
1/17

Jeff White September 13, 2022

OriginLogger: A Look at Agent Tesla’s Successor
unit42.paloaltonetworks.com/originlogger/

By Jeff White

September 13, 2022 at 6:00 AM

Category: Malware

Tags: AgentTesla, Analysis, Cloud-Delivered Security Services, Cortex, Cortex XDR, Keylogger, next-generation firewall, OriginLogger,
threat intelligence, threat prevention, WildFire

This post is also available in: 日本語 (Japanese)

Executive Summary

On March 4, 2019, one of the most well-known keyloggers used by criminals, called Agent Tesla, closed up shop due to legal troubles. In
the announcement message posted on the Agent Tesla Discord server, the keylogger’s developers suggested people switch over to a
new keylogger: “If you want to see a powerful software like Agent Tesla, we would like to suggest you OriginLogger. OriginLogger is an
AT-based software and has all the features.” OriginLogger is a variant of Agent Tesla. As such, the majority of tools and detections for
Agent Tesla will still trigger on OriginLogger samples.

Recently, when sitting down to analyze some malware tagged as Agent Tesla, I was surprised to learn I was actually looking at
something else. This fact revealed itself to me when I began analyzing the malware families’ configurations at scale after creating tooling
to extract them.

In this blog, I will cover the OriginLogger keylogger malware, how it handles the string obfuscation for configuration variables and what I
found when looking at the extracted configurations that allowed for better identification and further pivoting.

Palo Alto Networks customers receive protections from both OriginLogger and its predecessor malware Agent Tesla through Cortex XDR
and the Next-Generation Firewall with cloud-delivered security services including WildFire and Advanced Threat Prevention.

Related Unit 42 Topics Agent Tesla

Table of Contents

https://unit42.paloaltonetworks.com/originlogger/
https://unit42.paloaltonetworks.com/author/jeff-white/
https://unit42.paloaltonetworks.com/category/malware-2/
https://unit42.paloaltonetworks.com/tag/agenttesla/
https://unit42.paloaltonetworks.com/tag/analysis/
https://unit42.paloaltonetworks.com/tag/cloud-delivered-security-services/
https://unit42.paloaltonetworks.com/tag/cortex/
https://unit42.paloaltonetworks.com/tag/cortex-xdr/
https://unit42.paloaltonetworks.com/tag/keylogger/
https://unit42.paloaltonetworks.com/tag/next-generation-firewall/
https://unit42.paloaltonetworks.com/tag/originlogger/
https://unit42.paloaltonetworks.com/tag/threat-intelligence/
https://unit42.paloaltonetworks.com/tag/threat-prevention/
https://unit42.paloaltonetworks.com/tag/wildfire/
https://unit42.paloaltonetworks.jp/originlogger/
https://unit42.paloaltonetworks.com/unit42-analyzing-various-layers-agentteslas-packing/
https://www.paloaltonetworks.com/cortex/cortex-xdr
https://www.paloaltonetworks.com/network-security/next-generation-firewall
https://www.paloaltonetworks.com/network-security/security-subscriptions
https://www.paloaltonetworks.com/network-security/wildfire
https://www.paloaltonetworks.com/network-security/advanced-threat-prevention
https://unit42.paloaltonetworks.com/tag/agenttesla/

2/17

OriginLogger Builder
Dropper Lure

OriginLogger Configuration

Identifying OriginLogger Through Artifacts

Malicious Infrastructure

Conclusion

OriginLogger Builder

When I began researching OriginLogger, I could find little to no public information about it. There are several Agent Tesla-related
analysis blogs that I now recognize as pertaining to OriginLogger – sometimes tagged as “AgentTeslav3” – but otherwise, the public
internet is pretty light on relevant information.

During my search, I stumbled across a YouTube video posted in 2018 (before Agent Tesla closed up shop) by a person selling “fully
undetectable” (FUD) tools. This person showed off the OriginLogger tools with a link to buy it from a known site that traffics in malware,
exploits and the like.

Figure 1.

OriginLogger feature highlights (Source: screenshots of the OriginLogger sale page from a YouTube video on OriginLogger).

Figure 2.

OriginLogger feature list.
Additionally, they showed both the web panel and the malware builder.

https://www.youtube.com/watch?v=o-MDujYrtto

3/17

Figure 3.

OriginLogger web panel (Source: OriginLogger YouTube video).

