five days to pressure the victim into paying as soon as
possible

Technical analysis

The sample analyzed by ThreatLabz has the following SHA256 hash
32eef267a1192a9a739ccaaae0266bc66707bb64768a764541ecb039a50cba67. In most
cases, Crytox samples are packed with UPX. Once decompressed, a sample usually
weighs in around 1.23MB because the whole uTox client is embedded inside the malware.

Cryptox uses different techniques to thwart static analysis including the following:

API hashing
Encrypted configurations
Encrypted shellcode
Remote thread injection

Some parts of the malware look directly written in assembly. The most noteworthy thing is
the use of a specific implementation of AES-CBC shown in Figure 2.

https://github.com/uTox/uTox
http://masm32.com/board/index.php?topic=2933.0


3/12

Figure 2. Crytox implementation of AES

The authors borrowed the AES code and modified some parts to meet their needs. They
even added an alternative algorithm using Intel x86 AES instructions. Oddly enough, the
authors chose to only implement the Rijndael_Encrypt routine to both decrypt their config
and encrypt files. This means that when they embedded their configurations, they used the
AES decryption routine to encrypt them. The key used for decrypting the Crytox
configurations are either the first or second block of 32 bytes of the AES lookup table Te1
using a NULL initialization vector (IV).

First-Stage

The malware encrypts the first-stage configuration using the aforementioned
implementation of AES-CBC. Here, the AES key is the first 32 bytes of the Te1 lookup table
a5c6636384f87c7c99ee77778df67b7b0dfff2f2bdd66b6bb1de6f6f5491c5c5 as shown in
Figure 3.



4/12

Figure 3. Crytox first-stage configuration after decryption



This configuration contains the following information:

A hardcoded 2048-bit RSA public key
The path to drop the uTox client application
The Run registry value for the ransom note to be displayed at startup
The process name to inject
The class registry key to store the malware's configuration

After this configuration has been decrypted, the malware locally generates a 2048-bit RSA
key pair using the CryptGenKey function. The generated RSA private key is then
encrypted five times using the hardcoded public key.



5/12

Under the sub-key HKCR\.waiting\shell\open\command\, the ransomware stores the
following value-data pair shown in Table 1.

Value Data

"en" Generated RSA public key

"n" Encrypted generated RSA private key

"" C:\Windows\System32\mshta.exe "C:\ReadMe.hta"

Table 1. Crytox registry configuration

In order to make sure the ransom note is displayed on startup, the registry value
open along with the data "C:\ReadMe.hta" are created under


HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

Once the Crytox configuration is stored, the code proceeds to locate a process to inject the
second-stage. A remote thread is created to execute the first piece of shellcode.

Second-Stage

This stage decrypts a second configuration using AES-CBC with the following key
5060303003020101a9ce67677d562b2b19e7fefe62b5d7d7e64dabab9aec7676 (which is
the second block of 32 bytes from the lookup table Te1). According to this decrypted
configuration, the shellcode executes a batch file to delete shadow copies and remove
events from the logs. Essentially the following commands are run::

for /F "tokens=*" %%1 in ('wevtutil.exe el') DO wevtutil.exe cl "%%1"

vssadmin.exe Delete Shadows /All /Quiet


diskshadow.exe /s ../pghdn.txt

The file pghdn.txt contains the line "delete shadows all".

Given the following hashing algorithm, the second-stage searches for the process ID (pid)
of the process for which the hash of its name corresponds to 0xDCF164CD (explorer.exe)
or 0x561F1820 (svchost.exe).

name = process_name + "\x00"

hash = 0


for c in name.upper():

    hash = ROTR32(hash, 0xD) + ord(c)



6/12

Inside a new thread, the shellcode creates a mutex by concatenating a hardcoded 4-letter
word (e.g., "CSWS") with some random characters based on the pid of the targeted process
as shown in Figure 4.

Figure 4. Crytox mutex creation

The thread then decrypts the content from the resource section of the original malware
using the same algorithm and key as for the second configuration. This resource contains
another shellcode, which is the final stage. This shellcode is injected inside the targeted
remote process.

Third and Final Stage

Using the same encryption algorithm, with the first 32-bytes of the Te1 lookup table as the
AES key, this final stage decrypts the main configuration containing the following
information:

A seed for generating the file encryption key
An .hta formatted ransom note
A simple regular expression for listing all files on the system
The encrypted file extension (e.g., YOUR ID.waiting)
Privileges to remove (SeBackupPrivilege, SeRestorePrivilege)

First, the code tries to retrieve the configuration that the first stage stored in the registry
hive. If this configuration doesn't exist, Crytox will create it. The code proceeds to set a
countdown variable in the ransom note followed by replacing the string YOUR ID in the



7/12

ransom note template. The latter value is replaced with a unique victim ID that is generated
by the following pseudo-algorithm based on the encrypted locally generated RSA private
key:

Figure 5. Crytox victim ID generation algorithm

Before encrypting any files, the malware removes the SeBackupPrivilege and
SeRestorePrivilege privileges. Using the functions WNetOpenEnumW and
WNetEnumResourceW, the malware retrieves connected drives and for each drive found,
a thread is created to encrypt files. The same process is applied for every logical drive
using the function GetLogicalDrives. The malware then waits for a lock to be released
before calling the ShChangeNotify function in order to change the icon and file association
and to display the ransom note to the victim.

