The evolution of GuLoader

J& vmray.com/cyber-security-blog/malware-analysis-spotlight-guloader

S

MALWARE ANALYSIS SPOTLIGHT

The evolution of GuLoader
MALWARE ANALYSIS SPOTLIGHT FROM VMRAY LABS

1/11

https://www.vmray.com/cyber-security-blog/malware-analysis-spotlight-guloader

Table of Contents

Introduction

In this Spotlight, we take another look at GuLoader. The malware family is active since at
least 2020. It gained some attention because of its evasion techniques and abusing
legitimate and popular cloud services to host its malicious payloads. The downloader is
commonly used to deliver other malware families such as FormBook, XLoader, and Lokibot.
After we took a closer look at GuLoader’s evasion techniques in a Threat Bulletin, we
observed some additional behavior later that year.

Recently, we collected samples that are different from the samples we have seen before.
The file that executes GulLoader’s shellcode has changed, and the functionality of GuLoader
has been extended compared to our last Spotlight. The sample in discussion leads to the
execution of Lokibot as indicated by the extracted configurations in Figure 1.

2/11

https://www.vmray.com/cyber-security-blog/guloader-evasion-techniques-threat-bulletin/
https://www.vmray.com/cyber-security-blog/azorult-delivered-by-guloader-malware-analysis-spotlight/

Score Category Operation

- 5/5 Extracted Configuration GulLoader configuration was extracted

« A configuration for GuLoader was extracted from artifacts of the dynamic analysis. =+

- 5/5 Extracted Configuration Lokibot configuration was extracted

» A configuration for Lokibot was extracted from artifacts of the dynamic analysis, ***

» 5/5 YARA Malicious content matched by YARA rules
» 4/5 Reputation Known malicious file
- Anti Analysis Tries to evade debugger

(Process #1) e7ee8ff4872d57b2fba736ee6556e3f92a3fc1c3c8738c50ccBb1ebacbb4379f.exe hides thread via API "NtSetinformationThread", ese

» Discovery Collects information about services

- Anti Analysis Tries to detect virtual machine

= (Process #1) e7eesff4872d57b2fba736ee6556e3f92a3fc1c3cB738c50ccBb1e6achb4379f.exe is possibly trying to detect a VM via rdtsc.

- Anti Analysis Makes direct system call to possibly evade hooking based sandboxes

= (Process #1) eTeedff4872d57b2fba736ee6556e3f92a3fc1c3c8738¢50ccBb1ebachbd379f.exe makes a direct system call to "NtallocateVirtualMemory”.

» Injection Writes into the memory of a process started from a created or modified executable
’ Injection Modifies control flow of a process started from a created or modified executable
3 1/5 Hide Tracks Creates process with hidden window

» 1/5 Obfuscation Creates a page with write and execute permissions

1/5 Obfuscation QOverwrites code

-

» 1/5 Execution Executes itself

» 1/5 Execution Drops PE file

~

Figure 1: VMRay Analyzer - VTI highlighting GuLoader's behavior and extracted
configurations.

GuLoader’s Delivery

The main functionality of GuLoader is implemented as shellcode, and typically an executable
takes care of loading the shellcode into memory and transferring the execution flow to it. So
far this executable was written in VB6. However, the executable in this analysis is a signed
NSIS installer that leads to the execution of GuLoader.

During the installation process, the installer extracts multiple files to the hard disk including a
DLL (Dynamic Link Library) named “System.dll”, and a file named “Gestisk.For” (Figure 2.).

3/11

https://www.vmray.com/wp-content/uploads/2022/08/GuLoader-vti.png

=

File Name Category Type rdict

C\Users\kEeciMwaj\Desktop\e7ee8fi4872d57b2fbaT 36eeb556e3f02a3frIc3cBT 38c50ccBblefach ba3 79 exe Sample File Binary
C:\Users\KEECFM~T\AppData\Local\ Temp\nszCSADtmp\System.dll Dropped File Binary
CAUsers\kEeciMwgj\Videos\Bet Readjourned\Gestisk.For Dropped File Stream
CAUsers\kEeciMwgj\Videos\Betingningerne\Readjourned \ SHALRNLAT\elan.D15 Dropped File Text
CA\Users\kEeciMwagj\Videos\Betingningerne\Readjourned\face-cool-symbaolicsvg Dropped File Image m]

Figure 2: VMRay Analyzer - Dropped files

While the name for the DLL seems to be consistent across similar samples, the name of the
second file can vary. After writing “System.dll” to the hard disk, it is loaded by

the installer and used to call WinAPI functions to allocate memory where the shellcode will
end up alter on.