Figure 4. OriginLogger builder.
The image of the builder shown in Figure 4 was particularly interesting to me as it provided a default string – – that might be unique to
this application. Sure enough, a content search on VirusTotal shows one matching file (SHA256:
595a7ea981a3948c4f387a5a6af54a70a41dd604685c72cbd2a55880c2b702ed) uploaded on May 17, 2022.

Figure 5.

VirusTotal search for string.
Downloading and attempting to run this file resulted in errors due to missing dependencies; however, knowing the builder’s filename,
OriginLogger.exe, allowed me to expand the search and locate a Zip archive (SHA256:
b22a0dd33d957f6da3f1cd9687b9b00d0ff2bdf02d28356c1462f3dbfb8708dd) containing all of the files required to run OriginLogger.

https://www.virustotal.com/gui/file/595a7ea981a3948c4f387a5a6af54a70a41dd604685c72cbd2a55880c2b702ed
https://www.virustotal.com/gui/file/b22a0dd33d957f6da3f1cd9687b9b00d0ff2bdf02d28356c1462f3dbfb8708dd

4/17

Figure 6.

Bundled files in Zip archive.
The settings.ini file contains the configuration the builder will use, and in Figure 7 we can see the previous search string listed under
SmartWords.

Figure 7.

OriginLogger Builder settings.ini file.
The file profile.origin contains the embedded username/password that a customer registers with when purchasing OriginLogger.

5/17

Figure 8.

OriginLogger builder login screen.
Amusingly, if you flip around the values in the profile file, the plaintext password is revealed.

Figure 9.
Contents of profile.origin file.

Figure

10. OriginLogger builder login screen with threat actor password revealed in plaintext.
When a user logs in, the builder attempts to authenticate with the OriginLogger servers to validate the subscription.

6/17

At this point, I had two versions of the builder. The first one (b22a0d*), contained in the Zip file, was compiled Sept. 6, 2020. The other,
which contained the SmartWords string (595a7e*), was compiled on June 29, 2022, just about two years after the first.

The later version makes its authentication request over TCP/3345 to IP 23.106.223[.]46. Since March 3, 2022, this IP has resolved to the
domain originpro[.]me. This domain has resolved to the following IP addresses:

23.106.223[.]46

204.16.247[.]26

31.170.160[.]61

The second IP, 204.16.247[.]26, stands out due to resolving these other OriginLogger related domains:

originproducts[.]xyz

origindproducts[.]pw

originlogger[.]com

Things get more interesting when looking at the older builder. This one attempts to reach out to a different IP address for the
authentication.

Figure

11. PCAP showing remote IP address.Unlike the IP addresses associated with originpro[.]me, 74.118.138[.]76 does not resolve to any
OriginLogger domains directly but instead resolves to 0xfd3[.]com. Pivoting on this domain shows it contains both DNS MX and TXT
records for mail.originlogger[.]com.
Beginning around March 7, 2022, the domain in question began resolving to IP 23.106.223[.]47, which is one value higher in the last
octet than the IP used for originpro[.]me, which used 46.

These two IP addresses have shared multiple SSL certificates:

SHA1 Serial Number Common
Name

IPs Observed

2dec9fdf91c3965960fecb28237b911a57a543e2 38041735159378560318847695768150611562 WIN-
4K804V6ADVQ

23.106.223[.]46

23.106.223[.]47

7a7e732229287c1d53a360e08201616179217117 133152806647474295963986900899009859692 WIN-
4K804V6ADVQ

23.106.223[.]46

23.106.223[.]47

74.118.138[.]76

204.16.247[.]26

3b3cf8039b779d93677273e09961203ffaac2d6f 89480234209393487842197137895395039274 WIN-
4K804V6ADVQ

23.106.223[.]46

23.106.223[.]47

74.118.138[.]76

204.16.247[.]26

Table 1. Shared SSL certificates.