File encryption

The algorithm to discover all the files is relatively standard and relies on a recursive
approach. The Windows directory is excluded from the search along with the ransom note
and files with the .waiting extension. In addition, Crytox will only encrypt files that are larger
than 16 bytes, which is the size of a block for AES. If the size of a file is not an exact
multiple of 16 bytes, the malware will not pad and encrypt the last block of data. For large
files, only the first 1,048,576 (0x100000) bytes are read and encrypted to optimize
encryption speed.

For each file, a new 256-bit AES key is generated and the content of the file is encrypted
using AES-CBC. Crytox then creates the following structure in Figure 6.



8/12

Figure 6. Cryptox cipher footer structure

The BLOBHEADER structure is set like this:

.bType = PLAINTEXTKEYBLOB

.bVersion = CUR_BLOB_VERSION


.aiKeyAlg = CALG_AES_256

Since the structure is not initialized, the padding structure is filled with random data.

This structure is encrypted with the locally generated RSA public key. The resulting cipher is
concatenated to the end of the encrypted file followed by the encrypted generated RSA
private key. The encrypted file is renamed by appending YOUR ID.waiting to the original
filename with YOUR ID replaced by the victim ID computed as described previously.

A ransom note is written to every directory after encrypting all files that are present. A
process flow chart for Crytox is illustrated in Figure 7.

https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/ns-wincrypt-publickeystruc


9/12

Figure 7. Process flowchart for Cryptox encryption

Key Generation Algorithm and Weakness

As stated previously, a 256-bit AES key is generated for each file that is encrypted.

The following algorithm in Figure 8 is used for the key generation.



10/12

Figure 8. Crytox key generation algorithm

The custom pseudo random key generator functions relies on the variables below:

A seed value determined by calling GetTickCount
A 64-bit integer config_t.random_generated initially set to 0
A 32-bit integer constant config_t.config_seed

The last value is stored inside the malware's configuration. This value has been the same
across samples analyzed by ThreatLabz. The only unknown value necessary to determine
the AES key is the value of GetTickCount at the time of encryption. However, if some
plaintext of a file is known, efforts to bruteforce the AES key are feasible.

Based on file magic values, one can divise a bruteforce program with the following logic:

1. Set a counter to 0
2. Let the random generator create a key with the counter as the rotating seed
3. Decrypt the first block of the encrypted file
4. Compare a known magic value with the decrypted data
5. If the value matches, the initial value of GetTickCount and the key have been

successfully identified. Else, increment counter and loop back to 2.

Figure 8 shows an bruteforce program running on a machine with 16 logic cores. Here, the
encrypted file was dotnet-sdk-3.1.416-win-x64.exe (SHA1:
83A53E8770EDD38EDDD37DED63CEF2253FC16979) and the known plaintext was the
Windows PE (MZ) file header 4D5A9000.



11/12

Figure 9. Cryptox example bruteforce key recovery

The method relies on knowing a part of the plaintext at a specific offset. Thus, only specific
file types may be decrypted. Because the seed is based on GetTickCount, if one has
access to the master file table (MFT) and is able to locate and decrypt the first and last file
encrypted, then the range of GetTickCount values can be deduced. Therefore, the
bruteforce range can be greatly reduced to decrypt all files.

Conclusion

Crytox exposes some interesting features to hinder static analysis by self-decrypting itself
several times, injecting shellcode inside different processes, encrypting its configurations
and using API hashing. The main file encryption logic of Crytox is standard using a unique
AES key per file that is protected with RSA. However, the author(s) chose to rely on a weak
random generator to create new AES keys. Using a 32-bit integer as the seed is not
sufficient with today's computational power.

Ransomware families have a lot in common due to their shared goals and most use secure
encryption schemes. However, there may still be implementation weaknesses that enable
file decryption without having access to a private key. The bruteforce methods described in
this blog could be reused for similar scenarios.

Cloud Sandbox Detection



12/12

In addition to sandbox detections, Zscaler’s multilayered cloud security platform detects
indicators related to the campaign with the following threat name:

Win64.Ransom.Crytox

Indicators of Compromise

Hashes

1c0bf0c2e7d0c34ec038a8b717bb19d9c4cf3382ada1412f055a9786d3069d78
2115c4c859d497eec163ca33798c389649543d8a6e4db5806a791c6186722b71
307c83924e90f4627f08c2f744cf51f18ec6e246687282a0c1794369ff084f42
3764200cfa673e8796e7c955454b57c20852c2a7931fb9f632ef89d267bbd4c8
6d4e75bc0cc095fef94b9d98a4e94ce9145890b435012b5624aa73621ba6e312
79aff06385c16a98594c6fd314c572bfbe07fbe923f30a627e9b86ac3ab7c071
8ee4a58699ecf02dca516dc6b5b72d93fd9968f672b2be6f8920dfec027d7815
c5550f44332750552921cb5d685ccfbeefa2ab4b03aed8c51c5db52bbe2ff5d4
d60dc6965f6d68a3e7c82d42e90bfda7ad3c5874d2c59a66df6212aef027b455

Files written

C:\ReadMe.hta
Files with ".waiting" extension

Registry keys

HKCR\.waiting\shell\open\command 

https://threatlibrary.zscaler.com/threats/5c75f751-856d-4026-bd4c-6af8862481c2