Previous samples written in VB6 called the WinAPI functions directly instead of using a
separate DLL.

GulLoader’s Evolution

At first glance, we can see the typical behavior of GuLoader. It tries to detect an analysis
environment and if none was found it injects the shellcode into another process instance of
the executable.

Next, the second instance downloads and executes the payload from the well-known cloud
service Google Drive. When comparing the memory dump of the shellcode with memory
dumps from older samples, we can see that GuLoader stopped storing the strings in
plaintext. Instead, they are decrypted at runtime and stored in a separate memory region
(Figure 3.).

: xohIxohZxd
= xohZxdhZxe
A Vgb...,B.*

ogram Files\gga'
qga.exe.psapi.dl

% gMozilla/5.0 (Wi

57 4F Indows NT &.1; WO i l.Msi.dll.Fublis
Wed: " ne/7.0 her.wininet.dll.
ike E Mozilla/5.0 (Win

Ge e . GFfwin

inet.dll.é......

.exdfimrdll
- fikernel3z.
aldpiripadvapiil. é=

er32.ustoas]

8 5A xochiIxohixo T
8 SA xohIxohIxohIxdhi

Figure 3: Encrypted strings embedded in shellco-a‘é‘ (Ieft), énd Ldec-:‘rypied‘stri_r-]gs“stored ina
separate memory region (right).

VMRay Analyzer uses special triggers that allow obtaining the region which contains the
decrypted strings.

4/11

https://www.vmray.com/wp-content/uploads/2022/08/GuLoaderdropped_files_stroked.png
https://www.vmray.com/wp-content/uploads/2022/09/old-new-strings.jpg
https://www.vmray.com/cyber-security-blog/vmray-platform-feature-highlight-extended-smart-memory-dumping/

Moving on to the observed function calls, we can see that the sample utilizes additional
WinAPI functions compared to previous ones. Figure 4. lists additional function calls that we
discuss next.

RtIAddVectoredExceptionHandler

EnumDeviceDrivers
GetDeviceDriverBaseNameA

MsiEnumProductsA
MsiGetProductinfoA

OpenSCManagerA
EnumServicesStatusA
Figure 4: List of additional WinAPI functions observed in newer samples.

While we have seen calls to functions related to enumerating products and services in
previous samples, the registration of a new exception handler and the examination of device
drivers have been added recently. This leads to the assumption that GuLoader is still under
active development.

Given the function log, we can see that the address of the exception handler is part of the
shellcode (Figure 5.).

[0081.014] LoadLibraryh (lpLibFileName="ntdll") returned 0x77150000
[0081.014] LoadLibraryZ (lpLibFileName="ntdll") returned 0x7 Q00
[00B81.020] RtladdVectoredExceptionHandler (FirstHandler=0xl,iVectoredHandler=Ox2el467dlIreturned 0x335128
[0081.025] LoadLibraryh (lpLibFileName="user32") returned 0x74£f70000

[0081.027] LoadLibraryR (lpLibFileName="kernel32") returned 0x75620000
[0081.031] LoadLibraryZ (lpLibFileNams="ntdll") returned 0x77150000

Memory Dumps (13)

Name Start VA End VA Dump Reason
e7eesff4872d57b2fba736ee6556e3f92a3fc1c3c8738c50ccBb1ebachb4379f exe 0x00400000 Ox00487FFF Relevant Image
system.dll OxT4RDO0D0 OxT4RDEFFF First Execution
buffer 0x0ZEQO0D0 Ox0ZEFFFFF First Execution
huffer 0x02EQ0000 Ox02EFFFFF Content Changed
huffer 0x02EQ0000 Ox0ZEFFEFEF Content Changed
buffer 0x0ZEQO0D0 Ox0ZEFFFFF Content Changed
ntdll.dll 0xTTL50000 OxTT2ZCFFEF First Execution
buffer 0x0ZEQO0D0 Ox0ZEFFFFF Content Changed
buffer 0x0ZEQO0D0 Ox0ZEFFFFF Content Changed
buffer 0x0ZEQO0D0 Ox0ZEFFFFF Content Changed
buffer 0x0ZEQO0D0 Ox0ZEFFFFF Content Changed
buffer 0x02F00000 Ox02FE0FFF Dump Rules: GuLoaderConfigI
eTeeBff4872d57b2fbav36ee6556e3f92a3fc1c3c8738c50ccBb 1 ebacbbd4 379 .exe 0x00400000 Ox00497FFF Process Termination