The RDP login screens for both of the servers beginning with IP 23.106.223.X show a Windows Server 2012 R2 server with multiple
accounts.

https://community.riskiq.com/search/certificate/sha1?query=2dec9fdf91c3965960fecb28237b911a57a543e2
https://community.riskiq.com/search/certificate/serialNumber?query=38041735159378560318847695768150611562
https://community.riskiq.com/search/certificate/subjectCommonName?query=WIN-4K804V6ADVQ
https://community.riskiq.com/search/certificate/sha1?query=7a7e732229287c1d53a360e08201616179217117
https://community.riskiq.com/search/certificate/serialNumber?query=133152806647474295963986900899009859692
https://community.riskiq.com/search/certificate/subjectCommonName?query=WIN-4K804V6ADVQ
https://community.riskiq.com/search/certificate/sha1?query=3b3cf8039b779d93677273e09961203ffaac2d6f
https://community.riskiq.com/search/certificate/serialNumber?query=89480234209393487842197137895395039274
https://community.riskiq.com/search/certificate/subjectCommonName?query=WIN-4K804V6ADVQ

7/17

Figure

12. RDP login screen for 23.106.223[.]46.When further searching for this domain, I came across the GitHub profile for user 0xfd3, which
contains the two repositories shown in Figure 13.

Figure

13. User 0xfd GitHub.
I’ll circle back to these later in the blog when looking at the code, but (spoiler alert) they are also used in OriginLogger.

Dropper Lure

Before diving into the malware, I’ll quickly cover the dropper that led to the sample I set out to analyze. As both Agent Tesla and
OriginLogger are commercialized keyloggers, the initial droppers will vary greatly between campaigns and should not be considered
unique to either. I present the below as a real-world example of an attack dropping OriginLogger and show that they can be quite
convoluted and obfuscated.

8/17

The initial lure document is a Microsoft Word file (SHA256:
ccc8d5aa5d1a682c20b0806948bf06d1b5d11961887df70c8902d2146c6d1481). When opened, this document displays a photo of a
passport for a German citizen, along with a credit card. I’m not quite sure how enticing this would be as a lure for a normal user, but
either way, you’ll note the inclusion of numerous Excel Worksheets below the image, as shown in Figure 14.

Figure

14. Lure document.
Each of these sheets are contained in separate embedded Excel Workbooks and are exactly the same:

dc8b81e2f3ea59735eb1887128720dab292f73dfc3a96b5bc50824c1201d97cf Microsoft_Excel_97-2003_Worksheet.xls

dc8b81e2f3ea59735eb1887128720dab292f73dfc3a96b5bc50824c1201d97cf Microsoft_Excel_97-2003_Worksheet1.xls

dc8b81e2f3ea59735eb1887128720dab292f73dfc3a96b5bc50824c1201d97cf Microsoft_Excel_97-2003_Worksheet10.xls

dc8b81e2f3ea59735eb1887128720dab292f73dfc3a96b5bc50824c1201d97cf Microsoft_Excel_97-2003_Worksheet2.xls

dc8b81e2f3ea59735eb1887128720dab292f73dfc3a96b5bc50824c1201d97cf Microsoft_Excel_97-2003_Worksheet3.xls

dc8b81e2f3ea59735eb1887128720dab292f73dfc3a96b5bc50824c1201d97cf Microsoft_Excel_97-2003_Worksheet4.xls

dc8b81e2f3ea59735eb1887128720dab292f73dfc3a96b5bc50824c1201d97cf Microsoft_Excel_97-2003_Worksheet5.xls

dc8b81e2f3ea59735eb1887128720dab292f73dfc3a96b5bc50824c1201d97cf Microsoft_Excel_97-2003_Worksheet6.xls

dc8b81e2f3ea59735eb1887128720dab292f73dfc3a96b5bc50824c1201d97cf Microsoft_Excel_97-2003_Worksheet7.xls

dc8b81e2f3ea59735eb1887128720dab292f73dfc3a96b5bc50824c1201d97cf Microsoft_Excel_97-2003_Worksheet8.xls

dc8b81e2f3ea59735eb1887128720dab292f73dfc3a96b5bc50824c1201d97cf Microsoft_Excel_97-2003_Worksheet9.xls

Within each Workbook is a singular macro that simply saves a command to execute at the following location:

C:\Users\Public\olapappinuggerman.js

https://www.virustotal.com/gui/file/ccc8d5aa5d1a682c20b0806948bf06d1b5d11961887df70c8902d2146c6d1481

9/17

Figure

15. Excel VBA macro.
Once run, this will download and execute via MSHTA the contents of the file at hxxp://www.asianexportglass[.]shop/p/25.html. A
screenshot of the website is shown in Figure 16.

Figure

16. Website to appear legitimate.This file contains an embedded obfuscated script in the middle of the document as a comment.

Figure

17. Website hidden comment.

https://attack.mitre.org/techniques/T1218/005/

10/17

Unescaping the script reveals the code shown in Figure 18, which downloads the next payload from a BitBucket snippet
(hxxps://bitbucket[.]org/!api/2.0/snippets/12sds/pEEggp/8cb4e7aef7a46445b9885381da074c86ad0d01d6/files/snippet.txt) and
establishes persistence with a scheduled task named calsaasdendersw that runs every 83 minutes and uses MSHTA again to execute
the script contained within hxxp://www.coalminners[.]shop/p/25.html.

Figure

18. Unescaped script.
The snippet hosted on the BitBucket website contains further obfuscated PowerShell code and two binaries encoded and compressed.

The first of the two files (SHA256: 23fcaad34d06f748452d04b003b78eb701c1ab9bf2dd5503cf75ac0387f4e4f8) is a C# reflective loader
using CSharp-RunPE. This tool is used to hollow out a process and inject another executable inside of it; in this case, the keylogger
payload will be placed inside the aspnet_compiler.exe process.

Figure

19. PowerShell command to execute method contained in dotNet assembly.Note the projFUD.PA class that the Execute method is called
from. Morphisec released a blog in 2021 called “Revealing the Snip3 Crypter, a highly evasive RAT loader,” where they analyze a
crypter-as-a-service and fingerprint the crypter’s author using this artifact.
The second of the two files (SHA256: cddca3371378d545e5e4c032951db0e000e2dfc901b5a5e390679adc524e7d9c) is the
OriginLogger payload.

OriginLogger Configuration

As previously stated, the original intention of this analysis was to automate and extract configuration-related details from the keylogger.
To achieve this, I started by looking at how the configuration-related strings are used.

I won’t be diving into any of the actual functionality of the malware as it’s fairly standard and mirrors analysis of older Agent Tesla
variants. Just as the threat actors’ advertisements state, the malware uses tried and true methods and includes the ability to keylog, steal
credentials, take screenshots, download additional payloads, upload your data in a myriad of ways and attempt to avoid detection.

To start extracting configuration-related details, I needed to figure out how the user-supplied data is stored in the malware; it turned out
to be straightforward. The builder will take the dynamic string values and concatenate them into a giant blob of text which is then
encoded and stored in a byte array to be decoded at runtime. Once the malware runs and hits a particular function that needs a string,
such as the HTTP address to upload screenshots to, it will pass the offset and string length to a function that will then carve out the text
at that location within the blob.

To illustrate, below you can see the decoding logic used for the main blob of text.

Figure

20. OriginLogger plaintext blob decoding.
Each byte is XOR’d by the index of the byte within the byte array, and again XOR’d by the value 170 to reveal the plaintext.

For each sample generated by the builder, this blob of text will differ depending on what’s configured, so offsets and positioning will
change. Looking at the raw text shown in Figure 21 is helpful, but without splicing it up, it becomes hard to determine where the
boundaries end or begin.

https://github.com/NYAN-x-CAT/CSharp-RunPE/blob/master/RunPE/RunPE.cs
https://blog.morphisec.com/revealing-the-snip3-crypter-a-highly-evasive-rat-loader

11/17

Figure

21. Plaintext blob.
It also does not help when it comes time to analyze the malware, as you won’t be able to discern when or where something is used. To
figure this next piece out, I needed to look at how OriginLogger handles the splicing.

Below you can see the function responsible for carving out the string, followed by the beginning of the individual methods containing the
offset and length.

Figure

22. OriginLogger string functions.
In this case, if the B() method is called at some point by the malware, it will pass 2, 2, 27 to the obfuscated nameless function at the top
of the image. The first integer is used for the array index where the decoded string will be stored. The second (offset) and third (length)
integers are then passed to the GetString function to obtain the text. For this particular entry, the resulting value – <font

12/17

color="#00b1ba">[– is used during the creation of the HTML page it uploads to display the stolen data.

Knowing how the string parsing works, I could then automate the extraction of these strings. To start, it helps to look at the underlying
intermediate language (IL) assembly instructions.

Figure

23. OriginLogger IL instructions for string function.
For each of these lookups, the structure of the function block will remain the same. At index 6-8 in Figure 23, you will see three ldc.i4.X
instructions where X dictates an integer value that will be pushed onto the stack before calling the previously described splicing function.
This overall structure creates a framework that can then be used to match all of the corresponding functions in the binary for parsing.