Figure 5: VMRay Analyzer - Exception handler registration

5/11

https://www.vmray.com/analyses/e7ee8ff4872d/logs/flog.txt
https://www.vmray.com/wp-content/uploads/2022/08/flog_exception_handler.png
https://www.vmray.com/wp-content/uploads/2022/08/memory_dumps_stroked.png

This exception handler first checks if the exception was raised because of a software
breakpoint. Next, the function inspects the CPU registers to detect the presence of hardware
breakpoints. In case no breakpoint is set, the handler continues to change the instruction
pointer. The new value depends on the current instruction pointer and the byte followed after
the int3 instruction that triggered the exception handler (Figure 6). If a hardware breakpoint is
set, the handler doesn’t change the instruction pointer, subsequently executing invalid
instructions.

Additionally, the function checks for int3 instructions between the current and the new
instruction pointer value.

mov edx, [eax+_ EXCEPTION_POINTERS.ExceptionRecord]
test bh, 78h
mov edx, [edx+EXCEPTION_RECORD.ExceptionCode]
cmp edx, EXCEPTION_BREAKPOINT
jnz 1t vandler_se .
— A2
FIEE]

check for hardware br‘eakpoints-

v

test
mov

bl, dl
edx, [eax+CONTEXT._ Eip]
P="
\ BCCh ¢ check for d P
Dyte pti |[|=-d-,§l-- Sheck for int3 (oxcC) at I

v

el L
v dl, [edx+1] ; read encrypted jump distance after int3f]
test edx, edx
or dl, 4ch ; xor key to decrypt jump distance

vzx _edx, dl : jump distance relative to IP

‘Em@ Ealie] _
search for int3 instructions

|
L1 _ Y Fl Yy

"FE (e 5] [
loc_2E147DD: continue_handler_search:
cmp edx, ecx mov eax, 4839119740
pop ebx add eax, 3701544218
ch ?u - add eax, 322821178
% [eax+CONTEXT. Eig], edx ; update IP cmp ch, dh
al, o sub eax, 3768517832 ; eax = EXCEPTION_CONTINUE_SEARCH
mov eax, 8665808221 retn 4
cmp cx, dx exception_handler endp
sub eax, 461471596
xor eax, 2124348630
test bl, al
cmp bh, ch
xor eax, 2595131312 ; eax = EXCEPTION_CONTINUE_EXECUTION
test al, bl
retn 4

Figure 6: Exception handler snippet that modifies the instruction pointer.

By registering the exception handler, GuLoader uses int3 instructions as relative jumps.
Because debuggers like WinDbg and x64dbg use int3 instructions for software breakpoints,
this approach interferes with debugging if the debugger handles these exceptions first.

A deeper look at the function log reveals that multiple WinAPI functions are called from the
same address within the shellcode (Figure 7.). This is an indicator that some kind of wrapper
function takes care of calling the WinAPI functions.

6/11

https://www.vmray.com/wp-content/uploads/2022/08/exception_handler_stroked.png

Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line

493609:
493623:
4936372
493651:
493665:
493678:
493693:
4937072
493721:
493735:
459374%9:
493763:
493777:
493781:
493805:
453819:
493833:
493847:
493861:
493875:
4593889:
493903:
493917:
493931:
4593945:
493959:
493973:
493987:
494001
454015:
494029:
494043:
494057:
495130
495156:
495293:
495361:
495388:
4595423:
495441 :
495498:
496139:
4%9€779;:
496807 :