Leveraging this, I wrote a script to identify the encoded byte array, determine the XOR values and then splice up the decoded blob in the
same fashion the malware uses it. With this, you can scroll through the decoded strings and look for things of interest. Once something
is identified, knowing the offset and subsequent function name, you can pivot into the part of the malware that leverages them.

Figure 24. OriginLogger decoded strings.

From here, I started renaming the obfuscated methods to reflect their actual values, which made analysis easier on the eyes.

13/17

Figure

25. OriginLogger FTP upload function.
It should be noted that the same string deobfuscation can be achieved by using de4dot and its dynamic string decryption feature by
specifying the string types as delegate and identifying the tokens of interest. This works extremely well for single file analysis.

Recall that I mentioned in the OriginLogger Builder section of this blog that I’d circle back to the GitHub repositories of the 0xfd3 user.
Take a look in Figure 26 at the Chrome Password Recovery code uploaded in March 2020 after OriginLogger took Agent Tesla’s
prominence in the keylogger world.

https://github.com/de4dot/de4dot

14/17

Figure

26. Chrome Password Recovery.
Compare Figure 26 to the code from the OriginLogger sample with renamed methods shown in Figure 27.

Figure

27. OriginLogger Chrome password stealing function.
Look familiar? These types of similarities abound as OriginLogger has continued development where Agent Tesla left off.

15/17

Identifying OriginLogger Through Artifacts

Using this tooling, I extracted 1,917 different configurations, which gives insight into the exfiltration methods used and allows for
clustering of samples based on the underlying infrastructure.

This is where I began to understand that what I was looking at wasn’t Agent Tesla but instead a different keylogger – OriginLogger. Two
particular exfiltration methods that both showed multiple references to “origin” in some fashion led me to connect the dots.

For example, one of the URLs configured for a sample to upload keylogger and screenshot data to was
hxxps://agusanplantation[.]com/new/new/inc/7a5c36cee88e6b.php. This URL is no longer active so I started searching for historical
information about it to understand what was on the receiving end of these HTTP POST requests. By plugging in the domain to
URLScan.io, it showed login pages for the panel in the same directory but, more importantly, that the OriginLogger web panel (SHA256:
c2a4cf56a675b913d8ee0cb2db3864d66990e940566f57cb97a9161bd262f271) was observed on this host at the time of scanning four
months ago.

Figure

28. URLScan.io scan history for domain.Similarly, one of the exfiltration methods is through Telegram bots. To utilize them, OriginLogger
requires a Telegram bot token to be included so the malware can interact with it. This provides another unique opportunity to analyze the
infrastructure in use. In this case, I can use the token to query Telegram with what equates to a whoami command and observe the
names used by the bot creator. Below are a handful of examples showing relevant naming.
"id":2046248941,"is_bot":true,"first_name":"origin","username":"mailerdemon_bot"

"id":1731070785,"is_bot":true,"first_name":"@CodeOnce_bot","username":"PWORIGIN_bot"

"id":1644755040,"is_bot":true,"first_name":"ORIGINLOGGER","username":"softypaulbot"

"id":1620445910,"is_bot":true,"first_name":"ORIGINLOGS","username":"badboi450hbot"

"id":2081699912,"is_bot":true,"first_name":"Zara","username":"Zaraoriginbot"

"id":5054839999,"is_bot":true,"first_name":"Origin Poster","username":"origin_post_bot"

Malicious Infrastructure

Like other keyloggers that are commercially sold, OriginLogger is used by a wide variety of people for various malicious purposes around
the globe. In the past, I’ve written about taking a deeper look at the victims of keyloggers and what analyzing their screenshots can
reveal about the potential intentions of the attackers. In this blog post, I will summarize some observations of the data extracted from the
corpus of OriginLogger samples I collected. Most samples had multiple exfiltration techniques configured and I’ll cover each one below.

SMTP is still the primary mechanism used for exfiltrating data and was identified in 1,909 samples. This is most likely because:

The traffic will blend in with normal user traffic better than other included protocols.It’s relatively easy for attackers to obtain stolen
e-mail accounts.
E-mail providers usually offer a large amount of storage space.

https://urlscan.io/search/#agusanplantation.com
https://unit42.paloaltonetworks.com/keybase-threat-grows-despite-public-takedown-a-picture-is-worth-a-thousand-words/

16/17

There were 296 unique e-mail recipient addresses for the stolen data and 334 unique e-mail account credentials used to send them.