<fncall
<fncall
<fncall
<fncall
<fncall
<fncall
<fncall
<fncall
<fncall
<fncall
<fncall
<fncall
<fncall
<fncall
<fncall
<fncall
<fncall
<fncall
<fncall
<fncall
<fncall
<fncall
<fncall
<fncall
<fncall
<fncall
<fncall
<fncall
<fncall
<fncall
<fncall
<fncall
<fncall
<fncall
<fncall
<fncall
<fncall
<fncall
<fncall
<fncall
<fncall
<fncall
<fncall
<fncall

te="122662"
ta="122769"
ca="122874"
ta="123007"
ts="123105"
ta="123201"
ta="123299"
ca="123435"
ts="123570"
ts="123661"
ta="123T763"
ta="123855"
ca="123944"
ts="124055%
ta="124170"
ta="124273"
ca="124388"
ta="124484"
ts="124589"
ta="124690"
ta="124810"
ca="124940"
ts="125066"
te="125165"
ta="125267"
ca="125393"
ta="125522"
ts="125653"
te="125795"
ta="125926"
ca="126055"
ts="12E6196"
ts="126318"
ta="129889"
ta="129917"
ca="130411"
ts="130474"
ts="130732"
ta="130864"
ta="131086"
ta="132670"
ts="132636"
tas="1l32692"
ta="132T767"

fncall id:
fncall_id=
fncall id="40834"
fncall id="40866"
fncall id="40898"
fncall_id="40830"
fncall id="408&62"
fncall id="40994"
fncall id="41026"
fncall id="41058"
fncall_id="41080"
fncall id="4112z2"
fncall id="41154"

40802"

fncall_id="41250"
fncall ide="41282"
fncall 1d="41314"
fncall id="41346"

fncall_id="4137&"
fncall id="41410"
fncall id="41442"
fncall id="41474"
fncall id="41506"
fncall id="4153&"
fncall id="41570"
fncall id="41€02"
fncall id="41634"
fncall id="41666"

fncall_id="41698"
fncall id="41730"
fncall id="41762"

fncall_id=
fncall id="42777"
fncall id="42908"
fncall id="42924"
fncall id="43003"
fncall id="43037"
fncall id="43091"
fncall id="43145"
43151"
_id="43153"
fncall id="43183"

process_id="1"
process_id="1"
process_id="1"
process id="1"
process_id="1"
process_id="1"
process_id="1"
process_id="1"
process_ id="1"
process_id="1"
process_id="1"
process_id="1"
process id="1"
process_id="1"%
process_id="1"
process_id="1"
process_id="1"
process id="1"
process_id="1"
process_id="1"
process_id="1"
process_id="1"
process_id="1"
process_id="1"
process_id="1"
process_id="1"
process id="1"
process_id="1"
process_id="1"
process_id="1"
process_id="1"
process id="1"
process_id="1"
process_id="1"
process_id="1"
process_id="1"
process_id="1"
process_id="1"
process_id="1"
process_id="1"
process id="1"
process_id="1"
process_id="1"
process_id="1"

thread id="4"
thread_id="4"
thread id="4"
thread id="4"
thread id="4"
thread id="4"
thread_id="4"
thread id="4"
thread id="4"
thread id="4"
thread_id="4"
thread_id="4"
thread id="4"
thread i
thread i
thread_id="4"
thread id="4"
thread id="4"
thread id="4"
thread i
thread_id="4"
thread_id="4"
thread id="4"
thread id="4"
thread_id="4"
thread_id="4"
thread id="4"
thread id="4"
thread id="4"
thread_id="4"
thread_id="4"
thread id="4"
thread id="4"
thread id="4"
thread_id="4"
thread_id="4"
thread id="4"
thread id="4"
thread_id="4"
thread id="4"
thread id="4"
thread i
thread
thread_id="4"

=g m

name="GetDeviceDriverBaseNamesA"
name="GetDeviceDriverBaseNameR"
name="GetDeviceDriverBaseNameA™
name="GetDeviceDriverBaseNameA™
name="GztDeviceDriverBaseNameA"
name="GetDeviceDriverBaseNameA"
name="GetDeviceDriverBaseNameR"
name="GetDeviceDriverBaseNameA™
name="GetDeviceDriverBaseNameA"
name="GetDeviceDriverBaseNamesA"
name="GetDeviceDriverBaseNameR"
name="GetDeviceDriverBaseNameR"™
name="GetDeviceDriverBaseNameA™
name="GetDeviceDriverBaseNameA®
name="GetDeviceDriverBaseNameA"
name="GetDeviceDriverBaseNameR"
name="GetDeviceDriverBaseNameA™
name="GetDeviceDriverBaseNameA™
name="GetDeviceDriverBaseNamesA"
name="GetDeviceDriverBaseNameA"
name="GetDeviceDriverBaseNameR"
name="GetDeviceDriverBaseNameA™
name="GetDeviceDriverBaseNameA"
name="GetDeviceDriverBaseNamesA"
name="GetDeviceDriverBaseNameR"
name="GetDeviceDriverBaseNameR"™
name="GetDeviceDriverBaseNameA™
name="GetDeviceDriverBaseNamsA"
name="GetDeviceDriverBaseNameA"
name="GetDeviceDriverBaseNameR"
name="GetDeviceDriverBaseNameA™
name="GetDeviceDriverBaseNameA™
name="GetDeviceDriverBaseNamesA"
name=

name="CreateProcessInternal W™

addr="0x754el4e4"
addr="0xT754eld4ed"™
addr="0x754el4e4™
addr="0x754el4e4”™
addr="0x754c14e4"
addr="0x754el4e4"
addr="0x754el4ed™
addr="0x754el4e4™
addr="0x754el4e4"™
addr="0x754el4e4"
addr="0x754eld4ed"™
addr="0x754el4ed™
addr="0x754el4e4"™
addr="0x754el4e4"
addr="0x754el4e4"
addr="0xT754eld4ed"™
addr="0x754el4e4™
addr="0x754el4e4"™
addr="0x754cl4e4"
addr="0x754el4e4"
addr="0x754el4ed™
addr="0x754el4e4™
addr="0x754el4e4"™
addr="0x754el4e4"
addr="0xT754eld4ed"™
addr="0x754el4ed™
addr="0x754el4e4"™
addr="0x754el4e4"
addr="0x754el4e4"
addr="0x754eld4ed"™
addr="0x754el4e4™
addr="0x754el4e4”™
addr="0x754el4e4"

from="0x2eld4lg2">
from="0xZeld
from="0x2el4182"™>
from="0x2eldl82">
from="0x2el4182">
from="0x2eld4l82">
from="0x2eld182">
from="0x2el4182"™>
from="0x2el4lga™>
from="0x2el4lsa">
from="0x2eldl82">

from="0x2eld4182">
from="0x2eld4l82">
from="0x2el4182%>
from="0Ox2eldl
from="0xZeld
from="0x2eld
from="0x2eldl82">
from="0x2el4lga">
from="0x2eld4l82">
from="0x2eld182">
from="0x2el4182"™>
from="0x2el4lsa™>
from="0x2el4lga">
from="0x2eldl82">
from="0x2el4182">
from="0x2eldl82">
from="0x2el4lga™>
from="0Ox2el4dl
from="0xZeldl
from="0x2el4182">
from="0x2eldl82">
from="0x2el4lga">

OpenSCManagerA™ addr="0x767£2bd8" from="0OxZeldl8z":»
name="EnumServicesStatusA" addr="0x7E842021" from="0Oxle
addr="0x75643bab"

from="0x2el4l82">

name="NcUnmapViewOfSection® addr="0x7716fc70" from="0x2=14182">
name="NtOpenFile" addr="0x7716fd54" from="Ox2esl4l82">
name="NtCreateSection™ addr="0x7T716ff%4" from="0x2eld4l82">

name="NtMapViewOfSection" addr="0x7716fc40" from="OxlZel
addr="0x77170c20" from="Ox2els
name="NtSetContextThread” addr="0x77171910" from="0x2
name="NtResumeThread"™ addr="0x77170058" from="0x2el4ls
name="WaitForSingleObject” addr="0xT7563113€" from="0Oxlel

name="NtGetContextThread"”

L

Figure 7: VMRay Analyzer - Excerpt from flog.xml revealing the same from address is being
used multiple times.
In this example, GuLoader uses such a function to partially overwrite its code before calling
the actual WinAPI function. Figure 8. shows the part of the wrapper function that overwrites
the code by xoring it with the return address before and after the call instruction.

7/11

https://www.vmray.com/wp-content/uploads/2022/08/image2022-7-26_13-50-56.png

loc_ 2E1413E:
xor [eax], edx

add eax, 4 o"!nwnlrl
cmp eax, ebx con!

jnz short loc_2E1413E

EB 38 jmp short loc_2E14179

il e =

loc_2E14179:
66 85 CB test bx, cx
58 pop eax

: call WinAPI functicn
Fi

loc_2E14269: n!"on!
sub edx, 4 cob!

xor [edx], ecx
cmp edx, ebx
jnz short loc_2E14289

Figure 8: Partially overwriting code before WinAPI function calls.
By overwriting code before the calls, GuLoader avoids being extracted correctly by
analysis tools that use WinAPI functions as memory dump trigger.