FTP was configured in 1,888 samples using 56 unique FTP servers and 79 unique FTP accounts, with multiple accounts logging to
different directories, likely based on different campaigns. Across the accessible servers, which were limited to 11 of the 56, there are 442
unique victims, with some victims being logged hundreds of times.

Web uploads to the OriginLogger panel followed closely behind and were configured in 1,866 samples, uploading to 92 unique URLs.
When analyzing these URLs, the PHP file used for the upload showed a pattern of alphanumeric characters in the filename, with a
couple of additional patterns presenting themselves in the directory structure. Looking into the source code of the web panel as shown in
Figure 29 shows that the PHP filename is an MD5 value of some random bytes and is placed in the /inc/ (incoming) directory.

Figure

29. OriginLogger source code for setup.php.
Keep in mind that many keylogger purchasers may not have much technical experience and tend to use a “full service” vendor that
creates everything for them so that all they are required to do is distribute the keylogger. I suspect this is a reason for a lot of the URIs
having similar structures. For example, the structure http://<ipaddress>/<name>/inc/<md5>.php is repeated throughout, and the first
level of the directory shows values unlikely to be generated automatically – possibly account-related:

b0ss/inc

rich/inc

divine/inc

ma2on/inc

darl/inc

jboy/inc

newmoney/inc

Likewise, this directory structure changes the inc to mawa and prepends webpanel to the name:

webpanel-roth/mawa

webpanel-qwerty/mawa

webpanel-dawn/mawa

webpanel-charles/mawa

webpanel-muti/mawa

webpanel-ghul/mawa

webpanel-reza/mawa

For the last exfiltration method, we have Telegram identified in 1,732 samples with 181 unique Telegram bots receiving the stolen data.
In addition to being able to issue a whoami for the bot, we’re able to query for information related to the channels where stolen
information was uploaded. The most prominent of the channels are below with the details currently in use:

Count Channel Bio Owner Bot Name

41 Invest in bitcoin now and attain financial freedom Alaa Ahmed obomike_bot

25 Free Cannabis 🌵🌵 Cry_ptoSand sales3w7_bot, oasisx_bot,
valiat073_bot

21 Atrium Investment Ltd: We Help You ACHIEVE YOUR
LIFE GOALS

Doris E. Athey Tino08Bot

20 Self Discipline, Consistency and humanity. Lucas Grayson Odion2023bot

17/17

18 Come Closer Anthony Forbes Anthonyforbes2023bot

14 Think it, Code It CodeOnce DeSpartan PWORIGIN_bot

12 Dream cha$er 4L Lurgard da Great johnwalkkerBot

11 coder..no system is safe.. Private crypt 100$..knowledge
is power 💯💯

☠️The Devil☠️👹👿(do not
disturb))

Skiddoobot

10 PhD Engineering Alexander Macbill swft_bot

Table 2. Prominent Channels

Finally, one feature that is not utilized very often is the ability for OriginLogger to download an additional payload after infecting the victim
system. In the samples discussed here, only two were configured to download additional malware.

Conclusion

OriginLogger, much like its parent Agent Tesla, is a commoditized keylogger that shares many overlapping similarities and code, but it’s
important to distinguish between the two for tracking and understanding. Commercial keyloggers have historically catered to less
advanced attackers, but as illustrated in the initial lure document analyzed here, this does not make attackers any less capable of using
multiple tools and services to obfuscate and make analysis more complicated. Commercial keyloggers should be treated with equal
amounts of caution as would be used with any malware.

Luckily, in this instance, because of the similarities between the two aforementioned keyloggers, detections and protections carried over
from one generation to the next – albeit with slightly inaccurate signature naming.

Palo Alto Networks customers receive protections from both OriginLogger and its predecessor malware Agent Tesla through Cortex XDR
and the Next-Generation Firewall with cloud-delivered security services including WildFire and Advanced Threat Prevention.

Get updates from

Palo Alto

Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy Statement.

https://www.paloaltonetworks.com/cortex/cortex-xdr
https://www.paloaltonetworks.com/network-security/next-generation-firewall
https://www.paloaltonetworks.com/network-security/security-subscriptions
https://www.paloaltonetworks.com/network-security/wildfire
https://www.paloaltonetworks.com/network-security/advanced-threat-prevention
https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