Looking at the list of called functions, we can see that GuLoader gathers information about
the

e name of installed drivers EnumDeviceDrivers and GetDeviceDriverBaseNameA)
o publisher of installed products (MsiEnumProductsA and MsiGetProductinfoA)
e services in the SERVICES ACTIVE _DATABASE

The resulting strings are then hashed using a customized djb2 algorithm and compared
against a block list of pre-computed values of analysis environment artifacts.

Device names:
0x0A4F1B4F0
0x0D277D8C6

8/11

https://www.vmray.com/wp-content/uploads/2022/08/code_overwrite_stroked.png

Ox06E5A1CF8
0x0966FEGF7
OxOEC7C85F9

Product publisher:
0x07630654D
0x0A80331E9
OxOF8727F49
0x060FAFADD

Services:
0x0C749257D
0x0CC359518
0x0C55733D2
0xOAOFOEF16
0x0BA252FC4
0x02DCOE42A
0x077C8F76A

Figure 9: Blocklist of pre-computed values of analysis environment artifacts

If the calculated value is present in the block list, GuLoader stops its execution and therefore
evades the analysis.

This technique was used earlier with the original djb2 algorithm. In this particular sample, the
djb2 algorithm is customized in a way that the hash is xored with the key 0xOC93EB2D8 in
each iteration (Figure 9.)

def djb2_custom(s: bytes) -> int:
hash = 5381
for xin s:
hash = ((hash << 5) + hash) + x
hash = (hash * 0x0OC93EB2D8) & OxFFFFFFFF
return hash

Figure 10: Customized djb2 algorithm in Python

In general, values of the block list are indicators analysts can take advantage of for detection
and identification as long as the algorithm remains the same across samples. GuLoader
prevents this by slightly changing the algorithm.

Finally, GuLoader creates another process of the installer, injects code, and delivers the
payload. In this case, the payload is Lokibot and hosted on Google Drive.

9/11

VMRay Analyzer extracts the malware configuration for both malware families, which eases
the detection and identification of infected systems.

Extracted Payload URLs

In addition to Google Drive being abused to host the malicious payload, we have seen
other services in our extracted configurations.

Figure 10. shows the distribution of hostnames. While Google Drive remains the most
common one, other cloud services like Microsoft OneDrive are used a well.

drive.google.com

Others VRS 103.170.254.140

8.4%
192.3.245.147

gnl.notification.com

Figure 11: Distribution of host names

Conclusion

In this post, we took another look at GuLoader with a focus on behavioral differences
compared to past samples. We have seen that not only the executable, which leads to
GulLoader’s shellcode has been changed but also its functionality has been further extended.

10/11

https://www.vmray.com/wp-content/uploads/2022/08/URL-distribution-2.jpg

While GuLoader utilizes new techniques to search for artifacts revealing an analysis
environment, some of the existing logic changed to further thwart detection and analysis
attempts. Given VMRay Analyzer’s unique monitoring approach, GuLoader can’t detect the
presence of the sandbox and reveal its malicious behavior leading to the delivery of Lokibot.
The extracted malware configuration for both families allows analysts and incident
responders to quickly take actions to prevent the infection and identify already compromised
machines.

I0OCs

Initial Sample:
e7ee8ff4872d57b2fba736ee6556e3f92a3fc1c3c8738c50cc8b1e6acbb4379f
GulLoader Payload URL.:

hxxps://drive[.]Jgoogle[.Jcom/uc?
export=download&id=1SrbfkJ9_Bx7Q9qhzb5JeLy5TIBRjWwjF

Lokibot C&Cs:

alphastand|.]trade/alien/fre.php
alphastand|.]top/alien/fre.php
alphastand|.]win/alien/fre.php
kbfvzoboss|.]bid/alien/fre.php
hxxp://198[.]187[.]30[.]47/p.php?id=67243588715181780

Pascal Brackmann
Pascal is a Threat Researcher at VMRay Labs. His recent projects cover in-depth analysis of
emerging and evolving malware.

See Analyzer in action.
Solve your own challenges.

REQUEST FREE TRIAL NOW

11/11

https://www.vmray.com/try-vmray-products/

